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An experimental capability, developed at Lawrence Livermore National Laboratory (LLNL), is
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being used to study the yield behavior of elastic-plastic materials. The objective of our neseamh is to
develop better constitutive equations for polycrystalline metals. We are experimentally determining
the multidimensional yield surface of the material, both in its initial state and as it evolves during
large inelastic deformations. These experiments provide a more complete picture of material behavior
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than can be obiained from traditional uniaxial tesis. Experimental resuiis show that actual materiai
response can differ significantly from that predicted by simple idealized models. These results are
being used to develop improved constitutive models of anisotropic plasticity for use in continuum

computer codes.

Introduction

el, polycrystalline metals

are composed of a gmgat,es of individual crystals,
each of which has its own orientation and proper-
ties. When subjected to leading, metals initially
exhibit reversible deformation, due to the stretching
of the lattice. When the loads become suificientiy
large, permanent deformations can occur through a
number of mechanlsms, such as dlslocation motion,
twinning, or grain boundary sliding. As a conse-
quence of having randomly distributed graln orienta-
tions, annealed polycrystalline metals typlcally
exhibit isotroptc behavior with respect to a reference
configuration; that is, at a given point in the mater-
ial, the material response of a specimen in any

direction 18 the same. This includes the elastic

behavior and the initial yleld behavior. However,
significant processing of materials, or even moder-
ale plastic deformations, can cause grains which
were initlally randomly oriented to become aligned,
resulting in behavior which is anisotropic, where
material response in different directions is guite
different.

The abllity of numerical simulations to predict
the behavior of systems involving materials under-
going large deformatlons is contingent upon having
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a realistic model of the materlal behavior. Such

models must be accurate in the full range of posst-
hle Inndinﬂ condltione to which the materiale mav
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be sub]ected. Use of overly simplified models in
regimes where they are not well suited can seri-
ously compromise the valldity of a simulation. Many
problems of engineering Interest tnvolve metals
undergoing iarge deformation under muitiaxiai
states of stress and the need for rellable models for
these applications can hardly be overemphasized.
Experimental data demonstrate that simple models
for plasticity commonly used In numerical codes do
not accurately predict material behavior under
these conditions.

Engineering models of polycrystaliine metals
generally omit microstructeral details and describe
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phenomenological continuum model. Viewed from
the macroscopic perspective, the initial material
response Is path-independent and there is a one-to-
one correspondence hetween stress and strain.
However, if the deformation or loads become suffl-
clently large, the material begins to exhibit plastic
behavior. There is no longer a one-to-one correspon-
dence between stress and sirain, the response I8
dependent on the loading path taken to reach a
given state of deformation, and permanent deforma-




tion remains after external loads are removed. This
gives Tise to the theoretical ldeallzation of an elas-
tic-plastic material, and in particular, to the notion

of a vield function” denoted by

fs,.e0.K,..)=gleg.ef.K,...) . (1)

Here, s, denotes the components of the stress tensor:
e,; denotes the components of the strain tensor; ¢
denotes the components of the plastic strain tensor;
k 1s a scalar measure of work hardening; and the
ellipses represent other Inelastic state variables
which may be present, depending on the complexity
of the chosen constitutive theory.

The vield function is a key ingredient of the
constitutive theory of elastic-plastic materials. The
condition f = 0 for g = 0) describes the boundary
between stresses (or stralns) that result in only
elastic behavior, and those which result in inelastic
behavior, For fixed values of the inelastic varlables,
the yield conditlon can be interpreted geometrically
from the polnt of view of stress space (or strain
space), as a surface which bounds the regicn in
which only elastic behavior occurs (the elastic
region). When the loading path Intersects the yield
surface and tries to cross It, inelastic behavior
occurs and plastic deformation results. The current
state never moves outside the yield surface, but
instead the surface is carried along with it. Typically,
the yield surface changes both In shape and size as
the inelastic deformation increases, Measured vield
surfaces for three of the states along the complex
stress path depicted in Fig. 1a are shown in Fig. 1b.

In addition to the vield function, the constitutive
theory includes evolution equatlons for the inelastic
variables during loading (g = 0, > 0). Thus, for the
plastic strain, we have
eiﬁ :pkf(emn’erin’x"“)é R éEaaP_gémn ° (2)

Here pg; is a constitutive response function that
is independent of the rates of stress or strain. For a
broad class of materiais, under a physically reason-
able assumption regarding work in closed cycles in
strain space, p can be repiaced with the product of
a scalar function and the normal to the vield surface
in stress space, thus requiring the specificatipn of
only one additional scalar response function. For
special classes of matertals, this scalar function is
determined from the yield functlon and hardening
and does not require an independent specification.

Most plasticity models implemented Into numeri-
cal codes for metals use a yield criterion which
corresponds to a fixed shape of the yield surface (for

example, elliptical in the case of the Mises yield
critericn). What distinguishes different mode!s |s
how the vield surface evolves (for example, it may
translate rigidly, or alternatively change its size
while maintalning its shape, or follow some combi-
nation of these simple hardening laws). Many simu-
lations are run with a model that assumes an elliptic
yleld surface of fixed aspect ratio that only changes
in size due to hardening. While the initial yield
surface of isotropic materials may be represented
reasonably well by an ellipse, subsequent to even
moderate plastic deformation, the shape of the yield
surface in real matertals can change significantly
(Fig. 1b). For this reason, simple representations of
the vield function will be satisfactory only under very
restrictive loading conditions (such as monotonic or
uniaxial), and are inadequate for general multiaxlal
loading conditions, especlally when loads can
reverse and change direction during the history of
loading.

In view of these considerations, and motivated by
the fact that the vast majority of available experi-
mental data on polycrystalline metals are for uniax-
ial (and generally monotonic) loading, our group
developed an experimental capability to map out the
yleld surface at various fixed states of [arge [nelastic
deformation under multiaxial loading. By determin-
ing the yleld surfaces oh a single specimen at multi-
ple fixed states, the evolution of the yield surface
during plastic deformation can be observed. These
data provide the basis for developing improved
copstitutive equations for phenomenological
descriptlons of polycrystalline metals.

Progress

This project ts a combination of a program of
novel experiments characterizing inelastic material
behavior together with an effort to develop better

matanial madale far iImnlameantatian inta numerinal
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analysis codes. The primary approach has been to
obtaln improved experimental data for the macro-
scopic response as a guide to the development of
better phenomenologlcal models. During FY-99, we
have further refined the experimental procedures
developed in previous years, and have obtalned
some important new data.

In addition to this direct macroscopic approach,
we have begun to examine the alternative strategy of
incorporating informatlon from lower length scales
where explicit consideration is taken of material
microstructure, and we have also begun o explore
how this mesoscale description can be homogenized
to obtatin improved macroscopic models.




Further, work on general issues related to numer-
ical implementation of anisotropic plasticity models
has been pursued, in the context of both purely
Lagrangian and arbitrary Lagrangian-Eulerian
(ALE) formulations.

Experiments

The experimental portion of this project involves
determination of the yteld surface under multiaxial
states of loading, using thin-wailed tension-torsion
specimens with a 2-in. inside diameter. The experi-
mental determination of the yleld surface of the
material Is carried out by loading a specimen under
multiaxial conditions and probing until the point of
yteld is reached, then backing off and probing in a
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space) untll the next yield point 1s found. This
process Is repeated until the entire surface is
mapped oul. The sensitive nature of the measure-
ments befng made requires careful attention to the
lssues of specimen design and preparation, experi-
mental methodology, and Interpretation of the data.
The general description of the experiments and the
difficulty In carrying out thesezrgeasumments have
heen discussed previously,™
comprehenslve description of the experimental
procedure has been compiled.

Ideally, a measured yleld surface represents the
boundary between elastic and inelastlc behavior at a
given elastic-plastic state. As a practical matter, the
Identification of the yleld point requires loading
somewhat beyond the elastic region so that the
inelastic behavior becomes evident. The procedure
which has heen developed can detect vield without
producing a plastic strain much greater than 5 x
1078 (5 p-strain), and yleld surfaces can be obtained
for multiple elastic-plastic states from a single spec-
imen. It is clear from the data that the yield surfaces
determined from multlaxial loading tests are
strongly dependent on the method used to ldentify
the yleld point. Many different definitions of the yield
point are possible; these vary in both experimental
complexity and in the amount of plastic defermation
that is induced during the determination of vield at a
given point. The measured vield surfaces can vary
from appearing roughly isotroplc when a coarse
large off-set or back-extrapolation method 1s used,
1o clearly exhibiting materlal anisotropy when a
small off-set definition of yield is used (Flg. 1b).
The definition of yield point is related to the ideal-
jzed way in which the theoretical model represents
real material behavior. These issues are discussed
more fully elsewhere.4 After investigating various

and this year a

allernatives, we adopted a 5 p-straitn offset defini-
tton of yield as the most meaningful for our current
interests.

In addition to generating data from the measure-
ment of yield surfaces, we are also exploring the
fundamental guestion as to the proper definitlon of
plastic s&rgin in the context of large inelastic defor-
mations. ~ When yleld surfaces have moved so that
they no longer enclose the orlgin in stress space (for
exampie, yield surfaces D1 and D2 in Fig. 1b), the
material cannot be unloaded to zero stress without
causing new plastic deformations.

The traditional way of defining plastic strain is to
Identify It with the residual strain remaining when
the load Is removed. This deflnitlon arose intuitively
from consideration of unlaxlal tests with smafl
deformation, bul i is clearly inadequate in the situa-
tlon of more general states of loading where the
yleld surface no longer encloses the origin in stress
space. Plastic stratn 1s not among the set of kine-
matic variables that come from classical conttnuum
mechanics. Since it 1s a primitive varlable in the
constitutive theory, one must be able to identify it
unambiguously for the theory to be meaningfully
predictive and not simply a sophisticated curve-fit.

revinnely an avnarimantal mathndalnov wne
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proposed for verifying the validity of our prescriptton
for identifying plastic strain, In cases where the
origin lies outside the stress space yield surface. It
Is defined as the point in strain space corresponding
to the point on l:hbe 6yleld surface in stress space clos-
est to the origin.” This method explolted the prop-
erty from Eq. 2 that the directlon of the Increment In

plastic strain is tndependent of the size and direc-
tion of an applied Increment, In stresg or strain Ry
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comparing the directions of the plastic strain incre-
ment for two different loading directions ortglnating
frotn the same state, the prescriptlon can be veri-
fted. The high precislon necessary to be able to
make the measurements required for this verifica-
tlon was a driving force governing the refinement of
experimental procedures. Three different verifica-
tions {requiring the determlnation of six distinct
yield surfaces) have been completed which do in fact
valldate this prescription for identifying plastic
stratn.

Characterization of Experimental Results

One consistent observation in the experimental
data with a b p-strain off-set deflnition of yield {such
as In Fig. 1b) Is a distortion of the shape of the yield
surface after moderate plastic deformation when
loading away from the origin. The initlal yield




surface Is close to elliptical in shape. For subse-
quent yteld surfaces, the side away from the loading
point (and closest to the origin) tends to flatten,
while 1t tends to elongate near the loading point,
msuiting in a D—shaped st ace There are classical

ciosed cuives, suc t ihie piriform, and
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data ln a robust manner. An alt.emative appmach to
using a single analytical function to represent the
yield surface in two dimensions Is to approximate it
with a collection of smooth intersecting segments.
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em; o[’ lmpmved models Moneover descrlblng yleld
surface evolution In a general way becomes prob-
lematlc, and it also presents difficulties in terms of
numerlcal lmplemematlon
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In the usual mutlne l;ask or fitting a function l;o
discrete x-y data, an error function is defined and
the unknown coefficients are determined by mini-
mlzlng the emr The msmung syst,em of equations
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sented by Implicit functions of the form fix,y) = 0. To
fit an Implicit function to the data, an error function
Is defined as usuat, but the system of equations that
must be solved to determine the unknown coeffi-
cients is highly noniinear and there is no guarantee

of UlllunllUbb as in the linear case. Soiv
n
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complex undertaking requiring sophisticated solu-
tion technlques.

Quadratic fits to all the data sets were obtained by
using a package for orthogonal distance regresgion,

ODRPACK which 1s publicly avallable from NIST” The

ntlnno n anwmra nan annfann Aaktan
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mined by the parameters, This procedure provided a

method of characterizing the data in terms of change
In position, size, and orientation of subsequent yield
surfaces. Results of the data reduction for various
measured yleld surfaces are shown in Table 1. A
second-order polynomlal is sufficient for gauging the

; some sense of the “orientation” of

el reasndbnly represen

1
ut it cannot adequately repre
featnireg anch ag relative elonoation and flatt tening of
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the yield surface. Higher order function fits could
likely provide better representations of the D-shaped
data curves, but ODRPACK was unable give reliable
fits in a unique, robust manner.
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polynomial 1n the deviatoric stress components, Is

Table 1. Characteristics of yield surface data obtained from quadratic fits. The yield surface designation comes from a specimen

identification letter and a state number.

Offset e, pb, -

Yield Defl. (1= (1= (ll- Center pe

surface  strain  stralny  strain) (psl) ratlo
Al 15 0 (857, -5T) 208 1250 1460 0.86
A2 ib 8690 7128 {871, 947) -16.3 3000 1380 2.17
BO i 0 0 (-87, 94) 3.51 1770 1060 1.67
B1 i 1 -17 {-11,-263}) 223 1840 2a0 2.07
B2 1 92  -2055 (37, -1809) -1.12 15560 370 419
C1 1 -4578 102 (-3425, 114) 247 770 1170 0.66
G2 1 234 (-3713, 82.4) 40.4 640 1050 0.61
D1 5 5 2020 {(-209, -1698) -1.2 2230 650 3.43
b2 5 30 -2100 (80, -1698) -0.9 2330 750 3.1
D4 5 30 -2010 (84, -1230) -3.3 2610 770 3.39
Dio b i030 -3660 {1250, -1918) i4.0 2380 870G 3.55
D12 5 -3560 {1145, -1459) 26.0 2570 1070 2.40



annealed (isotropic) polvcrystalliine metals, and It
ailso has a physically appealing interpretation In
terms of distortion energy. For anisotropic materi-
als, the most general quadratic vield function repre-
senting a smooth injtial yteld surface which reduces
to the Mises yleld function in the special case of
isotropic materials is of the form?

f = Bklmnsldsmn - Kz R (3)

where due Lo symmetries the coefficients Byypp,
have 21 independent components. If, as Is
commonly done, the further assumption is made
that the yleld behavior is independent of the mean
stress (pressure), then the stress tensor in Eq. 3
can be replaced by its deviatoric part and the coeffi-
" which has 15 independent coefficients. As
mentioned previously, a quadratic representation of
the yleld surface can reasonably capiure its locatton,
size, and a sense of the orientation observed in real
materials, but it does not capture the distortion of
the yield surface from elliptical to D-shaped.
Nevertheless, Eq. 3 is much more general than the
Mises yleld function, and it contains as special cases
implemented into LLNL codes.

An antsotropic plasticity model with the yield
function in Eq. 3 was tmplemented into the parallel
version of the code ALE3D. Filgure 3 shows a
Lagrangian numerical simulation of a Taylor impact
test using an anisotropic tantalum cylindrical projec-
tile. The predicted ovallng of the Impﬁf:t footprint Is
in agreement with experimentat data.

Since a baslc feature of anlsotroplc behavior Is
that the response depends on the material directlon,
it I1s necessary to track materlal directions during
deformation. While this is a straightforward Issue
within a Lagrangian formulatlon, implementation of
anisotropic plasticity models in the context of an
ALE formulation is complicated by the fact that
nodes of a mesh are not material points, and the
element edges are not material curves. An alterna-
tive approach must be used to keep track of material
directions. Material direction vectors m; can be
stored as element-based variables, and can then be
updated during the Lagrangian step according to

m, = (L, — (L,mm)5,)m, . (4)

where Lll are the components of the velocity gradi-
ent tensor. These element-based quantities can then
be updated as other hlstory varlables during the
advection step. There are increased memory storage

costs assoclated with modeling antsotropic plastic-
ity. Along with storing the material direction vectors
and any additional constitutive variables, properly
invariant formulations of anisotropic models also
require storing additional kinematical quantities
such as the rotation and stretch tensors.

Alternative Approaches
Using Mesoscale Homogenization

The approach described earlier seeks to develop
a macroscoplc phenomenological model directly
from measurements of the macroscople inelastic
behavior. An alternative strategy is 1o examine the
governing processes In terms of microphysical
behavior at lower [ength scales, and then to deduce
a maodel for the effective macroscopic behavior
through an appropriate averaging, or homogeniza-
tlon, procedure.

Working toward a theoretical approach to homog-
enization, using a variatlonal principle, and in the
context of straln gradient crystal plasticity, we
developed a new upper bound for the effective yield
surface of a polycrystal.’! This procedure uses one-
and two-point correlation functions of the orlenta-
tlon distribution. This bound demonstrates a grain
size effect via its dependence on the polycrystal’s
spatlal and orientation distribution statistics. It can
be shown that this bound almost always improves
upon the Taylor model bound.

It is aiso possible to approach the homogeniza-
tion from the point of view of numerical stmulations
using a so-called virtual test sample. A representa-
tive volume element of material can be modeled In
which Individual grains are explicitly resolved, and
represented by a single-crystal plasticity model.
Such a numerical test sample can be used to simu-
late the macroscopic behavier under a wide varlety
of leading conditions, guiding the development of a
macroescoplec phenomenological model. In prepara-
tion for this approach, detailed orientation imaging
microscope (OIM) scans have been made at regular
depths through a carefully prepared tantalum specl-
men, mapping out the orlentation of individual
grains (Fig. 4). From this detailed dalabase a 3-D
numerical model can be generated which accurately
represents the real microstructure of the materlal.
This numerical model can then be subjected to a
variety of loading conditions, and the effective
macroscopic behavior predicted. The yleld surface
data that has been generated can be used as a vall-
dation check for both theoretical and numerical
homogenization methodologies.




Future Work

bility that pmvndeq muluaxml daLa which can be
used to develop and validate advanced constitutive
models. We have also established a solid framework
from which to pursue numerical developments of
anisotropic plasticity. From this foundation, further
developments will continue, focusing on the develop-
ment of improved materiai models for ASCI codes.

Contributions to this project by J. Casey result
from work supported by a grant from the Solid
Mechanics Program of the National Science
Foundation. Part of the support for A. Brown's work,
and material used during the development of the
experimental procedure, were also provided through
this grant.
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Figure 1. (a) Imposed sequence of loading states for yield
surface measurement on a single specimen, identified as "D”
in Tabie i. (b) Measured points on yield surfaces in 2-I stress
space fram a single 1100 aluminum specimen subjected to the
loading states in Fig. 1a. For clarity, only the surfaces
measured at load states 0, 1, and 2 in Fig. 1a have been
shown, The subsequent yield surfaces show significant devio-
tion from an idealized ellipse even though the strains involved
are moderately small.

Figure 2. Second-order polynomial fits to yield surface data.
Quadratic functions can capture the trends in size, location
and some sense of orientation, but provide no characteriza-
tion of the distortion into the observed D-shapes.

figure 3. Numerical simulation of a Taylor impact test of arnt
anisotropic tantalum circular cylinder exhibiting ovaling of the
impact footprint. For isotropic material properties, the cylinder
wouid expand axisymmetrically at the impacting end. The
calculation agrees with experimentol resuits.

Figure 4. Orientation Imaging Microscope scan of one plane of
a well-characterized tantalum polycrystal. The shading indi-
cates particular crystal orientation. Similar scans, ata
sampling resolution of 4.5 pm, have been made at 47 pianes
through the sampie. From these data a 3-D numerical model
can be constructed representing the microstructure.
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