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odeling of Anisotropic Inelastic Behavior

Daniel J.Nikkei, Jr. and Deepak S. Nath
NewTechnologies Engineering DivMon
Mechanical Engineering

Arthur A. Brown and JamesCasey
University of California at Berkeley
Berkele~ California

An experimental capability, developed at Lawrence Livermore National Laboratory (LLNL), is
being used to study the yield behavinr of elastic-plastic materials. The objective of our research is tQ
develop better constitutive equations for polycfystalline metals. We are experimentally determining
the multidimensional yield surface of the material, both in its initial sfate and as it evolves during
large inelastic deformations. These experiments provide a mom complete picture nf material behavtor
than can be obiained from traditional uniaxial tests. Experimental results show that actual material
response can differ significantly from that predicted by simple idealized models. These restdfs are
being used to develop impmved constitutive models of anisotmpic plasticity for use in continuum
computer codes.

Introduction

At a micmstmctural level, polycrystdllne metals
am composed of aggregates of individual crystals,
each of which has KS own orientation and prope-
rties. When subjected to loading, metals initially
exhibit rwverslble deformation, due fo the stmtchlng
of the lattice. When the loads become suMclentlY
large, permanent deformations can occur through a
number of mechanisms. such as dislocation motion.
twinning, or grain boundary slldlng. As a conse-
quence of having randomly distributed grain orients-
tions, annealed polycrystalllne metals typically
exhibit isotmplc behavior with respect to a reference
conflguratlon; that is, at a given point in the mnter-
Ial, the material response nf a specimen in any
direction is the same. This includes the elastic
behavior and the initial yield behavior. Hnwever,
significant processing nf materlala, or even moder-
ate plastlc deformations, can cause grains which
wem inltlaiiy randomly oriented to become aligned,
resulting In behavior which is anisotmpic, where
material response in different directions Is quite
different.

The ability of numerical simulations to predict
the behavior of systems involvlng materials uclder-
golng large deformations IS contingent upon hwing

a reallstic model of the material behavior. Such
models must be accurate in the fnli range of possi-
ble loading conditions tm which the materials may
be subjected. Use of overly simplified models In
regimes where they are not well suited can serl-
OUSIYcompmmlse the valldity of a simulation. Many
problems of engineering Interest involve metals
undergoing large deformation under multlaxial
staks of stress and the need for rellabie models for
these applications can hardly be overemphasized.
Experimental data demonstrate that simple models
for plasticity commonly used In numerical codes do
not accurately predict material behavior under
these conditions.

Engineering models of polycrystalllne metals
generally omit mlcmstructural details and describe
the effective macroscopic behavior in terms of a
phenomenological continuum model. Viewed fmm
the macroscopic perspective, the initial material
response is path-independent and thew is a one-tin
one correspondence between stress and strain.
However, If the deformation or loads become suftl-
clently large, the material begins to exhibit plastic
behavior. There IS no longer a one-to-one correspon-
dence between stress and strain, the respunse is
dependent on the loading path taken tu reach a
given state of deformation, and permanent deforma-
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tlon remains after external loads are removed. This
gives rise tm the theoretical Idealization of an elas-
tic-plastic materi~l, and in particular, to the no!tlon

of a yield function denoted by

f(~kJ1ei,~j)=~(ek,,ej,K,..) (1)

Hem, Sti denotes tie compmenta of the stm?.sfensor

ekl denOWs We cOmpOnen@Of the strain Wnsoc e~
denotes the components of the plastlc strain tensor
K Is a scalar measum of work hardening; and the
ellipses represent other Inelastlc state varlahles
which may be present, depending on the complexity
nf the chosen constltutlve theory.

The yield function is a key Ingredient of the
constltutlve theory of elastic-plastlc materlats. The
condltlon ~ = O (or g = O) describes the boundary
between stresses (or strains) that result In only
elastlc behavior, and those which result In Inelastlc
behavloc For fixed values of the inelastic varlahles,
the yield condition can be interpreted geometrically
from the point of view of stress apace (or strain
space). as a surface which bounds the region In
which only ehmtlc behavior occurs (the elastic
mglon). When the Inadlng path Intersects tbe :Ield
surface and tries to cross It, Inelastlc behavior
occurs and plastlc deformation Rsult.s The curtxmt
state never moves outside the yield surface, but
instead the surface is carried along with it. ‘f@caOy,
the yield surface changes both In shape and slz,e as
the Inelastlc deformation increases. Measured yfeld
surfaces for three of the sfates along the complex
stress path depicted in Fig. 1a are shown In Fig. lb.

In addition fo the yield function, the constltutlve
theory includes evolutlnn equations for the Inelastlc
variables during Ioadlng (g = 0, j > O). Thus. for the
plastlc strain, we have

Here pkl Is a constltutlve response function that
IS independent of tbe rates of stress or strain. For a
bread class of mafsrlais, under a physically rwcson-
able assumption regarding work In closed cycles in
strain space. pkj can be replaced with the pmdact of
a scalar fnnctlon and the normal to the yield surface
in stress space, thus requiring the speciflcatl!pn of
only one additional scalar response function. For
special classes of materials, this scalar function Is
determined fmm the yield function and hardening
and does not mquim an independent specification.

Most plasticity models implemented Info numeri-
cal codes for metals use a yield crlterlon which
cor~sponds to a fixed shape of the yield surface (for

example, elliptical in the case of the Mlses yielci
crlterlon). What distinguishes different models IS
how the yield surface evolves (for example, it may
translate rigidly, or alternatively change Its size
while maintaining its shape, or fnllow some combi-
nation of these simple hardening laws). Many simu-
lations am run with a model that assumes an elllptlc
yield surface of Oxed aspect rat.in that only changes
in size due to hardening. While the Initial yield
surface of Isotmplc materials may be represented
reasonably well by an elllpse, subsequent ta even
moderate plastic defnrmatlnn, the shape of the yield
surface in real materials can change significantly
(Fig. lb). For this reason, simple representations of
the yfeld function will be satisfactory only under very
restrictive loading conditions (such as monotmdc or
unlaxial), and are inadequate for general multlaxial
loading conditions, especially when loads can
reverse and change dlrectlon during the history of
loading.

In view of these considerations, and motivated by
the fact that the vast majority of available experi-
mental data on polycrystalllne metals are for uniax-
ial (and generally monotonic) loading. our group
developed an experimental capability m map nut the
yield surface at various fixed sfates of large inelastic
deformation under multiaxial Ioadlng. By determin-
ing tbe yteld surfaces on a single specimen at multi-
ple Oxed states. the evolutlon of the yield surface
during plastic deformation can be observed. These
data provide the basis for developing improved
constitutive equations for phenomenologlcal
descriptions of polycryafalline metals.

Progress

This project Is a combination of a program of
novel experlmenta characterizing inelastlc material
behavior together with an effort tm develop better
material models for Implementation Inta numerical
analysis codes. The primary approach has been m
obtain impmved experimental data for the macm-
SCOPICresponse as a guide tm the development of
better phenomenological models. During FY-99, we
have further rcflned the experimental pmcedumx
develnped in previous years, and have obtained
some Important new data.

In addition tn this direct macroscopic approach,
we have begun to examine the alternative strategy nf
incorporating Information fmm lower length scales
where explicit consideration is taken of materlai
mlcmstructure. and we have also begun to explore
how this mesoscale description can be homogenized
to obtain Impmved macmacoplc models.

2



Further, work on general Issues rwlated to numer-
ical implementation of ardsotmp)c plasticity models
has been pursued, In the context of both purely
Lagrangian and arbitrary Lagranglun-f3ul erlan
(ALE) formulations.

Experiments

The experimental portion of this project involves

determination of the yield surface under multisxial
states of loading, using thin-walled tension-torsion
specimens with a Z-In. inside diameter. The experi-
mental determhratlon of the yield surface of the
maferlal Is carried out by loading a specimen nnder
multiaxlal conditions and pmblng until the pulnt of
yield is reached, then backing off and pmblng In a
different dhwct[on In stress space (and in stra!n
space) until the next yield point la found. This
process Is repeated until the entire surface IS
mapped out. The sensitive naturt of the measure-
ment being made mqulres carwll atfentlon fo the
Issues of specimen design and preparation, experi-
mental methodology, and Interpretation of the data.
The general description of the experlmenfa and the
difflcnlty In carrying out thesez~easuremente have

been discussed previously. and this year a
comprehensive descrlptlon40f the experlm.ental
procedure has been compiled.

Ideally, a measured yield surface represents the
buundary between elastic and Inelastlc behavtur at a
given elastlc-plastlc state. As a practical matter, the
identlflcatlon of the yield point requires loading
somewhat beyond the elastic region so that the
Inelastic behavior becomes evident. The procedure
which has been developed can detect meld without
producing a plastic strain much greater than 5 x
10+ (5 p-strain), and yield surfaces can be oblalned

for multlple elastic-plastic states fmm a single spec-
imen. It Is clear fmm tbe data that the yield surfaces
determined from mnltiax!al loading tests are
strongly dependent on the method used to Identl&
the yield point. Many different deftnitlons of the yfeld
point are possible; these vary In both experbnental
complexity and In the amount of plastlc deformation
that IS Indnced during the determination of yield at a
given point. The measured yield surfaces can vary
from appearing roughly Isotropic when a cuarse
large off-set or back-extrapolation method Is used,
to clearly exhlbltlng material anisotmpy when a
small off-set definition of yield Is used (Fig. lb).
The deftnltlon of yield point Is related to tbe ldeal-
Ized way In which the theoretical model represenfa
real material behavior. These issues am discussed
more fully eksewhert.4 After Investlgatlng various

alternatives, we adopted a 5 p-strain otTset deftnl-
tlon of yield as the most meaningful for our current
interests.

[n addkbm fJJgenerating data fmm the meastrrw
ment of yield surfaces, we are also exploring tbe
fundamental question as to the proper deflnltlon of
plastic s~~ln In the context of large Inelastic defor-
mations. ” When yield surfaces have moved so that
they no longer enclose the orlg!n In stress space (for
example, yield surfaces D1 and D2 In Fig. lb), the
matertal cannot be unloaded to zerv strms without
causing new plastic deformations.

The traditional way of defining plastlc strahr Is to
identify It with the residual strain remaining when
the load Is removed. This deflnltton arose lntulftvety
from consideration of unlaxlal tests with small
deformation, bnt it ts clearly Inadeqnafe in the sltua-
tlon of more general states of loading wherw the
yield surface no longer encloses the orlgln In stress
space. Plasttc strain IS not among the set of klne-
matlc variables that come fmm classlcal continuum
mechanics. Since it is a primitive variable in the
constltutlve theory, one must be able to Identify It
unambiguously for tbe theory to he meanlngfrdly
predictive and not simply a sophisticated curve-ftt.

Previously, an experimental methodology was
proposed for verifying the validity of onr prescription
for ldentl&lng plasttc strain, In cases where the
origin lies outatde the stress space yield surface. ft
Is defined as the potnt In strain space corresponding
to the point on t~,#teld surface in stress space clos-
est fa tbe orlgtn. Tbls method explolted the pro-
pertyfmm Eq. 2 that tbe dhectlon of the Irrcrtment In
plasttc strain ts Independent of the size and direc-
tion of an applied tncrement In stress or strain. By
comparing the directions of the plastic strain incre-
ment for two difYerwnt loading directions originating
fmm the same state, the prescription can be veri-
fted. Tbe high preclslon necessary to be abie to
make the measurements required for this verifica-
tion was a driving force governing the refinement of
experimental procedures. Three different verifica-
tions (requiring the determination of six distinct
yield surfaces) have been compieted which do In fact
vaildate this prescription for identifying ptastic
strahr.

Characterization of Experimental Results

One consistent observation in the experimental
data with a 5 p-strain off-set definition of yteld (such
as in Fig. 1b) ISa dlsfortion of the shape of the yieid
surface after moderate plastic deformation when
ioading away from the origin. The Initial yieid
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surface Is close to elliptical In shape. For subse-
quent yield surfaces, the side away fmm the loading
point (and closest to tbe orlgln) tenda to flatten,
wblle It tends to elongate near tbe loadlng point,
resultlngln a D-shaped surface. Thercamclasslcal
closed curves.such as the follum, theplriform, and
the pear-shaped quadrlc, that amsomewhat D-
shaped.7 However, after some effort It was found
not poi?.slble tQ use these functions tm twpmsent the
data In a robust manner. An alternative approach fo
usinga single analytical function to represent the
yield surface In two dlmensiona IS tm appmximafe 8
with a collection of smooth Intemectlng segmenfs.
As a ourve-flttlng scheme this approach Is capable
of matching a given set of data with any desired
degree of accuracy, but such a representation
pmvldea Ilttle physical Insight towards the develop-
ment of Improved models. Moreover, describing yield
surface evolutlon In a general way becomes pmb-
Iematlc, and It also presents dlfflculues In ferms of
numerical implementation.

To characterize the data, and to gtve some dlrec-
Uon to the development of Impmved models, “best
ftts” tQ the data were performed with polynomial
functions representing closed curves, Even for
quadratic pnlynomlals this IS a nontrwial exercise.
In the usual routine task of flttlng a function to
discrete x-y data, an error function 1s defined and
the unknown coefftclenta are determined by mlnl-
mlzlng fhe error. The resulting syartm of equations
Is linear and a unique solutlon Is guaranteed.

For the problem at hand, however, the data palm
(xl, YJ cannot be approximated by an expllclt func-
Uon of the form y = j7x); rather they must be repre-

sented by Impllclt functions of the form flx,y) = O.lb
flt an Impllclt Rmctlon to the data, an error function
IS defined as nsual, but the system of equations that
must be solved to determine the unknown coeffl-’
clenW Is highly nonllnear and there Is no guarantee
of unlquenesa as In the llnear case. Solving the
system of nonlinear equations numerically la a
complex underfaklng requlrlng sophisticated solu-
tion techniques.

ouadratlc ftts to all the data sefa were obtained by
using a package for orthogonal dlstsnce ~m~lon,
ODRRACK,which Is publlcly available fmm NIST. The
program finds the parameters Mat mlnlmlze the sum
of the squared weighted orthogonal distances horn a
set of observations tQ the curve or surface deter-
mined by the parameters. Tbls pmoedum pmvtded a
method of characfertzlng tire data In terms of change
In pesltton, size, and orlenfatfon of subsequent yield
surfaces. Results of the data rednctlon for various
measumd yield surfaces are shown In Table 1. A
second-mder polynomial la sufftclent for gauging fhe
size, locaUon, and some sense of the “ortenfatlon” of
the yield surface, but It cannot adequately mpmsent
features such as relatfve elongation and flattening of
the yield surface. Higher order function ftts could
Ilkely pmvtde befrmr rcpmsentatlons of the D-shaped
dafa curves, but ODRPACK was unable give rellable
fits In a unique, robust manner.

Numerical Modeling

The Mlses yteld condltlon, which Is a quadratic
polymomlal In the devlaforlc stress components, Is
known to agree well with experimental data on

ToWe r. Chamcterhtla of yield surface data obtolncd hum quadratic fits. 7he yldd surface dedgnotkm comes fmm a specimen
identifiatlon letter and o state numbtr.

Al
AZ
BO
B1
B2
cl
C2
D1
D2
D4
D1O
D12

15
15

1
1
1
1
1
5
5
5
5
5

8690
0
1

92
-4578

5
30
30

1030

0
7128

0
-17

-2055
102
234

-2020
-2100
-2010
-3660
-3560

(857, -57)
(871 , 947)
(-87, 94)
(-1 1, -263)
(37, -1809)

(-3425, 114)
(-3713, 82.4)

(-209. -1698)
(80, -1898)
(84, -1230)

(1250, -1918)
(1145. -1459)

29.8
-18.3

3.91
2.23

-1.12
24.7
40.4
-7.2
-0.9
-3.3
14.0
26.0

1250
3000
1770
1840
1550

770
640

2230
2330
2610
2380
2570

1460
1380
1060

890
370

1170
1050

650
750
770
670

?070

0.86
2.17
1.67
2.07
4.19
0.66
0,61
3.43
3.11
3.39
3,55
2.40

4



annealed (Isotmplc) polycrystalllne melals, and It
also has a physically appeallng interpretation in
terms of distortion energy. For anlsotmpic materi-
als, the most general quadratic yieid functton repr-
esenting a smooth inltlal Meld surface which reduces
to the Mises yield function In the special case of
isotinpic materiais Is of the formg

f = %?,!.$,F”,.-K’, (3)

where due to symmetries the coefficients Bk/mn,
have 21 independent components. If, as is
commonly done, the further assumption IS made
that the yleid bebavlor is independent of the ]mean
stress (pressure), then the stress tensor in Eq. 3
can be replaced by its devlatmric part and the coeffi-
cient tensor can be replaced by a reduced tensor
which has 15 independent coefficients. As
mentioned pmviousiy, a quadratic representation of
the yield surface can reasonably capture its location,
size, and a sense of the orientation observed in mal
materials. but it does not capture the distortion of
the yield surface from elliptical to D-shaped.
Nevertheless, Eq. 3 is much more general than the
Mises yield function, and it contains as special cases
other anisotmplc yield models which have been
implemented into LLNL codes.

An anlsotropic plasticity model with the yield
function in Eq. 3 was implemented Info the parallel
version of the code ALE3D. Figure 3 shows a
Lagrangian numerical simulation of a Taylor impact
test using an anlsotropic fanfalum cylindrical proje-
ctile. The predicted ovaling of the lMpfiCt footprint is
in agreement with experimental data.

Since a basic feature of anisotmplc behavl,or is
that tbe response depends on the material direction,
it is necessary to track material directions during
deformation. While this is a straightforward issue
within a Lagrangkm formulation, implementation of
anisotropic plasticity models in the context ,of an
ALE formulation is complicated by the fact that
nodes of a mesh are not material points, ani the
element edges arc nnt material cuwes. An alterna-
tive appmacb must be used tn keep track of material
directions. Materiai direction vectors mj can be
stored as element-based variables, and can then be
updated during tbe Lagrangian step acceding to

m, = (Lii – (Lk,mlm, )c50)mJ (4)

where .LI1arc tbe components of the velocity f:radi-
ent tensor. These elemenkbased quantities can then
be updated as other history variables during the
advectlnn step. Them am lncrtased memory storage

costs associated wltb modeilng anlsotmplc plastlc-
IW. Aiong with storing the matcriai ciimctlon vectors
and any additional constltutive variables, properly
invariant formulations of anisotmpic models also
require storing additional kinematical quantities
such as the rotation and stretch tensors.

Ahermitive Approaches
Using Mesoscale Homogenkatioo

The approach described earlier seeks to develop
a macroscopic phenomenoioglcai model directiy
frnm measurements of the macroscopic inelastlc
behavior. An alkrnative strak~ is w examine the
governing processes in terms of microphysical
behavior at lower length scales, and then to deduce
a model for the effective macroscopic behavior
through an appropriate averaging, or homogeniza-
tion, procedure.

Working foward a theoretical appmacb fo homog-
enization, using a variational principle, and in the
context of strain gradient crystal plasticity, we
developed a new upper bound for the effective yield
surface of a polyc~tal. 11 This pmceduw uses one-
and two-point correlation functions of the orienta-
tion distribution. This bound demonstrates a grain
size effect via ita dependence on the polycryafal’s
spatial and orientation distribution statistics. It can
be shown that this bound almost always impmves
upon the Myior model bound.

It is also possible t-n approach the homogeniza-
tion from the point of view of numerical simulations
using a so-called virtual test sample. A representa-
tive volume element of material can be modeled in
which individual grains are explicitly resolved, and
represented by a single-crystal plasticity model.
Such a numerical kst sample can be nsed ta simu-
late the macroscopic behavior under a wide variety
of loading conditions, guiding the development of a
macroscopic phenomenologlcal model. In prepara-
tion for this approach, detailed orientation imaging
micmscope (OIM) scans have been made at regular
depths through a care~iiy prepared tanEdum speci-
men, mapping out tbe orientation of individual
grains (Fig. 4), Fmm this detailed database a 3-D
numerical model can be generated which accurately
represents the real mlcmstructurt? of the material.
Thla numerical model can then be subjected ta a
variety of Ioadlng conditions, and the effective
macroscopic behavior predicted. The yield surface
data that has been generafed can be used as a vali-
dation check for both theoretical and numerical
homogerdzatlon methodologies.



Future Work

This pm)ect has produced an experimental capa-

billtytbat provides multlaxial data, wblch can be

used to develop and validate advanced constltntlve
models. We have also esfabllshed a soild framework
from which topursuenumerlcal developmenlsof
anlsotroplc plastlciW. Fmm this foundation, further
developments wOI continue, focusing nn the develop-
ment of Impmved material models for ASCI codes.
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Figure I.(o) lmpoxed sequencc ofloadingstates foryield
surfacemeasurementonosinglc specimen,identitiedax “D”
in Toble 1.(b) Measured points onyield swfacesin2-Dsfrexs

Spocc*oma sing/e 1100 afuminum specimen %”bjected to the
lending stotesin Ffg, lo. Fordcwity, only thesurfuces
meosured otlood Wte%O, l,ond2 in Fig. lahm’e been
shown. Thesubsequent yicldsurfaces showjignificont de.ia-
tion from on idealized ellipse mm though the xtrnin$ hwolved
are moderately small.

Figu,e2. Second-orderpolynomial fits to yield surface data.
Quadratic functions can captwe the trendx in size,Iocado.
rmdsome senseoforientotion, bmpmvide nochorocteriza-
tion of the distortion into the observed D.shapex.

Figure 3. Numericalsimulotio”of a Taylor impact test of an
anisotropic ton tolum circular cylinder exhibiting ovaling of the
impact fwtprint. Forisotmpi. material pmpmtie$ the cylinder
would expondaxi%ymmetrically’ atthcimpocting end. The
calculation agrees with experimental results.

Figure4. Orientation imaging Miwmcope%ccmofoneplaneof
swell.chorocterize dtantolu mpolycrystal.The%hodingindi-
cotesparticulorcrystolorientation.Similm scam, ata
sampling resolution of4.Swn, hove bee” rnadeat47planex
through thcxampk. Fmmthese dotao3.D ”ume,icol model
can be constructed representing the micrmtructure.
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