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Parallel Computations of Natural Convection Flow in a Tall Cavity
Using an Explicit Finite Element Method

Timothy A. Dunn and Rose C. McCallen

University of California, Lawrence Livermore National Laboratory, New Technologies
Engineering Division, Livermore, CA 94551, USA

Abstract

The Galerkin Finite Element Method was used to predict a natural convection flow in an

enclosed cavity.  The problem considered was a differentially heated, tall (8:1),

rectangular cavity with a Rayleigh number of 3.4×105 and Prandtl number of 0.71.  The

incompressible Navier-Stokes equations were solved using a Boussinesq approximation

for the buoyancy force.  The algorithm was developed for efficient use on massively

parallel computer systems.  Emphasis was on time-accurate simulations.  It was found

that the average temperature and velocity values can be captured with a relatively coarse

grid, while the oscillation amplitude and period appear to be grid sensitive and require a

refined computation.

Keywords:  Incompressible Flow; Natural Convection; Boussinesq; Navier-Stokes; Finite

Element Method; Cavity.
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1. Introduction

For introductory material and problem definitions, refer to the introduction to the First

M.I.T. Conference on Computational Fluid and Solid Mechanics special session,

“Computational Predictability of Natural Convection Flows in Enclosures” [1].

2. Methodology

An Eulerian formulation of the time-dependent three-dimensional incompressible Navier-

Stokes equations was solved using the Galerkin finite-element method (FEM).  The

discretized continuity and momentum equations can be written in matrix form as

0=uCT (1)

( ) fCPuuNKuM =+++ )(& (2)

where u is the nodal velocity vector, ρ
pP = , p is the pressure vector, ρ is the fluid

density, M is the mass matrix, K is the diffusivity, N(u) is the advection operator, C is the

gradient operator, and f is the external body force and user-supplied natural boundary

condition.  For more details see Gresho et al. [2].

In the current implementation, the Q1Q0 element formulation was used for 8-

node hexahedral brick elements.  This provides tri-linear velocity interpolation in three

dimensions and piecewise constant pressure.  A lumped mass matrix was employed and

the coefficient matrices were generated using one-point Gaussian quadrature.  The

continuity and momentum equations were solved simultaneously for the velocity

difference and pressure with an explicit forward Euler time integration
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, ∆t is the time step, and n is the current time-

step level.  The Schur compliment of Eq (3) is taken to form the equivalent pressure

Poisson equation,

( ) FMCPCMC TT 11 −− = . (4)

This equation is solved for pressure, which is then back-substituted into the full system,

Eq (3), to calculate the velocity.

Balancing tensor diffusivity (Gresho et al. [2]) was used as an additive correction

to the diffusion matrix that balances the negative diffusion induced by the explicit Euler

time integration.  Also, hourglass correction was added to the diffusion matrix to damp

any zero-energy modes that may be present because of the reduced integration scheme

(Goudreau and Hallquist [3] and Gresho et al. [2]).  To reduce the computational effort in

the evaluation of the advection term, a “centroid advection velocity” simplification was

used, as was done by Gresho et al. [2].

The temperature was solved independent of the flow equations.  The thermal

transport equation is

( ) qTTuC t
T

v +�?�=�?+ƒ
ƒ κρ v

(5)

where T is the temperature, t is time, κ is the thermal conductivity, ρ is the fluid density,

Cv is the heat capacity, and q is the volumetric heat generation rate.  This equation was

also solved with the Galerkin FEM using tri-linear basis functions for the temperature

and second-order Gaussian quadrature for the spatial integration.  A fully implicit

(backward-Euler) time-integration scheme was used.  Although the code allows sub-

cycling of the thermal diffusion equation, a single temperature solve was performed for
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each solution of the flow equations for all cases presented here.  The temperature was fed

back into the flow equations via a Boussinesq approximation for the buoyancy force,

( ))(1 0TTgfbuoyanncy −−= βv
, (6)

which was added to f in Eq (2), where g is the gravitational acceleration, β is the

coefficient of thermal expansion, and T0 is a reference temperature.

The above matrices were assembled using the Finite Element Interface (FEI) [4]

developed by Sandia National Laboratories in collaboration with Lawrence Livermore

National Laboratory (LLNL).  The system of equations was solved using the HYPRE [5]

parallel solver package developed at LLNL’s Center for Applied Scientific Computing

(CASC).  The above library packages allow the use of many advanced iterative linear

solvers and preconditioners designed for efficient matrix solutions on massively parallel

computer systems.  The flow equations were solved using the conjugate gradient (CG)

solver with parallel sparse approximate inverse (ParaSails) preconditioning.  The thermal

equations were solved using the generalized minimal residual (GMRES) solver with

diagonal preconditioning.  All of the computations used a convergence criteria of

1.0×10-12 for the relative norm.

3. Results

An enclosed cavity with aspect ratio (height/width) of 8 was the focus of the current

investigation.  A temperature gradient was prescribed across the cavity, generating a

buoyancy force, and driving the flow.  A constant hot temperature, TH, was imposed on

the left (x=0) vertical wall, and a cold temperature, TC, was set on the right (x=W)

vertical wall.  Insulated (i.e. no heat flux, 0=ƒ
ƒ

n
T ) boundary conditions were applied on
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the top and bottom horizontal walls of the cavity.  No-slip (u=v=0) boundary conditions

were applied to the velocity on all walls.  To solve this two-dimensional problem using

our three-dimensional code, a single element was used in the out-of-plane (z) direction,

and all z-direction velocities were set to zero.  To remove the zero eigenvalues from the

flow matrix, the pressure in two adjacent elements near the center of the cavity were

pinned to zero.  The flow was initially at rest, and the temperature was initialized to the

average temperature of the hot and cold walls.

Although the code obtained solutions using dimensional units, all data presented

here is in non-dimensional form to allow the values to be compared with the results of

other investigators.  The non-dimensional values use the characteristic length W (cavity

width), velocity )( CH TTWgU −= β , time scale UW /=τ , and pressure 2~
UP ρ= .  The

non-dimensional temperature is defined as

( )
CH

CH

TT

TTT

−
+−

= 2
1

θ .

The temperatures and fluid properties were set such that the Rayleigh number (Ra) was

3.4×105 and the Prandtl number (Pr) was 0.71.

The solution was calculated for two grids.  A coarse grid with 30x100 elements

and a fine grid of 60x200 elements were used.  A third grid of 90x300 elements is

currently being run, but there are no results at this time.  The grid spacing was graded

with a 3:1 ratio from the center of the cavity to the wall.  The computations were

performed in parallel on the IBM based ASCII Blue-Pacific computer at LLNL.  The

coarse grid was computed using 4 processors and required approximately 5 seconds of
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compute time (wall clock) per time step.  The fine grid took approximately 10 seconds

per time step using 12 processors.

3.1. Point Data

During the flow solution, time-history data at five points were reported at each time step.

There was a point located near each of the four corners of the cavity and one was near the

center of the hot wall.  They are identified in non-dimensional coordinates as

point                x/W                 y/W                 
1 0.1810 7.3700
2 0.8190 0.6300
3 0.1810 0.6300
4 0.8190 7.3700
5 0.1810 4.0000

Time-history plots of the non-dimensional temperature, θ, are found in Figure 1,

for the fine grid.  After some initial transients in the solution, the flow reached a

stationary state where the temperature exhibited periodic oscillations about a mean

temperature value.

Table 1 provides a summary of the time-history data for the two grid resolutions.

For each variable presented in the table, the time-averaged value is given along with the

amplitude and period of the oscillations.  The amplitude is defined as the peak-to-valley

amplitude.  The time average, of a generic variable φ, was computed as

�=
T

dtt
T 0

)(
1 φφ

where T represents the total period of time for which the average was computed.  For all

data presented here, the average was integrated over 10 complete cycles near the end of

the calculation.
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For each data point i, the table presents information for the velocity in the x

direction (ui), the velocity in the y direction (vi), the temperature (θi), the vorticity

( y
u

x
v

i ƒ
ƒ

ƒ
ƒ −=ω ), and the pressure differences ( jiij PPP −=∆ ).  It is observed that the two

grids give similar answers for the average values, but very different results are obtained

for the amplitude and period.  The consistent values obtained for the period indicate a

single dominant frequency is present within the flow field.  The tabulated data reveal that

the computations on both grids exhibit a very skew-symmetric flow field.  As a measure

of the skew-symmetry in the temperature field, the table presents the skewness

( jiij θθε += ), which is found to be very small for both meshes.

3.2. Global Data

In addition to the point data presented above, global data is given in Table 2.

Here the square root of the kinetic energy is used to provide a measure of the average

velocity in the cavity.  The velocity metric is

� ?=
A

dAuu
A

u
vv

2
1

ˆ

where A is the total area of the cavity.  Little difference is found between grids for both

the average value and the amplitude.  The values for period reveal that the same dominant

frequency that was seen in the point data is also present in the velocity metric.

4. Conclusions

Although it appears that the average value for the velocity and temperature data can be

fairly accurately calculated using a coarse grid, the time-accurate statistics such as
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oscillation amplitude and frequency appear highly grid dependent.  At this point, it is

unknown how much grid refinement is required to accurately obtain these values.  This is

currently being investigated.
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Figure 1:  Time-history plot of temperature, calculated using a grid of 60x200 elements.
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Grid Resolution:  30x100
Time Duration:  43.4
Steps per Period:  75

Grid Resolution:  60x200
Time Duration:  35.2
Steps per Period:  219

Quantity Average Amplitude Period Average Amplitude Period
X-Velocity

u1 5.55e-2 9.07e-3 4.34 5.53e-2 3.94e-2 3.52
u2 -5.55e-2 9.07e-3 4.34 -5.53e-2 3.94e-2 3.52
u3 -3.19e-2 3.10e-3 4.34 -3.25e-2 1.077e-2 3.52
u4 3.19e-2 3.10e-3 4.34 3.25e-2 1.077e-2 3.52
u5 2.65e-4 3.68e-4 4.34 2.59e-4 2.56e-3 3.52

Y-Velocity
v1 0.459 1.556e-2 4.34 0.462 5.79e-2 3.52
v2 -0.459 1.556e-2 4.34 -0.462 5.79e-2 3.52
v3 0.367 2.18e-3 4.34 0.382 9.27e-3 3.52
v4 -0.367 2.18e-3 4.34 -0.382 9.27e-3 3.52
v5 0.421 1.469e-3 4.34 0.416 7.34e-3 3.52

Temperature
θ1 0.267 6.86e-3 4.34 0.266 3.02e-2 3.52
θ2 -0.267 6.86e-3 4.34 -0.266 3.02e-2 3.52
θ3 -0.297 2.70e-3 4.34 -0.294 1.198e-2 3.52
θ4 0.297 2.70e-3 4.34 0.294 1.198e-2 3.52
θ5 1.034e-3 5.22e-4 4.34 -5.90e-4 3.19e-3 3.52

Skewness
ε12 2.12e-7 3.13e-6 4.34 2.31e-6 1.048e-5 3.52

Vorticity
ω1 -2.42 0.1971 4.34 -2.59 0.641 3.52
ω2 -2.42 0.1971 4.34 -2.59 0.641 3.52
ω3 -1.075 3.38e-2 4.34 -1.266 0.1586 3.52
ω4 -1.075 3.38e-2 4.34 -1.266 0.1586 3.52
ω5 -4.67 8.16e-3 4.34 -4.51 6.78e-2 3.52

Pressure
∆P14 -2.68e-3 3.73e-3 4.34 -2.30e-3 1.529e-2 3.52
∆P35 -1.180 5.00e-4 4.34 -1.163 7.62e-3 3.52
∆P51 -2.19 3.34e-3 4.34 -2.19 1.775e-2 3.52

Table 1:  Point data for two grid resolutions was tabulated from the time-history plots at

five points within the cavity.
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Grid Resolution:  30x100
Time Duration:  43.4
Steps per Period:  75

Grid Resolution:  60x200
Time Duration:  35.2
Steps per Period:  219

Quantity Average Amplitude Period Average Amplitude Period
û 0.239 3.68e-5 4.34 0.239 3.84e-5 3.52

Table 2:  The square root of the kinetic energy provides a global measure of the average

velocity within the cavity.


