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Thermally-driven Flow in a Cavity

Using the Galerkin Finite Element Method

K.W. Westerberg

Lawrence Livermore National Laboratory

7000 East Ave., L-091, Livermore, CA 94550, U.S.A.

Abstract

Time periodic solutions are found for the natural convection of a Pr=0.71 fluid in

a differentially heated 8x1 cavity at Ra=3.4x105 using a “straight” Galerkin finite

element method with the Q2Q1 element.  Time integration is performed with an

implicit second-order accurate (in time) trapezoid rule.  As expected, the average

values of various solution metrics were relatively insensitive to mesh refinement

and time integration truncation error, although coarse meshes tend to damp out

the time periodic behavior.  The amplitude and frequency of the oscillation is

sensitive to both mesh and time truncation errors.

Keywords: Finite Element Method, Navier-Stokes, Incompressible flow,

Boussinesq approximation
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Introduction

This paper is a submission to the special session on “Computational Predictability

Of Natural Convection Flows in Enclosures”.  Refer to [1] for introductory

material and a problem description.

The MELT2D Code

The MELT2D code was originally written to solve free and moving boundary

problems in liquid metals processing.  Details on the code and method can be

found in [2].  All of the free-boundary features were turned off for the natural

convection in a cavity problem presented here.  With the appropriate

dimensionless coefficients per the problem definition, the MELT2D code solves

Eqns. (1)-(3) as given in [1].

A “straight” Galerkin Finite Element Method implementation of the Navier-

Stokes and energy balance equations is used with velocity, pressure, and

temperature as the primitive variables.  The continuity equation constraint

determines the pressure, as is typically done.  The resulting system of nonlinear

equations is solved simultaneously for all primitive variables with Newton’s

method.  The linear equation system for each Newton step is solved using a direct

frontal solver.
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The time-integration is performed for consistent mass and capacitance matrices

using the second-order accurate implicit trapezoid rule.  The time step size is

automatically selected to maintain an estimate of the time integration truncation

error below a user specified tolerance.  More details on the time-stepping

algorithm are given in [3].  A single Newton iteration is taken per time-step to

solve the non-linear “corrector” equations.  For sufficiently small error tolerances

the solution change is small enough that multiple Newton steps are not required

(for details, see [3]).

The element is the Q2Q1 element with bi-quadratic C0 continuous velocity and

temperature and bi-linear C0 continuous pressure interpolation.  The total number

of unknowns for a rectangular mesh that is nx by ny grid points is:
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There are no artificial viscosity terms or special advection limiters used in the

method.

Problem Setup
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Calculations were run on three meshes indicated in Table 1.  The meshes are

graded with a two-sided 3:1 geometric spacing, i.e., the elements in the center are

3 times the size of elements at the walls.  The boundary conditions are given in

[1] with an additional specification of the pressure at the lower right corner (x=W,

y=0) of the domain.  Pressure specification at a point is required for this method

to avoid a singular matrix.  The CPU times reported in Table 1 are for a single

matrix solve (1 per time step) using a 300 MHz SGI Octane with the R12K

processor.

Two different initial conditions were used.  The first is a steady-state solution of

the governing equations with the convection terms “turned off” by setting

appropriate coefficients to zero, i.e., only the diffusion of energy and momentum

terms contribute.  This is a linear problem and is solved in a single iteration.  The

time-dependent calculation was then started with Ra=3.4x105 and Pr=0.71 and all

nonlinear terms “turned on”.  The startup transient showed wild fluctuations

including a very complex flow field with up to 8 distinct cells at one time.  The

calculations were never continued to the point that a continuous periodic

oscillatory mode was established.  A second initial condition was devised to

reduce the effect of the startup transient.  A steady-state solution was found at

Ra=3.2x105 and the time-dependent calculations were then started from this point
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(yes, it is possible to find a steady-state solution at Ra=3.2x105).  The final time-

periodic behavior appeared to become fully established after about 1 unit of the

diffusion time where the diffusion time is PrRa = 491.

Results

The compulsory results as outlined in [1] for the finest meshes M2 and M3 are

given in Tables 2-4.  Values reported for the amplitude of the oscillation are peak-

to-valley and were found by taking the difference between the maximum and

minimum value over the time period used to compute the average and period.

The period of the oscillation is peak-to-peak and was computed using a power

spectrum code over the final 303 time units on M2 and the final 600 time units on

M3.  A previous series of calculations on M1 at Ra=3.2x105 showed that the time-

periodic behavior was damped out.  Similar results are expected on M1 at

Ra=3.4x105 but the calculations have not yet been carried out.

As expected, the amplitude of the oscillation appears to be more sensitive to the

mesh than the average values.  In most cases, differences in the averages between

M2 and M3 occur in the third or fourth significant digit.  The exception to this is

the skewness for which the average value differs by almost 30% and the

amplitude of the oscillation differs by almost a factor of 5.  The magnitude of the
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skewness divided by the temperature is actually smaller than the specified time-

truncation error.  The solution does appear to have a skew-unsymmetric mode,

however, it cannot be quantified accurately from the current results.  A plot of the

skewness does show a time-periodic behavior and a power spectrum reveals the

same oscillation period as all of the other quantities tabulated.  Calculations with

tighter time truncation error tolerances are warranted to further examine the

skewness.

For both the M2 and M3 calculations the value of the specified time-truncation

error was 5x10-5.  For both meshes, once the “steady” time-periodic behavior was

established the time step size remained unchanged settling in to about 16 points

per oscillation period.  A calculation was run on M3 with the time-truncation error

tolerance was specified as 1x10-4 (a factor of 5 larger than the results in Tables 2-

4). The temperature at point 1 has the same average temperature, the period of

oscillation is 3.51 and the amplitude is 0.04688 (compare to the values given in

Table 2).  Apart from the skewness, the time-truncation error tolerance appears to

be adequate.  Calculations with smaller tolerances will be performed to confirm

this.
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The temperature at point 1 from the M3 calculation is shown in Figure 1.  Note

that the solution settles into the “steady” time-periodic behavior in about 1 unit of

the diffusion time.  All of the other quantities in Tables 2-4 showed similar

behavior.  A secondary envelope appears around the primary oscillation in Figure

1 during the “steady” oscillation.  This is actually a consequence of the oscillation

period not being evenly divisible by the time step size.  Figure 2 shows the

temperature oscillation at point 1 on an expanded scale with the solution points

marked.  Note that the extrema of the oscillation depends on the position of the

time points for a particular cycle.

Conclusions

Time periodic solutions were found for the natural convection of a Pr=0.71 fluid

in a differentially heated 8x1 cavity at Ra=3.4x105 using a “straight” Galerkin

finite element method with the Q2Q1 element.  As expected, the average values of

various solution metrics were relatively insensitive to mesh refinement and time

integration truncation error, although coarse meshes tend to damp out the time

periodic behavior.  The amplitude and frequency of the oscillation is sensitive to

both mesh and time truncation errors and may not be fully resolved for the

calculations run so far.  A skew-unsymmetric mode appears to be active in the

time periodic solutions found but probably cannot be quantified from the current



8

calculations.  Tighter time truncation error tolerances and further mesh

refinements will be explored in subsequent calculations.
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Table 1: Summary of meshes used for time-dependent calculations.

Size (nx by ny)Mesh

Elements Nodal points

Unknowns CPU time
(sec)

M1 16 x 50 33 x 101 10866 3.8

M2 24 x 80 49 x 161 25692 16.8

M3 30 x 100 61 x 201 39914 36.0
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Table 2: Time history data for point 1 (except skewness and pressure differences)
for meshes M2 and M3.

Mesh Resolution: 49 x 161 (M2)

Time Duration: 303
Steps Per Period: 16

Mesh Resolution: 61 x 201 (M3)

Time Duration: 600
Steps Per Period: 16

Quantity

Average Amplitude
(P-V)

Period
(P-P)

Average Amplitude
(P-V)

Period
(P-P)

X-Velocity 0.05645 0.05734 3.44 0.05663 0.05825 3.41

Y-Velocity 0.4617 0.08022 3.44 0.4620 0.08089 3.41

Temperature 0.2655 0.04440 3.44 0.2655 0.04506 3.41

Skewness -0.798E-6 4.69E-6 3.44 -0.623E-6 1.04E-6 3.41

Streamfunction 0.07366 0.007223 3.44 0.07357 0.007366 3.41

Vorticity -2.401 1.130 3.44 -2.337 1.151 3.41

∆P14 -0.1898E-2 0.02206 3.44 -0.1809E-2 0.02181 3.41

∆P51 -0.5349 0.02501 3.44 -0.5352 0.02496 3.41

∆P35 0.5368 0.01268 3.44 0.5370 0.01273 3.41
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Table 3: Wall Nusselt numbers.  Note that the Nusselt number defined in Eqn.
(16) of [1] is negative.  Positive values are reported below.

Mesh Resolution: 49 x 161 (M2)
Time Duration: 303
Steps Per Period: 16

Mesh Resolution: 61 x 201 (M3)
Time Duration: 600
Steps Per Period: 16

Quantity

Average Amplitude
(P-V)

Period
(P-P)

Average Amplitude
(P-V)

Period
(P-P)

Nu (x = 0) 4.593 0.007568 3.44 4.587 0.007600 3.41

Nu (x = W) 4.593 0.007570 3.44 4.587 0.007602 3.41
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Table 4: Velocity and vorticity metrics.

Mesh Resolution: 49 x 161 (M2)

Time Duration: 303
Steps Per Period: 16

Mesh Resolution: 61 x 201 (M3)

Time Duration: 600
Steps Per Period: 16

Quantity

Average Amplitude
(P-V)

Period
(P-P)

Average Amplitude
(P-V)

Period
(P-P)

Velocity Metric 0.2396 3.54E-5 3.44 0.2396 3.59E-5 3.41

Enstrophy 3.017 0.003313 3.44 3.017 0.003353 3.41
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Figure 1: Time history of temperature at point 1.
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Figure 2: Time history of temperature at point 1 on expanded scale.  Solution
points are marked.


