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Abstract
The final goal behind any numerical method is give the smallest wall-clock

time for a given final time error or, conversely, the smallest run-time error
for a given wall clock time, etc. Here a comparison will be given between
adaptive mesh refinement schemes and non-adaptive schemes of higher order.
It will be shown that in three dimension calculations that in order for AMR
schemes to be competitive that the finest scale must be restricted to an
extremely, and unrealistic, small percentage of the computational domain.
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1 Introduction

In the numerical solution of partial differential equations one has many
choices of solution techniques. Here we address this issue of when it is appro-
priate to choose and adaptive numerical method over a non-adaptive numeri-
cal method. Adaptive numerical methods are considered to be advantageous
when the scales in the flow variables differ greatly throughout the computa-
tional domain. A good example is a propagating flame front in which the
relevant physics is restricted to the very localized area of the burn or region
of combustion , see ([2]), ([4]). In this case, the adaptive numerical method
places many grid points in the combustion region and the physics can essen-
tially be resolved. The critical issue here is that the flame front be restricted
to an extremely small percentage of the domain and this restriction is tighter
and tighter as one increases the dimension of the computation.

Here precise estimates will be given on savings that one can expect to
obttin from an AMR scheme and when, and if, an AMR scheme should be
considered at all for a given computation. Note that the acronym AMR
is often used to denote a particular type of adaptive method. But, here,
AMR will be used to denote any scheme which maintains a fixed order of
approximation and which adapts the mesh in order to reduce the truncation
error in specific parts of the computational domain. Consequently AMR
will denote not only traditional “ AMR” schemes but also schemes which are
wavelet based, etc.

This manuscript provides two estimates. The first estimate allows is very
simple to make and considers only the work of the AMR scheme at the finest
computational scale. This is certainly unrealistic but provides a first easy
bound on work. Our second estimate is more realistic and does consider the
work in the remainder of the domain. Of course the second estimate is much
tighter than the first.
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2 Adaptive Numerical Methods

As mentioned in the introduction, AMR schemes change the grid point den-
sity in various regions of the computational domain so that the truncation
error can be reduced in regions, say, where steep gradients exist, etc. In this
presentation, we are not concerned with the mechanism by which the grid
is chosen, but only on the work after a computational grid has been pre-
scribed. Note that the only reason to consider a AMR scheme is to reduce
work for a given computation. One, therefore, hopes to be able to do bigger
problems which can not be executed on a uniform grid. Here we examine the
issue of computation carefully in the context of comparing AMR to numerical
schemes of higher order.

2.1 Preliminary Notation

If we let j denote the scale in our adaptive calculation, so that,

Axj = 23Axf, (1)

where Azf denotes the grid spacing at the finest scale, and if N denotes the
number of grid points in each direction on the finest scale of a d dimensional
calculation, then the number of grid points at coarser scales will be,

Nd

()
Grid = ~ (2)

Next, if we assume the equations are hyperbolic or dominated by hyperbolic
effects, then we can expect that,

At = cAxf , (3)

and that the time step on coarser scales will be,

Atj = 2iAxf (4)

Further, let us denote by Rj (t) the fraction of the domain at resolution ~ so
that,

1 = ~Rj(t). (5)
j=o

5



The meaning of Rj can be seen from Figures (1) and (2). In Figure (1) we can
see a steep gradient region and a Gaussian shaped perturbation in the field.
In Figure (2) we can see the wavelet-selected grid. This grid contains four
different grid point densities. But the majority of the domain is dominated
by two densities: the finest and the coarsest with the two middle densities
having very little representation. If this domain were covered by the finest
grid everywhere, there would be 128 by 64 grid points total. In Figure (2)
we can simply count the number of points at the finest scale, and we see that
there are about 1200 such fine scale grid points and thereby they comprise
roughly 15~o of the domain. An automatic procedure using wavelet analysis
will soon be introduced.

2.2 Computational Work for AMR and High Order
Schemes

Here we will build the expressions for the work for one time step on the grid
of the high order scheme, and we will assume that the coarsest scale of the
adaptive calculation is at the same grid point density as that of the high
order scheme. This assumption is merely for convenience for a slightly more
compact final expression.

2.2.1 Work of the High Order Scheme

Again we assume that N denotes the grid point density at the finest scale in
each direction of the adaptive calculation. And, we aasume that at the final
time that our high order scheme at order b *O. and at grid point density ~
yields that same error as the adaptive calculation. 0, will denote the order
of the adaptive scheme. Our expression for cost of one time step of the High
Order scheme is,

where Of denotes the order of the temporal discretization.

(6)



2.2.2 Work of the Adaptive Scheme

Since the scheme is adaptive, we do expect that this fraction will be a function
of time, The cost of one time step on the finest grid will be roughly,

Now we will assume that the scheme has been optimized so that one takes no
more times steps on coarse scales than is necessary. So, if at a given period
during our calculation, it is such that there are 3 scales, let J denote the
maximum scale, the finest scale j = O, the second finest scale j = 1, and
the coarsest scale j = J = 2. Then we expect that 4 time steps must be
taken on scale j = Oand 2 time steps at scale j = 1 for each time step taken
taken on the coarsest scale j = 2, We can now construct an expression which
is proportional to the number of flops during one time step on the coarsest
scale. We sum up the pieces from the various scales, beginning with the
finest,

fine – scale – woTk = Nd * 2J + 0, * Ot, (8)

where 2J is needed because we must take more time steps on finer scales to
equal one time step on a coarse scale. Similarly, one time step on the next
to finest scale would be,

Nd()second – finest – scale – work = ~ * 2J-~ * 0, *o~. (9)

Our expression for one time step on the coarsest scale then becomes,

(lo)

In order to choose an adaptive scheme over a scheme of higher order, a
requirement is that the work be less for the adaptive scheme. That is, we
require that HOm8t > AScO,t. The grid point density difference between the
high order scheme and the adaptive scheme is such that the high order scheme
has ~ points in each direction and therefore Ax and At are proportional to
~. We assume the same CFL for the adaptive scheme and the high order
scheme. We must find how many time steps we must take on the grid of the

7
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high order scheme in order to equal one time step of the adaptive scheme at
the coarse scale,

2J
&TS=-

N’
where TS denotes number of time steps. So we must take,

(11)

(12)

time steps on the high order grid in order to equal one time step on the coarse
scale grid.

We, therefore, require that

2J

()
—* : ‘* b* O~*Ot>~R(:)d2J-j *O. *Ot.
a j=o 3 23

(13)

First we eee that the variables representing temporal and spatial order drop
out to get,

:*(:)d*b>~R,(#)d2J”’)
and take the grid density N and 2’ out of the summation,

()
Nd+~+Nd~Rj ; ‘2-j.

a j=ll

Eliminating the grid point density we arrive at,

b
— > ~ Rj2-~cl+dj > &.
~d+l

j=(l

(14)

(15)

(16)

In the above inequality we have ueed the fact that each member of the
summation is non-negative and ie therefore smaller than the full summation,
To use the last inequality is extremely generous for AMR schemes since it
says that the other members make no contribution to the summation all. In
the next section, we obtain much more realistic and tighter estimate. But,
for now a minimal criteria for the fraction of the calculation at the finest
scale ie that,

--&>&

8
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Note that this estimate simply bounds the maximum work which can come
from the finest scale and ignores contributions from other scales. Later we
will consider the contribution from other scales and the bound will become
much tighter. But, we will see that even this very loose and generous bound
is very restrictive.

2.2.3 Grid Point Density, Order and Error

Choosing the variables b and a will depend on many issues: the total runtime,
the final error criteria and the spectrum of the flow variables. That is, the
calculations which run a long time and calculations which have a tight error
tolerance strongly favor high order schemes since the number of grid points,
and hence wall-clock time, scale as, see [3],

‘=mns’an’*(%%)1’04 (18)

where we have assumed quite reasonably that the dominate source of error
is spatial and not temporal. We give computational examples to find the
number of grid points such that a lower order scheme gives the final runtime
error which is the same as a higher order scheme. Our computational example
is that of,

U,(z, t) = U=(Z>t) (19)

with periodic boundary conditions,

u(o, t) = u(27r, t) (20)

and an initial condition of a Gaussian,

U(Z: O) = e-d(o-m)’, (21)

for z E (x, 2rr). The time advancement is 4th order Runge-Kutta with the
CFL is set to .5. With this high order time advancement we can expect that
that the spatial errors are larger than the temporal errors. We simply find
the number of grid points so that the calculation yields roughly the same
final Lz and L- errors at the final time. One can always estimate these
numbers theoretically, but a simple example is sufficient.

9
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Scheme N LZ Error Lm Error Cycles Time Steps IC
FD2 128 .0044 .0099 1 256 Gaussian d=l
FD4 32 .0041 .0096 1 64 Gaussian d=l
FD8 18 .0035 .0070 1 36 Gaussian d=l

Table 1: A Gaussian pulse propagated 1 cycle around a periodic domain with
w = UZ. LZ Error tolerance is set to .004.

Scheme N L2 Error Lm Error Cycles Time Steps IC
FD2 256 .0011 .0025 1 512 Gaussian d=l
FD4 44 .0012 .0028 1 88 Gaussian d=l
FD8 22 .0010 .0022 1 44 Gaussian d=l

Table 2: A Gaussian pulse propagated 1 cycle around a periodic domain with
w = %. LZ Error tolerance is set to .001.

2.2.4 Example 1: 2nd Order AMR, 4th Order Uniform

We first give an example with an error tolerance which is not tight. In this
first example that number of grid points required to make the second order
calculation equal to the fourth oder calculation is a = 4, see Table (1).

And we consider a slightly tighter error tolerance where the error is set
to .001 and we can see the number of grid points for the lower order scheme
to have the same error as the higher order scheme is almost six times that of
the higher order scheme, a = 5.8, see Table (2).

Scheme N Lz Error Lm Error Cycles Time Steps IC
FD4 160 .0000072 .000017 1 160 Gaussian d=l
FD8 58 .0000073 .000016 1 128 Gaussian d=l

Table 3: A Gaussian pulse propagated 1 cycle around a periodic domain with
ut = u.. LZ Error tolerance is set to .000007.
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Three Dimensions
With these two cases of a and b we can get upper bounds for the fraction

of the domain at the finest grid point density in three dimensions.

2
—--> l?o,
dd+l

(22)

If we let the dimension be d = 3 we obtain,

1
128
—>&. (23)

And, for the tighter error tolerance,

(~;d+l > ‘1
(24)

and then if we let the dimension be d = 3 we obtain,

&>&.

Two Dimensions

2
—>RQ,
dd+l

If we let the dimension be d = 2 we obtain,

;>%

And, for the tighter error tolerance we get,

(5,:),+1 > ‘~

and with d = 2 we obtain,

;>&.

11
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(27)

(28)

(29)



2.2.5 Example 2: 2nd Order AMR, 8th Order Uniform

For this case, there is really no chance that AMR can be competitive even
in two dimensions.

Three Dimensions

(ll,:)d+l > “
(30)

and then if we let the dimension be d= 3 we obtain,

-&>&. (31)

Two Dimensions

(ll:)d+l > “
(32)

and then if we let the dimension be d= 2 we obtain,

&>&. (33)

2.2.6 Example 3: 4nd Order AMR, 8th Order Uniform

Here we finally encounter a scenario where one might consider AMR in two
dimensions andpossibly even in three. Butonce again, therequirement that
the fine scales be restricted to less than 3y0 of the domain is very restrictive,
see (3).

Three Dimensions

(27:)d+l > “
(34)

If we let the dimension be d = 3 we obtain,

&>&. (35)

Two Dimensions

2
(2,7fj)d+l > “

12
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and then if we let the dimension be d= 2 we obtain,

&>&. (37)

2.2.7 Comments on Spectral Methods

Our comparisons are focused on the finite difference approach where our cost
isorder *N forsaking a derivative. Foraspectral the order will be replaced
byaclog Ntermfor amoreefficient calculation of the derivative. But given
that a second order AMR can not compete with either 4th order or 8th order
non-spectral methods, we have no expectation that it can beat the more
efficient spectral approach.

2.2.8 AMR Overhead

Note that the we have assumed no overhead cost for the adapting process
which will certainly make the restriction on & much tighter. That is, our
entire argument has been biased in favor ofadaptive schemes, and even with
these biases we obtain that the finest scale must comprise fractions of the
domain which are simply too small for the adaptive method to be a candidate.
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3 A Tighter Estimate

In the previous section we presented an argument that was very generous to
AMR in that the estimate only considered work at the finest scale j = O and
not work at other scales. Certainly the finest scale will not fill up the domain
and now we will consider the work from a coarser scale. Still, our argument
remains very generous to AMR.

Note that there must be at least two scales in the adaptive calculation but
not necessarily more. That is, we require at least part of the computation
to be at the finest scale in order to satisfy the error requirements. Second,
the fine scale computation is too expensive and can not fill up the entire
domain. So, there must be at least one other scale present. We seek to find
the maximum size of the smallest scale and so we set the second scale to be
the cheapest or coarsest scale.

Fkom the previous section we have the expression,

b
— > ~ Rj2-~t’+dJ,
ad+ 1

j=O

(38)

The key change in the current estimate is that we will keep two terms in the
above summation, namely the first and the last terms but first we must go
through some algebra.

The logic for keeping the first and last terms only is that we are looking
for bounds on the fraction of the domain at the finest scale and the coarsest
scale J is the least costly of all scales allowing scale j = O to be as large as
possible. Recall that,

J

~Rj=13
j=rl

so we get,
J-1

RJ=l–~R3.
j=O

We also need the expression,

~ R32-j(’+d) = & + RJ2-J(’+’) + ‘~ Rj2-j(’+d).
j=O j=l

14
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Combine the previous two expressions to get,

~ R@’+’J = I& + (1 - ‘~’ Rj)2-Jfl+d) + ‘~’ R@’+dJ, (40)
j=o j=o j=l

or,

~ Rj2-~(’+d) = 2-Jf’+d)+&(l-2-J(’+d) )+9 Rj(2-~(’+d)-2-J(’+d)). (41)
j=lr j=l

But, since j < ~ we get that,

21+’(2-~ – 2-J) >0, (42)

Therefore we can drop the non-negative summation term on the right hand
side of Equation (41) to get,

~ ~jr~(’+’) ~ 2-’0+’) + ~(1 _ 2-’0+’)), (43)
j=o

and incorporating Equation (38) we arrive at,

b
— > 2-’(1+’) + RI(1 – 2-J(*+’)).~d+ 1 —

(44)

With a blt of algebra we get,

and

b 1

(

1

)‘~ l–= “~d+l — m–

bz’(d+l) _ ~d+l
> &(2 J(d+C– 1)

~d+l

(45)

(46)

and finally we arrive at,

bz’(d+l) _ ~d+l

> E&. (47)
~d+1(2J(d+1) – 1)

Note that as .l gets large, i.e., there area large number of levels of refinement,
that the above expression tends toward,

b
—>&,~d+l

(48)

which is the same expression as the previous section.
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3.1 Confirmation of Estimate

The above estimate is a bit complicated, but with a simple test case we can
see that it does indeed make sense. Consider a case in two dimensions where
the adaptive scheme is second order and the high order scheme is 4th order.
Also, in order to have the final runtime error, let the grid point ratio be 4.
Note, for 3 scales that the coarse scale grid point density corresponds to the
grid point density of the high order scheme. One time step of the high order
scheme will cost,

iv~

()
HOcO.f = 4(omier) * ~ . (49)

The cost of the adaptive scheme on the finest scale will cost,

ASfine = 4(timesteps) * 2(order) * N2 *R, (50)

where R denotes the fraction of the domain at the fine scale. Likewise, the
cost of adaptive scheme at the coarsest scale will cost,

AS coarse=
()

N 2(1-R).2(order) * ~

So, we have,

() N2()8* N2R+2* ~ 2(1– R) =4* ~

Solving for R we get,

R<;

(51)

(52)

(53)

which one can also obtain from Equation (47).

3.2 A Few Examples

As in the previous section, we will give a few concrete examples. As we
mentioned above, longer run times favor higher order schemes. So, we give
two cases called short run and long run to illustrate this fact.

Three Dimensions short run
In this case we set a = 4, ~ = 4, d = 3 and b = 2 as we have above that

now we obtain that,
1

255
—>RQ, (54)

16
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which is roughly twice as tight as our estimate above.
Three Dimensions long run
In this case we set a = 5.8, J = 4, d = 3 and b = 2 as we have above that

now we obtain that.

&>&. (55)

Two Dimensions short run
In this case we set a = 4, J = 4, d = 2 and b = 2 as we have above that

now we obtain that,

&>&. (56)

Two Dimensions long run
In this case we set a = 5.8, J =4, d = 2 and b = 2 as we have above that

now we obtain that, .
L>IL.
288
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4 Wavelet-Based Criteria for Adaptation

In the preceding sections we examined the issue of an adaptive method com-
pared to a method of slightly higher order but which is not adaptive. Our
criteria was based on the fraction of the domain at the finest scale for the
adaptive scheme. In this section we offer a simple way to find this fraction
of the domain. The tool will be wavelet analysis.

4.1 Fraction at a Given Scale

In this subsection we will outline a procedure for using wavelet analysis to
find the fraction of the computational domain at a given wavelet scale. Recall
that a wavelet coefficient dj,k indicates the deviation of the computational
data from a low-order polynomial at a scale j and a location k. Of course,
the data will never, except in unusual circumstances, exactly correspond to
a low-order polynomial so the user must specify a “ wavelet threshold” which
we will denote by e, Wavelet coefficients such that,

Idj,kl>,, (58)

will denote where grids are to placed, parameter k, and at what density,
parameter j. In order to find the fraction of the computational domain at
scale j we need the following expression,

(59)

The notation is bit complicated. ndJ denotes the total number of wavelet
coefficients at scale J throughout the entire domain. nd~ denotes the number
of wavelet coefficients at scale j which are larger in magnitude than c And,
nd~ n nd~ denotes the regions of the domain where both dJ,h> c and dj,k > ~
simultaneously. The intention of the summation is to count those wavelet
coefficients at scale ~ which occur in regions of the domain which do not,
contain finer scales.

By using wavelets in this manner we can obtain a simple and reliable
method to estimate the fraction of the domain at a given scale.

18
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Figure 1: An example of a flame front.
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Figure 2: The grid for the flame front indicating the fraction of the domain
at a given grid point density.
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5 Conclusion

The purpose of this manuscript has been to compare the applicability of AMR
schemes when a higher order scheme is an option. We have considered here a
comparison of the computational work which is quite fair since AMR schemes
are advertised to reduce work by placing grid points only where needed. We
conclude that 2nd order AMR schemes have no reasonable chance to compete
against schemes of even a slightly higher order such as four. Further, when
the 2nd order AMR scheme is compared with an even higher order scheme
such as 8th order or perhaps even a spectral method, then AMR should not
be considered at all since the percentage of the domain which can be at the
finest scale becomes vanishingly small.

On the other hand, as the order of both the adaptive scheme and the
non-adaptive scheme incresse, their difference becomes smaller. An example
of a 4th order AMR scheme and an 8th order non-adaptive scheme was given
and it wcs seen that it might be reasonable to use the AMR scheme for some
two dimensional applications. In three dimensions if the order of the schemes
are very high, then it will make sense to use an adaptive framework, see [5]
and [6].
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