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Abstract

Benchmark calculations for radiation transport coupled to a material temperature

equation in a 1-D slab and 1-D spherical geometry binary random media are presented.

The mixing statistics are taken to be homogeneous Markov statistics in the 1-D slab but

ord y approximately Markov statistics in the 1-D sphere. The material chunk sizes are

described by Poisson distribution functions. The material opacities are first taken to be

constant and then aflowed to vary as a strong function of material temperature.

Benchmark values and variances for time evolution of the ensemble average of mate-

rial temperature energy density and radiation transmission are computed via a Monte

Carlo type method. These benchmarks are used as a basis for comparison with three

other approximate methods of solution. One of these approximate methods is simple

atomic mix. The second approximate model is an adaptation of what is commonly called

the Levermore-Pomraning model and which is refered to here as the standard model. It

is shown that recasting the temperature coupling as a type of effective scattering can be

useful in formulating the third approximate model, an adaptation of a model due to Su

and Pomraning which attempts to account for the effects of scattering in a stochastic

context. This last adaptation shows consistent improvement over both the atomic mix

and standard models when used in the 1-D slab geometry but shows limited improve-

ment in the 1-D spherical geometry.

Benchmark values are afso computed for radiation transmission from the 1-D sphere

without material heating present. This is to evafuate the performance of the standard

model on this geome~ - something which has never been done before.

ii



All of the various tests demonstrate the importance of stochastic structure on the

solution. Also demonstrated are the range of usefulness and limitations of a simple

atomic mix formulation.

.,.
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INTRODUCTION AND SURVEY

1.0 Motivations For the Research

It has been said that nature abhors a vacuum. It could afso be said that nature loves a

mess. Everywhere one looks, from the tangled tree tops to the turbulent hydrodynamics of

hot mixing gasses, one is confronted with the unpredictable material distributions of the

natural world. Often with these types of problems the background material is mixed in

such a way that the material properties of the problem cannot be specified at any given

point ) except in a statistical way, And solving the differential equations of physical pro-

cesses on these materiaf-mixed domains can be anything but textbook. The mathematical

nature of the problem is no longer that of simply solving a differential equation (be it diffi-

cult or easy) with specified parameters and boundary conditions. Rather, one has a differ-

ential equation with stochastic or random parameters. The solution then of our di fferential

equation is itself a random quantity. This means that, given a correct solution to the equa-

tions of such a problem, one possesses not the exact value of a measurement but rather the

expectation value or ensemble average of the measurement. Thk thesis is concerned with

just such a problem. Specifically, this thesis is concerned with the problem of light moving

through and interacting with (heating) random mixes of matter - afso known as stochastic

radiation transport in participating media. The specific equations of interest here are the

coupled radiation transport and material temperature equations with stochastic material

coefficients and sources.

hr stochastic radiation transport one would like to able to answer such primary ques-

tions as, “How much light passes through the mixing region?”, “How much light is
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reflected?”, “How hot does it get?”, and “How long does all this take?”. It is these kind of

predictions which connect theory to eventual experimental measurement. And it is these

questions which are motivating this research from a number of different research direc-

tions. Consider below three example applications.

1.1 Astrophysics

One example where the transport of radiation through a random media is important is

from astrophysics. Consider the following problem. A star or newly forming star is being

observed from the earth, but the radiation from the star must first pass through an interstel-

lar molecular cloud before reaching the observer, as shown in Fig. (1).

FIGURE 1. An AstrophysicalExample

Clumpy Molecular Cloud.

4
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Observer Y
Observed Light Proto-Star

Given that the light from the star is the probe used by astronomers to gather in forma-

tion about processes taking place, both in the star and in the cloud itself, one must be able

to understand and predict the way light moves through and interacts with the intervening

interstellar cloud. But the material distributions of the interstellar clouds cannot be known

in any specific detail. This prevents the precise grid resolution of any computational model

of this radiation transport problem. Stated another way, any theory in astrophysics which

—.



uses light as a test probe depends on the ability to predict the light observed here at the

earth. One then needs to be able to account for the effects of the randomly distributed

material properties of the interstellar clouds through which the light must travel. For

example, the random nature of the interstellar cloud structure may be important is in deter-

mining the spectral rate of photon absorption and scattering within the cloud [1]-[3].

1.2 Atmospherics

Another area of interest for the transport of radiation through random mixes occurs in

atmospherics. Here the radiation is the energy from the sun and that energy reflected and

re-radiated from the earth. The stochastic media is the earth’s atmosphere.

FIGURE 2. RandomClouds in the Earth’sAtmosphere

r

, Incoming Solar Radiation ,‘

d“a% ~

II The Surface 1

The distribution of clouds, dirt, dust, and any other suspended solids represent a sto-

chastic material distribution. These randomly distributed materiafs have an effect on the

way solar energy is deposited and so will effect any process related to this energy. For

example climate modeling or the understanding of global warming [4],[5].

1.3 ICF

The field of Inertial Confinement Fusion, or ICF, is an important application for sto-

—.
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chastic radiation transport as well. Here an intense source of X-Rays is used to implode a

target. The target is typically made up of several spherical shell layers made of different

materials, for example plastic and hydrogen.

FIGURE 3. Cartoon of an ImplodingICF Target

*/
Turbulent Interface

Because the different shells can have different densities, instabilities can develop at the

material interfaces during implosion - specifically Raleigh-Taylor instabilities [6]-[8].

These instabilities can lead to turbulent material mixing within the target. The modeling of

the radiation transport through this turbulent region is needed to accurately predict the

deposition of energy and hence the hydrodynamic evolution of the system.

These are just a few of the examples where the understanding of how light transports

through and interacts with a random media is important. There are many others in many

different fields.

2.0 What is a Binary Stochastic Media?

To solve any physical problem in a random media, one must be able to quantify the ran-
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domness of the mixing. Consider a photon as it travels through a binary random media

along a ray O, it will alternately pass through the two materials. The time it spends in

each material will be dependent upon the size and shape of the chunks of the two materi-

als, and the way in which the two materials are distributed.

ed RandomMedia

~-

This thesis will begin with the assumption that the statistical description of the mixing

is independent of position withhr the problem domain. This assumption gives what are

known as homogeneous statistics [11]. Later, when looking at spherical geometries, non-

homogeneous statistics will be introduced. Also needed is some way to quantify the size

and shape of the material chunks. The particular choice in this work is to use the probabil-

ity distribution functions (herein referred to as PDF) which describe the thickness of a

given material as sampled along the direction of travel fi. These are also referred to as

chunk size distribution functions. The assumption is then that sufficient information is

contained within the chunk size PDF’s to adequately quantify the random character of the

media. Specifying a problem then is equivalent to specifying the material chunk size

PDF’s.



2.1 Absolute Probabiffties and Distribution Functions in 1-D

Consider a 1-D random media of two materials labeled material 1 and material 2. Given

the PDF’s for the chunk sizes of the two materials one can compute two basic properties of

the media - the average size of the material chunks and the absolute probability that a ran-

domly chosen location within the problem will contain either material 1 or material 2.

Denote the PDF for material j as fj(l). Then the quantity f jdl is the probability that a

randomly chosen piece of material j will have a thickness between 1 and 1+ dl when seen

along the axis of symmetry. Denote the ensemble average of a quantity with the delimiters

( ) Then the average size of a chunk of material j as seen along the axis of symmetry is

(lj) = jf’f j(f’)dt . (EQ 1)

o

Denote the absolute probability of observing material j (for example) at a randomly cho-

sen point anywhere within the problem as p j. Then the p j are given by the formula [18]

(EQ 2)

2.2 1-D Homogeneous Markov Statistics

Consider the special case of Homogeneous Markoviarr statistics (hereafter referred to

as HM statistics) in one dimension. For Markovian statistics define the transition parame-

ter Ai such that the probability of transiting from material i to material j in a distance dl

.— —.
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dl
is just — [11]. In HM statistics the transition parameter is independent of position within

Ai

the problem. Then the materiafs have exponentially distributed chunk sizes so that the

PDF’s are given by

I

fj(f) = +,e-~” (EQ 3)
J

Then it is easily seen that the average chunk sizes along the direction of symmetry (for

example the radial direction in a 1-D sphere) are given by

I

(lj) = j~,e1 ‘idl = Aj

0’

(EQ 4)

Let pj be the absolute probabilities of a randomly chosen point being located within

material j. Then by Eq. (2)

Aj
‘j= Al+. A2” (EQ 5)

HM statistics have a speciaf role in the historical development of the field of stochastic

transport. For an excellent discussion of 1-D HM statistics and how it relates to stochastic

transport see reference [11 ]. The great majority of the published work to date has been

restricted to HM statistics and that is the case for most of the work in this thesis as well.

Regardless, this thesis uses the statistical characterizations of a binary stochastic media as

contained in Eqs. (3), (4) and (5). The main reason for this is it enables more easily formal

extension of existing work.



3.0 The Radiation/Material Temperature Equations

Consider now the radiation transport and material temperature equations and some of

the existing methods for solving these equations in a stochastic media.

3.1 Basic Equations

Restrict the problem to that of grey radiation transport. This means that there will not

be coupling between radiation of different wavelengths and the flux of radiation is

described by a single equation for the energetic average or grey equivalent. The main rea-

son for doing this here is to simplify the writing of computer codes to solve the equations.

Ultimately one would like to solve the problem in complete generality but that is beyond

the scope of this thesis. This is but the first step towards the inclusion of the new physics of

material temperature coupling to the deterministic radiation transport problem. The two

basic equations which describe grey radiation transport coupled to matter temperature are

and

pCv~(r, }) = - ccaT4(t, ?) + (rs - c,)~ysd~, (EQ 7)

where V( t, }, ~) is the radiation specific intensity and T is the material temperature. The

quantities t, }, and ~ are the temporal, spatial and angular coordinates, S is a general

radiation source, c is the speed of light, a the radiation constant, p the mass density, and
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CV the heat capacity. The integrals are taken over all dkections. The t3 is a dimensionafity

constant given by 6 = ~dfi’.

The total and scattering coefficients are given by o and 6,. Because the background

media is randomly mixed, the coefficients O( t, >) and cr$(f, i’) are stochastic quantities.

Then radiation specific intensity yr and the material temperature T are themselves contin-

uous stochastic quantities in that they can take on a continuous range of possible values

depending on the particular realization of the mixing statistics. One then is interested in

obtaining as a solution the ensemble average of v and the ensemble average of T which is

denoted as (V) and (T) respectively.

Notice that the equations have fourth order terms in the matter temperature T. To fur-

ther simplify the problem a bit, assume a particular analytic form for the heat capacity CV.

Assume

~ . 4aT3
“

P“
(EQ 8)

This form for the heat capacity is commonly used to simplify problems involving radiation

coupled to material temperature. It has the nice property that it makes the material temper-

ature equation linear. Define the quantity

I$(LZ) = aT4 (EQ 9)

which is the material temperature energy density. Then Eqs. (6) and (7) become



and

:W,?) = -COO(L P)+ (0-q)jtpid. (EQ 11)

Equations (10) and (11 ) are now linear in the two quantities v and $. The task at hand is

to solve these two coupled stochastic and time evolving differential equations for (v) and

(n.

3.2 Derivation of the Restricted Average Form

Consider what happens if one takes the ensemble average of Eqs. (10) and ( 11). This

gives

(EQ 12)

and

:(o)=-C(OO) +J((a-cw)drt. (EQ 13)

These equations are not of a simple form. The terms which are averages of products

(such as (cn$) for example) change the form of the equations to that of non-linear ones.

A similar but different averaging approach to the solution of Eqs. (10) and(11) is to

introduce a special operator, the resrricred ensemble averaging operator. This operator

computes the ensemble averaging of a quantity over a restricted subser of the totat possible

——
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realizations of the statistics, instead of all realizations. The advantage is that it retains

more linearity (so to speak) for the differential equations. Consider a random spatial distri-

bution of two materirds. Then at any point within the spatial domain of the problem there

will either exist material 1 or material 2 with probability p, or p2 respectively given by

Eq. (5). Define now a the function Xi such that xi(?) = 1 if material i is located at },

else %i(}) = 1). Then the ensemble average of Xi is just the probability of being in mate-

rial i at a random location. In other words

(XJ= Pi (EQ 14)

And for any random quantity Q()) which depends on these same binary statistics one has

that

{Xif2) = piQi, (EQ 15)

and

(Q) = PIQI +P2Qz. (EQ 16)

The quantity Qi(P) is then the average value of Q over the subset of possible renfizations

which have material i located at ), i.e. the restricted ensemble average of Q. Then the

multiplication of a quantity by xi and subsequent averaging over all possible realizations

acts as a restricted ensemble average operator [14], [15]. The average of the opacities

becomes



and

12

(EQ 17)

(a,) = pl~,l +P2~$2, (EQ 18)

where cri and O,i are the total and scattering coefficients for material i. One can now

aPPly the restricted ensemble average operator to Eq. (10). Assuming that the opacities are

constant one gets

~!(PiVi) + d (XivW) + ‘i(PiVi) = PiSi + c++ ;J(piwi)dfi’, (EQ 19)

with i = 1, 2. The restricted ensemble averaging commutes with all the operators in Eq.

(10) except for the gradient operator [15]. Integrate the gradient term by parts so that

(XivV) = (v(XiV) - WV%,) = ‘(P~V~) - (~Vxi) (EQ 20)

Using Eq. (20) in Eq. (10) gives a transport-like equation for each material 1 and 2.

coip$~+5J(pi~i)d&+(yfVzi).
~~(PiVi) + 6 (PiVi) +‘i(PiW~) = Pisi +~ (EQ 21)

Restricted ensemble averaging of the temperature Eq. (11) gives

-%Pat t$i) = - coi(PiOi) + (“i - ‘si)J(PiWi)dh (EQ 22)

Now Eqs. (21) and (22) area set of four equations whose solutions combine to give the

solution to the coupled radiation material temperature problem when the opacities are con-

stant. The ensemble average solutions explicitly in terms of the solutions to Eqs. (21) and
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(22) are

and

(EQ 23)

(w = P,% +P242. (EQ 24)

But what about that new term which has appeared on the right hand side of the radia-

tion transport equation? Refer to this new term, for reasons which will become clear, as

the statistical coupling term. This method has retained the linearity of all of the terms in

the equations, with the possible exception of the new coupling term, whatever it may be.

This process of applying the restricted ensemble average operator has served to capture all

of the statistical nature of the equations and move it all into the coupling term, leaving the

rest of the equations linear. The trick of course is calculating what that (W/xi) coupling

term is.

Notice, Eqs. (21) and (22) have a nice form because the material coefficients Oi and

a,i were specified as constant for each material. Should they be dependent upon position

or time (as they would be in real temperature dependent material), then Eqs. (2 1) and (22)

become approximations. This is because the procedure for getting Eqs. (21) and (22)

depends on the fact that all of the possible statistical realizations can be split into two sub-

sets within which the material properties are constanf. It is precisely because the set of

possible realizations can be partitioned into these two convenient subsets that the ensem-

ble averages of Eqs. (10) and ( 11) can each be split into two sets of coupled transport-tem-

perature equations - one for the average over each of the two subsets. Should the material

—————
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properties be continuously variable, the procedure leadingtoEqs.(21) and (22) would

yield not four equations (coupled temperature and transport equations for each of the two

materials), but an infinite number (coupled temperature and transport equations for every

possible value that the opacities cm attain). But for constant material propertiesEqs.(21)

and (22) apply,

The main advantage to this approach is that the numerical inversion of the left hand

side of Eq. (21 ) is now amenable to the same techniques used for the solution of ordinary

deterministic transport equations. One does not need to develop new numerical solution

techniques to solve these new equations. This is an important theme centraf to the methods

used in this thesis.

3.3 The Closure Problem

Determination of the (YVZi) coupling term, whether in exact or approximate form, is

referred to as the closure problem. The function zi( )) is a step function in space and has a

zero gradient everywhere except at the interface between two materials. The (W’Zi) term

is then the average of the specific intensity over all realizations where an interjace

between material 1 and material 2 lies at position }. It is not clear yet exactly how one

computes this in a general geometry or with a general set of statistics. However, this value

has been computed exactly for the special case of Markov statistics and in a slab or rod

geometry [1 1]. It is this success which encourages further investigations into the use of the

restricted ensemble averaging operator technique. This is further elaborated in Section 4.3.
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3.4 Significance of the Ensemble Average and the Variance

Consider for a moment what the ensemble average of any statistical quantity represents

in the context of a real experiment, say the force exerted by raindrops on a plate placed out

in the rain. The net force exerted by the raindrops at any given instant in time will be a sta.

tistically random quantity. The average of this force over time will be the ensemble aver-

age. But how well does this average represent the force as measured at any given time? In

other words, how well does the ensemble average of a quantity represent the quantity as

measured for any individual statistical realization? The answer is addressed by a quantity

called the variance. The variance is a measure of how much the measurement from any

individual statistical realization can be expected to vary from the average. In other words,

how good is the average at representing a typical measurement? The root mean square

variance is computed as

var(A) . ~~2, (EQ 25)

where the quantity A here is just some statistical quantity. So for a statistical problem with

a large variance, the ensemble average will be a poor representation of an individual statis-

tical measurement. This is why when computing stochastic solutions, it is important to get

a handle on what the actual variance is, if possible. It tells the experimenter if the expecta-

tion value is in fact what he or she should expect to measure.

4.0 Existing Deterministic Treatments of Stochastic Transport

In this section is discussed several of the methods which have been developed in the lit-
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erature to address the problem of stochastic transport without material temperature. The

extension of these methods to include the coupling to material temperature in a stochastic

setting (and subsequent testing of the methods) is the core work of this thesis.

4.1 Benchmarking

Let us assume for the moment that one has a model for the solution to Eqs. (21) and

(22). This is equivalent to saying one has an explicit form for the Xi(}) term. How would

one test the model? How would one know the model to be correct, or not? There is a brute

force technique for the solution of Eqs. (10) and ( 11) in a stochastic media. It is a Monte

Carlo type of method in that it uses the statistical description of the problem to generate

marry different sample realizations of the material distributions. It is not strict Monte Carlo

though in that it does not generate individual flight histories of individual photons. Rather

it computes the deterministic solution to Eqs. (10) and (11) over many different realiza-

tions and then averages all of the so computed deterministic solutions. It generates ensem-

ble averages in the true sense of the word. This is referred to as the Benchmarking Process

[14]. The ensemble average solutions for (w) and ( 2’) computed in this manner become

exact in the limit of sampling an infinite number of the statistical realizations. This obvi-

ously is not a reasonable thing to do very often as it involves computing the solution to a

coupled set of differential equations an infinite (or very large) number of times. Doing it

once is expensive enough! This makes the benchmarking process prohibitively expensive

for most uses. However, given the accuracy of the method, it is very useful for verifying

other models - which hopefully will be much faster and less expensive, if less accurate.
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4.2 Atomic MIX

There is a popular method commonly referred to as the atomic mix model. This method

has the advantage of being simple to formulate, easy to implement, and it’s computational

expense is just that of a single standard deterministic solution of Eqs. (10) and (11). Con-

sider the ensemble averages of the product terms in Eqs. (12) and (13). Do a decomposi-

tion of the random quantities into a mean and an oscillating part so that

~= (IJl)+$. (EQ 26)

T= (q)+@ (EQ 27)

where the oscillating parts ~ and @ have zero mean. Do likewise for o and a,. Then (for

example)

(my) = (Cr)(qr) + (6$) (EQ 28)

and

(q+ = (Is)(q)+ (6+). (EQ 29)

The atomic mix assumption then is that the average of the cross correlation terms like

(6V) are afl zero. This assumption yields

(ql) = (0) (yr)

and

(cr.1#) = ((s,) (I@

(EQ 30)

(EQ31)

—.
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with similar equations for averages of products with q. Then Eqs. (12) and (13) reduce to

::(v)+fiv(w) + (~)(w) = ($+ --Q---+ ~~(wia’,c(a)($) (~,)
(EQ 32)

and

(EQ 33)

Physically this is equivalent to making the assumption that within a smafl volume dV

located anywhere in the problem, the material is well represented by the average of the

two materials 10CU11Y,and that the radiation specific intensity and material temperature are

completely independent of any structure or statistical correlation between the two materi-

als. Eqs. (32) and (33) are now ordinary linear equations for ( yr) and (T) which can be

solved using the usual methods for solution of Eqs. (10) and (11). These are nice proper-

ties and it is for this reason that this technique is widely used, However these are rather

crude approximations in many cases. As will be shown later in the numerical simulations,

for certain cases the atomic mix approximation has quite a large error when compared to

the benchmark solutions.

4.3 Standard Model

This method was originally developed to solve the steady state stochastic transport

equation, i.e. Eq. (10) for steady state and no coupling to material temperature. It does not

in it’s original form include any treatment of material temperature. This model was inde-
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pendently developed by several authors [10]-[13] but is commonly referred to as the Lev-

ermore-Pomraning model. This work refers to this model as the Sfandard Model. It gives

the ensemble average solution for the equation

as

(w) = Plvl +P2V2

where the vi are found via the solution of the two coupled equations

(EQ 34)

(EQ 35)

it V(piyJi) + 6(piS#i) = Pisi + :~(pi~i)dfi’ + ~ - ~ (EQ 36)

1 1

where i, j = 1, 2 and i #j. If the problem is further restricted to a 1-D purely absorbing

media with a HM statistical description, then this model becomes an exact solution

[11],[15]. This model can be thought of as a special case of Eq. (2 1) with a particular

choice of closure relations for the statistical coupling terms. In other words the standard

model Eqs. (34) through (36) has the closure relation

(EQ 37)

This model has been shown to be quite robust and fairly accurate [14]. However, with the

inclusion of scattering, this is no longer an exact model. One would like to be able to

include the statistical effects of scattering for solving a larger class of problems. One way
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to address this issue is discussed next.

4.4 Su-Pomraning

In an attempt to build on the success of the Standard Model for the obtaining the sto-

chastic solution of Eq. (34), Su and Pornraning have proposed two alternatives to the clo-

sure relation Eq. (37) [16]. These new closures are aimed at improving the performance of

the Standard Model in cases when scattering is present. Both of the new closures relations

are of the general form

Physically one can think of these coupling terms as a kind of stochastic source/sink of pm-

titles. They represent the gain and loss of photons as they stream across the randomly dis-

tributed material interface boundaries (linear terms) and get randomly redistributed in

angle via the scattering-like process (integral terms).

So the solution is achieved by solving the two coupled equations

d V(pilyi) + o(piyfi) = pi,si+ ;J(piyl,)dfi’+(I#vxi) (EQ 39)

where i, j = 1, 2 and i # j with the closure Eq. (38) and

(v) = Plvl +P2V2 (EQ 40)

The new parameters q and K are positive weighting constants which are somehow meant

.— -..
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to take into account the effects that scattering has on the evolution of the statistical solu-

tion. Notice that if q = O and K = 1 this closure recovers the Standard Model. These

two new closures each specify different values for the two parameters q and K. The first

of these closures is given by

and

Here Gai is the absorption opacity for material i and is given by

Isai = C3i– 6,1,

(EQ41)

(EQ 42)

(EQ 43)

And (ca) is the ensemble average of the absorption opacity given by

The second of these “scattering accountable” closures proposed by Su and Pomraning is

given by

and
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(Is$)
T5JK.—,

rJrTJ
(EQ 46)

(Cr)

Notice that for both of these new closures, when scattering is zero, they both recover

the standard model, i.e q = 1 and K = O. The closure given by Eqs. (38) through (42)

and the closure in Eqs. (38), (41) and (42) are both derived by the same method which is

outlined here. First assume the form in Eqs. (38) and (39). Then assume that the correla-

tion length kc, defined as

111—.
A= ~+~2’

(EQ 47)

is small. Next assume that the fluctuations of the radiation specific intensity are small. In

other words

y= (l#)+@& (EQ 48)

where & is a smallness parameter. Then, equate the limiting (first order) cases of A= <<1 in

Eqs. (38) and (39) with &<<1 in a direct averaging of Eq. (34). Assuming K = O gives Eq.

(41). The Eqs. (45) and (46) are obtained by assuming ISl = cr2 and o,, = 6,2 (clearly

an undesirable assumption). For a detailed derivation please refer to reference [16]. This

model afso did not have any treatment of material temperature.

4.5 Other Approaches

The methods listed above were chosen for study in this work because they all lend

—
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themselves to numerical solution by way of common deterministic transport solution tech-

niques. That is why Monte Carlo approaches were not considered here, although others

have used Monte Carlo methods for stochastic transport problems [1],[19],[21 ]. However,

aside from the deterministic methods listed above, there are several other ways to

approach the problem of deterministic stochastic transport. For example the Method of

Smoothing [9] and the Liouville Master Equation [12]. For a good discussion of these and

other alternative deterministic formulations see reference [11 ].

5.0 Limitations of Existing Methods

All of the above listed methods have their limitations.

5.1 Scattering

None of the above methods except for the benchmark process can exactly treat the

effects of scattering on stochastic transport. Without scattering, the average of a quantity

like the radiation specific intensity only depends upon the possible states of the system

back afong that particular ray d in space. Introduce scattering however and the same aver-

age is now coupled to the past flight history states over all possible directions. This greatly

complicates the problem and the evaluation of averages. For a general discussion of the

scattering problem see reference [11 ].

5.2 Material Temperature

None of the above methods can account for the inclusion and time evolution of a mate-

rial temperature coupled to the radiation. The coupling of radiation intensity to material
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temperature makes the problem harder for several reasons. Reason number one is the

redistribution in angle of photons due to thermrd re-emission. This correlation through all

angles creates coupling to the past flight history states over all possible directions, just as

in the case with scattering.

With the inclusion of material temperature there are two continuous stochastic quanti-

ties to be found instead of one. This presents the daunting task of simultaneously solving

two coupled stochastic and non-linear partial differential equations. Deutsch and Vander-

haegen [6] have considered the case for 1-D radiation transport with the two materials at

two different but fixed temperatures and fixed opacities, i.e. as binary stochastic quantities.

Thk is equivalent to having binary stochastic radiation sources of the form ctll where

there are non-zero statistical correlations between the total opacity o and B, with B some

function of the material temperature. But this work is concerned with the more general

case of a time varying material temperature.

And lastly if the material properties are allowed to change with temperature, the opaci-

ties are now continuous rather than binary stochastic quantities. This introduces strong

new correlations which need to be accounted for in the calculation of averages.

Much of the effort in this work is dedicated to exploring how to include material tem-

perature with stochastic transport methods and what new problems it introduces.

5.3 General Statistics

All the above treatments make very strong assumptions about the statistical nature of

the material mixing. One would of course like to be able to have that statisticrd description

be specified by the problem at hand, and not be required to impose the assumption of a

—...
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certain statistical description on the problem. For example, it has been suggested that tur-

bulence in fluids is described by Levy power law statistics rather than Markov statistics

[21]. A technique based on the ideas of Renewal Theory has heen proposed [11] for parti-

cle transport through a random media with general statistical description. Unfortunately

this formafism does not easily lend itself to solution via standard trarrsport solution tech-

niques.

5.4 Multi-D

The problem of formulating and testing a stochastic transport model in arbitrary dimen-

sions or geometries is closely related to the problem of general statistics. Assume for the

moment that one has a general model in some geometry. To test it you need to be able to

generate benchmarks against which to compare the model (odds are no anafytic solution

wilI exist). This means that one must first be able to (somehow) generate a computational

mesh which represents a single statistical realization of tbe mixing statistics. While it is

not known how to do this in two and three dimensions, approximate methods have been

suggested [1]. However it is clear how to generate rod and slab geometry mixes [14],[20].

It may also be possible to generate two and three dimensional Markovian mixes [23]. But

for non-Markovian statistics in a generaf geometry this remains unsoIved. So there is the

problem of verifying the accuracy of a model by not being able to compute a benchmark.

However, one could generate some set of benchmark meshes and then do ray tracing on

these to determine their statistical nature. But then one needs to be able to incorporate into

the model whatever statistics arise from this procedure and we are back to the generaf sta-

tistics problem. As a first step toward exploring new possibilities, the 1-D spherical geom-
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etry is considered in Section 10.0,

6.0 Summary of The Approach

This thesis tries to solve the radiation transport equation coupled to the material tem-

perature equation in a stochastic media. The benchmark process described in Sec. (4.1) is

used to generate the “tree” answers. The atomic mix method Sec. (4.2), is used to explore

how well this common method works in this context. Then, beginning with the Standard

Model Sec. (4.3), a new method is proposed which generalizes the Standard Model to

include coupling to material temperature. Then is proposed a second new method which is

a generalization of the Su-Pomraning model, Sec. (4.4), again to include the coupling to

material temperature. The performance of the four methods is explored over a range of

parameter spaces and for two different geometries, 1-D slab geometry and 1-D spherical

geometry.

Also, the Standard Model has never before been used in a 1-D sphere. So this was

investigated with and without the inclusion of the material temperature coupling,

The implementation and generalization of these methods to the 1-D slab geometry if

presented in Sec. (8.0). The implementation and generafization of these methods to the 1-

D spherical geometry is presented in Sec. (1 1.0).
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STOCHASTIC MODELS IN 1-D SLAB GEOMETRY

7.0 Homogeneous Markov Statistics in 1-D Slab Geometry

In this chapter is proposed some new methods for modeling the stochastic solution to

Eqs. (10) and(11 ) in a 1-D slab geometry. Also presented are the formulations for some

standard methods for which ‘numericrd solutions are computed for comparison. The for-

mulations of these different models are presented in Sec. (8.0) and the numericrd solution

results in Sec. (9.0). In this chapter the problem is restricted to a purely absorbing media in

a 1-D slab geometry. In this geometry the media is composed of alternating slabs of the

two materials, as shown in Fig. (5).

FIGURE 5. ‘lhical I-D Slab Geomerrv Media. .
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The problem is assumed to be described by HM statistics so that the PDF for the chord

lengths of material i (afong the z direction) are given by

-z,
fi(rj = +? “

i

(EQ 49)

..



28

where Ii is then the average chord length of material i along the z direction. Let w be the

cosine of the angle between the ray fi and the z direction. Then the average size of a

chunk of material i as seen along the ray 1$ is given buy

The probability of finding material i at any given point is then given by

hi

‘i = (Ll + A2)

(EQ 50)

(EQ 51)

8.0 Formulation of the Different Methods

One wishes to obtain the stochastic solution, i.e the ensemble averages of the radiation

specific intensity (V) and the material temperature energy density (q), in the 1-D Hh4

media shown in Fig. (5) and described by Eqs. (49) and (51). In a purely absorbing,

source-free, 1-D slab geometry Eqs. (10) and (11) become

;$w>z>w)+Il+y,G v) + O=WL z? P) = :o(t, -z) (EQ 52)

and

#(t, z) = -Coa+(t, z) + Craj:, w z>V)dll> (EQ 53)

where Ga is the absorption opacity. Because the materials are purely absorbing, o = ISa

.— --— ——
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and cr, = O (this no-scattering assumption is appropriate for X-ray transport in matter, for

example). These simplifying assumptions were made to make the problem more tractable

while still retaining some of the new difficulties associated with the addition of material

temperature coupling. The assumptions resulting in Eqs. (52) and (53) are exactly those

assumptions under which the Standard Model as presented in Sec. (4.3) is exact when

material temperature coupling is absent. In other words the goal here is to see what new

issues arise with the addhion of new physics without making the problem overly compli-

cated.

8.1 Benchmark - Implementation

As described in Sec. (4.1), the benchmarking process is not so much a model as a pro-

cedure for the numerical evacuation of the true ensemble solution to the stochastic prob-

lem. It is not new and it requires no reformulation, needing only the numerical techniques

for the deterministic solution of Eqs. (52) and (53). It is included here because, though

expensive, it provides accurate ensemble average solutions to the problem. The procedure

is simple. One uses the PDF’s given by Eq. (49) to populate a particular realization of the

statistics. One then determines the solution to Eqs. (52) and (53) on that particular realiza-

tion. The problem is repopulated with a new material realization and the equations solved

again. This process is repeated many times and the resulting many solutions are averaged.

This gives an ensemble average in the truest sense of the word.

But how does one generate a particular realization of the statistics? Let Pi(xi < x) be the

probability that a rrmdorrdy chosen piece of material i has a chord length less than or

equaf to x as seen rdong the z axis. Then
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(EQ 54)

Using Eq. (49) gives

(EQ 55)

Inverting Eq. (55) gives

x = –~iln(l–~i). (EQ 56)

Refer to Eq. (56) as the sampling function. The Pi are uniformly dktributed between O

and 1. Hence, random F’i’s chosen uniformly between Oand 1 will give a chord length dis-

tributions for material i which satisfy Eq. (49). So to populate a particular realization of

the problem one begins at one end of the mixing region and, using Eq. (56), samples one

chunk of material i. Then sample one chunk of material j using Eq. (56). In this alterna-

ting way, sample one material then the other until the end of the mixing region is encoun-

tered. This is sometimes referred to as the leapfrog method for generating a realization

[20]. Note that the form of Eq. (56) is particular to this choice of statistics, but the process

in general is true for any statistics. One simply replaces Eq. (56) with the appropriate sam-

pling equation derived from whatever PDF’s describe the problem.

To summarize: one populates a rerdization using the sampling tlmction Eq. (56). One

solves Eqs. (52) rmd (53) obtaining the solution to one statistical realization. The proce-

dure is repeated N times and the finrd ensemble average solution is given by

——
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and
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(EQ 57)

(EQ 58)

where Vn and r#n are the solutions to Eqs. (52) and (53) for the nrh realization.

8.2 Atomic MIX - Implementation

The atomic mix approximation is anything but new. It’s ease of implementation and speed

make it a popular method. Casting Eqs. (52) and (53) into the atomic mix Formulation

from Sec. (4.2) gives

c(~a)($)j:(v)+W+(vo+(~a)(w) ‘ ($+ ~,

and

:(+)=-c(cJ.)(o) + (QJ(W)A.

(EQ 59)

(EQ 60)

Again, this no-correlation approximation is crude and assumes that the average two sto-

chastic quantities can be factored as (my) = (c) ( r+f), for example. This method was

included not because it is new, but because it is easy and popular - for comparison with the

new methods. Because the atomic mix formulation is relatively easy and fast to implement

and run, it is important to know when it works. If it works there may not be any need to
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perform a more complicated analysis

8.3 Standard Model - Implementation

Now adapt the Standard Model formulation for the stochastic solution of Eqs. (52) and

(53). How does one do this? Recall from Sec. (4.3) that the Standard Model is equivalent

to choosing the closure relation Eq. (37) to approximate the statistical coupling terms that

arise in the restricted ensemble averaging of the transport equation. Recall also that these

coupling terms arise because the restricted averaging operator does not commute with the

gradient operator in the transport equation. Because Eq. (53) contains no spatial deriva-

tives, the restricted ensemble averaging of Eq. (53) will not give rise to a new coupling

term. So to adapt the Standard model to Eqs. (52) and (53) simply make the assumption

that the original closure relation Eq. (37) still holds. So restricted ensemble averaging of

Eqs. (52) and (53), and using the Standard Model closure relation gives

and

(EQ 62)

with i, j = 1, 2 and i #j. Thk represents a set of four coupled differential equations for

the restricted ensemble averages qri and qi. The the ensemble average solution is given

by

..——
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(EQ 63)

and

(9) = P191 +P2rP2, (EQ 64)

just as in the Standard Model.

The closure relation used to derive this model is exact for transport in a purely absorb-

ing media in 1-D slab geometry described by HM statistics. That is the case here. But now

one also has the equation for material temperature included. In derivingEqs.(61 ) and (62)

it is assumed that the closure relation for the Standard Model still holds. But in fact, as will

be seen in the next section, it is no longer exact when the material temperature is included.

8.4 Su-pomraning - Implementation

The closure relation Eq. (37) is only approximate when there is scattering present. This

was the motivation behind the new closure proposed by Su and Pomraning and which was

described in Sec. (4.4), i.e. to account for the effects of scattering in a stochastic setting.

Here, there is no scattering. But there is coupling to a material temperature. And this cou-

pling to material temperature can be viewed as a kind of effective scattering. It is for this

reason that the closure used in the Standard Model is no longer exact when material tem-

perature is included.

8.4.1 Material Temperature Coupling seen as an Effective Scatterer

Just how the coupling to material temperature can be seen as a kind of effective scatter-

ing can be easily shown. While Eqs. (52) and (53) cannot in general be solved analytically,

—
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they decouple approximately by time integrating the temperature equation over a small

interval At = (t – to) >0. Integrating Eq. (53) gives

‘$(f~z) = $(trp Z)e-each + ~ae-a.c’ p“’”1(?’, Z)dt’ , (EQ 65)

where I(t, Z) = fl ~(t, Z, ~)dp. Now approximate the time integral in Eq. (65) using the

trapezoid quadrature rule getting

$(L z) =I$(~o, z)e
-OnCti ~aAt

+ ~[Z(t, z) + e-a’cA’I(ro,z)]. (EQ 66)

Substituting the right hand side of Eq. (66) into Eq. (52) gives

where

~czc+p(to> z) + ywo>z)] ~
SEFF(Z, t) = ye

is an effective source and

oa2cAt
‘sEFF = ~

(EQ 68)

(EQ 69)

is an effective scattering coefficient. It is important to note that even though the scattering

coefficient is zero(~, = O), the coupling to material temperature can be thought of as
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introducing an effective source and effective isotropic scattering. This suggests that in

order to treat the statistical nature of the coupling in Eqs. (52) and (53) one must first be

able to treat the statistical effects of scattering in the transport equation itself, even though

there is no real scattering present. Therefore, in an effort to improve upon the Standard

Model when applied to Eqs. (52) and (53), adapt the Su and Pomrarring closure relation by

allowing the effective scattering coefficient given by Eq. (69) to take the place of real scat-

tering.

8.4.2 The Su-Pomraning Closure with the Effective Scatterer

Recall from Sec. (4.4) that the model proposed by Su and Pomraning has the same gen-

eral form as the Standard Model but introduces a new general closure, Eq. (38). In the 1-D

slab geometry this closure has the form,

with two proposed formulas for the weighting parameters K and q. The 1-D slab form of

thk model (in a pure absorber) is then given by the four coupled differential equations

~~(piVi) + P&( PiVi). + ‘ai(PiVi) = c~(P~@i) + (VvX,i) , (EQ 71)

and

%P a,~_l(piVi)dPat r$i) = - co~i(pi@i) + C .1

with i, j = 1, 2 and i #j, and Eq. (70) used for the closure term.

(EQ 72)

—.
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Here, because the material is a pure absorber, o, = O, and Eqs. (70) through (72) reduce

to the Standard Model. However make the direct substitution of CT,EFFfor cr$ in the

expressions for K and q gives something new. The hope is that the coupling term Eq. (70)

will capture the statistical effects of material temperature coupling in exactly the same

way it was meant to capture the statistical effects of scattering.

Consider the first set of relations proposed for K and II, namely Eqs. (41) and (42).

Applying these to Eq. (67) gives the weighting parameters

and

?l=o,

where

‘aEFFi=aai-osEFFi=‘4-%9
and

(~.EF,F)= (o.) - ‘(G.EFF)

(EQ 74)

(EQ 75)

(EQ 76)

The quantity 6a~FFj can be thought of as a reduced effective absorption coefficient which

is allowed to be negative - hence the introduction of the absolute vafue in Eq. (73).

—— ——. —
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Refer to the closure given by Eqs. (70), (73), and (74) as variation 1.

Using the second expression for K and q proposed by Su and Pomraning, Eqs. (45)

and (46), gives variation number 2. Again, applying to Eq. (67) gives

and

( ‘sEFF)

‘=&”

(EQ 77)

(EQ 78)

The whole point of these two variations is to include the effects of scattering in the sto-

chastic solution. Here the idea of material temperature viewed as an effective isotropic

scattering is being used within this same framework to account for the statistical effects of

temperature coupling. Physically this is a reasonable hope, in that both scattering and

material temperature serves to redistribute photons to other directions of travel. Scattering

does it via a scattering event, and material temperature coupling does it via a heating and

thermrd emission. But the net result is in both cases isotropic redistribution of photons.

9.0 Numerical Results

In Sec. (8.0) were presented several methods for approximating the stochastic sohrtion

to the 1-d slab problem with HM statistics. Here are present the numerical solutions to the

various methods discussed in Sec. (8.0).
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9.1 Numerical Techniques

All methods are solved using diamond difference for spatial-discretization of the gra-

dient operator and implicit time-discretization for the temperature and specific intensity

time derivatives - see Appendix B or reference [17]. The angular variable p is treated by

standard discrete ordinate methods - again see Appendix B or reference [17]. At every

time step, the temperature and specific intensity were updated to the same time stamp via

an inner (fixed point) iteration, of fixed length. The maximum size Az of the grid spacing

was chosen to guarantee positivity of the radiation specific intensity according to

Az =
lld~i~

(G...+*) ‘

(EQ 79)

where IIL!~in is the smallest absolute value from the S-16 quadrature ord~nates, CSmaxis

the maximum of the two material absorption coefficients [17]. The time step Ar is chosen

to be fixed at the value At = 1.Oe – 12 seconds. This choice of time step is somewhat

arbitrary. It was simply chosen to be of the same order of magnitude as the time it takes

light to cross a typical spatird zone. Essentially a time step was used which was suitable

for an explicit time step method but in an implicit method. This was done so that the prob-

lem would run without complication. It was a very conservative choice but it worked with-

out difficulty.

The benchmark averages were computed using 1024 deterministic realizations. This

number was arrived at by trial and error. Solutions were generated for various numbers of

realizations and determined that 1024 sufficient by observing the convergent behavior of
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the solution as the number of realizations was increased. The error bars on the benchmark

curves are within the thickness of the lines used to plot the graphs.

9.2 Numerical Stability of Source Iteration

A comment is in order regarding the way in which the radiation transport equation was

solved at each time step. It was solved using a standard technique commonly cafled

Source Iteration [17]. In this method, any integral terms are approximated by estimating a

value for the solution and using the estimate to evaluate the integral term. The equation is

solved, and the integral terms are again updated using the new solution. This process is

repeated until convergence. In Appendix (A) it is shown that Source Iteration applied to

Eqs. (70) and (71) has the stability criteria that

(EQ 80)

In a purely absorbing media this reduces to the condition

g<~, (EQ 81)
K

This is guaranteed to be true in a purely absorbing media with the original expressions for

q and K as proposed by Su and Pomraning. But using Eqs. (77) and (78), the vafue ~ can

now be greater than 1. This means that this model, the one referred as the Su-Pomrarring

second variation (the one with q # O), may not be stable under Source Iteration when

cr,EF,c is used to compute II and K.



40

9.3 Results - Constant Opacities

Table (1) contains the data used to compute the curves shown in Figs. (6) through ( 13).

Notice that the values of the volume ratio for material i at any given point are equal to

hi
the probability of tindlng that material there, i.e. Vi = Pi = —. The different ki

(1I + 12)

were specifically chosen so that the volume ratios were the same for all the test runs.

Hence the results for the atomic mix model will be the same for all test runs. This allows

us to more clearly see the effect of changing stochastic structure, not just volume ratio, on

the answer.

Each of the figures (6) through (13) have four curves. Curve (A) is the benchmark

vsdue. Curve (B) is the value returned by the atomic mix model, Eqs. (59) and (60). Curve

(C) is the result from the standard model adaptation given by Eqs. (61) and (62). Curve

(D) is the result from the adaptation of the Su-Pomraning model, Eqs. (70) through (72),

with the effective scattering used in cafcrdation of the weighting factors via Eqs. (73) and

(74), i.e, variation number 1. When calculating the weighting factors using Eqs. (77) and

(78), i.e. variation number 2, the source iteration technique for solution of the transport

equation was not stable, and would not converge. It is easily seen why this is so. Using the

values in Table (1) to compute the stability criteria Eq. (81 ) for variation number 2 gives

(EQ 82)

Since this number must be less than one for the method to be stable, it clearly is not stable

here. Hence, no results for this method were crdculated.

—. ——.. — —
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Figures (6) through (9) are plots of -@ versus time step as computed for the
a T:

benchmark calculation and the three models which converged under source iteration. In

other words, the time evolution of the ensemble average of the material temperature

energy density scaled to the initial material temperature TO, as computed at the outgoing

edge of the mixing region, as shown in Fig. (5).

( Trans)
Figures (10) through (13) are plots of — versus time step as computed for the

caT~

three different models and the benchmmk, where

Tram = ~(yf(r,z=L, p))udp. (EQ 83)

In other words, it shows the time evolution of the ensemble average of the radiant energy

streaming out the outgoing edge of the mixing region scaled to the initial material temper-

ature TO.

Figures (14) through (17) are plots of the variance in the benchmmk for materiaf tem-

perature energy density and radiation specific intensity as scaled by the answer for each

T andtime step. In other words it is plots of percentage variance given by

~((Trans)2) - (Trans)2
(Trans)

as a function of time step. The time step axis for the variances

is on a log scale.
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Table I.Parameters for 1-D Slab - Constant Opacities

I Oa] = looo/cm 0=2 = S/cm I
I w(t, z=O, L) = 0.3 KeV I

I TO = 0.03 KeV
I

I L = 0.15cm I

Figure # k, (cm) X2 (cm)

6,10,14 5.oe-3 5.Oe-l

7,11,15 5.Oe-4 5.Oe-2

8,12,16 5.Oe-5 5.oe-3

9,13,17 5.Oe-6 5.0e-4

FIGURE 6. (~) versus Time Step - Constant opacities
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FIGURE 7. ( lp) versus Time Step - Constant opacities
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FIGURE 9. ((p) versus Time Step - Constant Opacities

FIGURE 10.
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FIGURE 11.

FIGURE 12.

( Trans) versus TimeStep - ConstantOpacities
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FIGURE 13. ( Trans) versus Time Step - Constant Opacities
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FIGURE 15. Benchmark Variance - Constant Opacities
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In all of the resulting curves the atomic mix model (B) consistently underestimates the

steady state values of radiation transmission and material temperature. This demonstrates

the well known effect that the atomic mix assumption overestimates the absorption of pho-

tons [1 1]. Also notice the general trend that the simple application of the Standard Model

(C) consistently overestimates both the material temperature and the transmission of radi-

ation. In treating the coupling to material temperature as a kind of effective scattering in

the Su-Pomraning model (D), there is consistent improvement over both atomic mix and

the Standard Model.

Special notice should be taken of the behavior of the three approximate models in the

limit of small correlation length, i.e as the hi get small. While curves (C) and (D) every-

where converge to the benchmark answer (A), the atomic mix vahre (B) only does so in

the steady state. This was surprising. Analysis of the models show that the coupled equa-

tions for the specific intensity as given by Eqs. (61) and(71) go to the atomic mix equation

(59) as the Li go to zero. However the material temperature equations (62) and (72) do not

go to the atomic mix equation for material temperature Eq. (60), except in the steady state.

But the coupled equation models both converge numerically to the benchmark answer as

the ).i get small. So let us take a closer look at the atomic mix equation for material tem-

perature, Eq. (60). Consider the material temperature equation without the coupling to the

radiation intensity

a+-—-
at

–Crl$l$ (EQ 84)

_—
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The exact answer for (~) on a binary stochastic media is

(’$)= $O[p,e-o’cf + p2e-02cfl,

But the atomic mix assumption would give

(40 = $Oe-(p’=’+“o’)”,

(EQ 85)

(EQ 86)

where $0 = a T:. They are not the same and no amount of letting ki go to zero will make

them so. In fact the Ii do not appear explicitly at all. This leads to the conclusion that

there is something missing from the “obvious” formulation of the atomic mix model for

the material temperature. The simple atomic mix formulation does not get the correct trar-

sient behavior in the small chunk limit. Evidently it is not sufficient to simply use averaged

material properties in the small chunk limit. Yet neither is it yet clear what the correct

interpretation of atomic mix should be to get the correct time dependent behavior for the

atomic mix material temperahrre. Because the temperature and the radiation intensity are

coupled itr Eqs. (59) and (60) one might expect that this effect will influence the atomic

mix average value for the transmission as well, which is indeed apparent in Fig. (13).

The variance on all of the runs was at or below 50% with the highest values being dur-

ing the transient phase. This means that for this problem the ensemble average might be a

good representation of the answer on an individual statistical realization, with the lowest

fit during the transient phase.

—.
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If the equations were in fact approaching the atomic mix answer as the chunks were

made smaller, all of the correlations would go to zero and the variances would also go to

zero. Looking at the behavior of the variances it is obvious that the models are in fact

doing this in the steady state. But in the transient the correlations are not going to zero.

This is yet another manifestation of the fact that the atomic mix assumption is not correct

for the transient, even in the smafl correlation length limit.

9.4 Resultx - Temperature Dependent Opacities

All of the numerical results so far in the 1-D slab geometry have been computed on var-

ious models with the opacities being held constant. However real problems are not gener-

ally this accommodating. Letting the opacities be dependent upon the material

temperature, and hence time variable, introduces a whole new level of complication to the

problem. To investigate how well these 1-D slab models perform with temperature depen-

dent opacities, the opacities of the two materials were allowed to depend on temperature

as

(EQ 87)

where Ct is some arbitrary constant chosen for material i. How does this change the level

of approximation in our models? Consider the restricted ensemble average of the product

(XiCaYJ). With constant opacities this average factors as

(X;G.W) = Pi”aiVi (EQ 88)

The derivation of the models in this chapter (except for the benchmark of course) depend
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on Eq. (88) being true. But with temperature dependent opacities Eq. (88) no longer holds.

So how well do the models work with material temperature dependent opacities? All phys-

ical parameters other than the opacities were kept the same as in the constant opacity runs

and are shown again in Table (2).

Table Z.Parameters for 1-D Slab - Variable Opacities

~(t, z=O, p) = 0.3 KeV

TO =0.03 KeV

L = 0.15cm

Figure # k, (cm) ).2 (cm)

18,22,26 5.Oe-3 5.Oe-l

19,23,27 5.Oe-4 5.Oe-2

20,24,28 5.Oe-5 5.Oe-3

21,25,29 5.Oe-6 5.Oe-4

The opacities are variable according to Eq. (87) with Cl = 1.07x1028 and

C2 = 1.73x1022. These choices together with Eq. (87) are based on the assumption that

the absorption opacities mise via an inverse-Bremsstrahkurg process for a plasma of two

materials with the electrons of each material in thermodynamic equilibrium. The two

materials chosen were gold for material 1 and hydrogen for material 2. To handle the

extremes of the temperature ranges, a minimum of O.l/cm and a maximum of 10000/cm

were imposed on the opacities. They were allowed to vary within this range according to

Eq. (87). The data of these runs is shown in Figs. ( 18) through (25). The layout of the

plots, and the quantities plotted are identical to that in the previous section - only now the

opacities are temperature dependent.
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4

Just as in the previous constant-opacity runs, Figs. (18) through (21) are plots of ~
TO

versus time step as computed for the benchmark calculation and the three models which

(Trans) versusconverged under source iteration. Figures (22) through (25) are plots of —
caT~

time step as computed for the three different models and the benchmark. Figures (26)

through (29) are plots of the scaled benchmark variances V ~d

../( (Trans)2) - (Trarrs)z

(Trans)
as a function of time step. The time step axis for the variances

is again on a log scale.

FIGURE 18. (Q) versusTimeStep - VariableOpacities
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FIGURE 19.

FIGURE 20.

(tp) versus Time Step - Variable Opacities
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FIGURE 21. (V) versus Time Step - VariabIe Opacities
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FIGURE 23. ( ~rans) versus Time Step - Variable Opacities
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FIGURE 25. ( Trans) versus Time Step - Variable Opacities
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FIGURE 27. Benchmark Variance - Variable Opacities
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Clearly the various approximate models do not do nearly as well when the opacities are

strong functions of the material temperature. The general trend of all models converging to

the same answer as the chunk sizes are refined is still present, as it should be. The general

over absorption of the atomic mix model is also still present as is the error in the transient

of the atomic mix model. However the Su-Pomraning variation using temperature as an

effective scatterer is in this case not significantly better than the Standard Model except in

a small space of chunk sizes. Evidently the approximation introduced via the assumption

that Eq. (88) still holds is a significant source of error. And any model which hopes to

accomplish the modeling of real temperature dependent systems is going to have to better

treat the new statistical correlations that material temperature coupling introduces.

Notice how that the variances in the transient period have grown dramatically with the

introduction of temperature dependent opacities. Obviously there are very large variations

between different statistical realizations. This calls into question the value of the ensemble

averages for representing individual experimental measurements on this kind of problem.

A meaningful comparison could only be made with averages taken over a large number of

experimental measurements, covering a large range of statistical samples for this problem.

Once again it is clear that the models are recovering the atomic mix answer in the

steady state, but not in the transient. If it were, the correlations and hence the variance

would go to zero in the transient. And clearly this is not happening.



59

STOCHASTIC MODELS IN 1-D SPHERICAL

GEOMETRY

This chapter proposes some new methods for modeling the stochastic solution to Eqs.

(10) and (11) in a 1-D spherical geometry. These are essentially the 1-D spherical formula-

tions of the same methods developed in the chapter on 1-D slab geometry. The formula-

tions of these different models are presented in Sec. (11.0) and the numerical solution

results in Sec. (12.0). First restrict the problem to be a purely absorbing media. Then in

Sec. (12.4) this restriction is relaxed by aflowing the opacities to be temperature depen-

dent. In this geometry, the mixing region is composed of alternating shells of the two

materiafs surrounding a homogeneous core which acts as an isotropic radiation source at a

constant temperature, as shown in Fig. (30).

mszurm In m“i..l 1.n .Snhmr+nl C..,l,n.* M.,+...--. —-. . -, k’--- - --h’. ----’-” ---... --, -------

Outgoing ~

Radiation ~.”
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10.0 Markov Approximation in a 1-D Sphere

The mixing region is described by alternating spherical shells of random thickness

with Poisson PDF functions along the radial direction. The PDF’s for the chord lengths

(read shell width) of material i along tbe radial direction are assumed to given by

.P

fi(p) = +? ~’,
i (EQ 89)

where Ii is then the average width of a shell of material i along the radial direction. Then

tbe probability of finding material i at any given point is still given by

)“i
‘i = (Ll + A2) ‘

(EQ 90)

just as in the slab geometry case. Let L be the cosine of the angle between the ray@ and

the radial direction ~. Consider the probability of transition from one shell to the next

when taking a step from > to } + d} along the ray h. In the case of homogeneous statis-

tics this probability is independent of position. Here however this is not the case. This is

because for a shell of fixed thickness along the radial direction, the thickness as seen by a

photon traveling across the shell at an angle f). @ will depend not only upon angle but

also upon radius. The thickness seen by a photon at a given angle is now dependent upon

it’s position within the problem. This is easily seen. Consider Fig. (31).

—
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Let the width of a shell of material i as seen along the ray h and at radius R be given by

li with the thickness of the same shell seen along the radial direction as pi. Let the ray h

make an angle @ with the radial direction ~. Then simple geometry gives

/i(R, @) = –RcosEI + (R+ pi)z –R2sin2@. (EQ 91)

Notice that in the limit as the radius gets much bigger than the thickness of the shell, i.e,

&
R

<<1, Eq. (91) becomes



1,= -.!&
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(EQ 92)

which is the slab geometry result Eq. (50). However, as the radius of the problem grows,

the geometry of the sphere does nor necessarily just become a 1-D curved slab problem.

This is because radiation from one side of the core can be radiated across the sphere to the

other side - a geometric connectivity missing in the 1-D slab geometry. But, when the only

sources of radiation are in the core, this cross-problem connectivity disappears if there is

no scattering or material temperature coupling present. Also, if one specifies a core bound-

ary condition such that the radiation field is constant there, then this geometric connectiv-

ity disappears regardless of the presence of any scattering or temperature coupling.

11.0 Formulation of the Different Methods

Again, one wishes to obtain the stochastic solution, i.e the ensemble averages of the

radiation specific intensity (W) and the material temperature energy density (q), in the

1-D spherical media shown in Fig. (30) and described by Eqs. (89) and (90). In a purely

absorbing 1-D spherical geometry, Eqs. (10) and (11) become

(EQ 93)

and

&L P) = - CCSJKLP) + IS.J:, wfw, (EQ 94)

where c= is the absorption opacity. Because the materials are purely absorbing, o = CSa

—...—. .-
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and c~ = O. These simplifying assumptions were made for the same reasons as in the last

chapter on the 1-D slab geometry. Namely to make the problem more tractable while still

retaining some of the new difficulties associated with the addition of material temperature

coupling. In the slab geometry these assumptions were exactly those assumptions under

which the Standard Model as presented in Sec. (4.3) is exact when material temperature

coupling is absent. Here that is not quite the case. Not only are new physics introduced via

the radiation coupling to material temperature but also a statistical material distribution

which is not HM statistics. The goal here then is twofold. One is to see what happens with

the material temperature coupling in the spherical geometry. The other is to see what

effect the changing of the statistics has on the performance of the standard model and it’s

variations.

11.1 Benchmark - Implementation

The benchmark process for the 1-D spherical geometry is identicrd to that in the 1-D

slab. The sampling functions Eq. (56) is unchanged also. Now instead of sampling the

width of alternating slabs of the two materials one samples the thicknesses of alternating

spherical shells. And the solutions for each realization are performed on the spherical

geometry.

11.2 Atomic Mix - Implementation

Casting Eqs. (93) and (94) into the atomic mix formulation from Sec. (4.2) gives

::(v)+W@)+ c(~a)(wQ+&) +(~a)(w) = ($ +-j------ (EQ 95)
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and

:(4)=-c(~.)(w + (~a)j(w~.

The level of approximation here is identical to that of the

11.3 Standard Model - Implementation

(EQ 96)

-D slab case in Sec. (8.2).

Now adapt the Standard Model formulation for the stochastic solution of Eqs. (93) and

(94). How? Just as in the slab geometry case, assume that the closure relation Eq. (37) is

still valid. How, since Eq. (95) has a new spatial derivative term? Won’t that give rise to a

new coupling in the closure relation? Formafly no. The dktribution of materird is radially

symmetric. Thk means that the restricted ensemble average operator will commute with

the angular derivative term ~. Then just as in the slab geometry case, only the ~ willap ap

give rise to a statistical coupling. So restricted ensemble averaging of Eqs. (93) and (94),

and using the Standard Model closure relation gives

and

(EQ 98)

with i, j = 1, 2 and i #j. This represents a set of four coupled differential equations for

the restricted ensemble averages W, and q,. The the ensemble average sohrtion is given
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by

(v) = Plvl +P2Yf2

and

(EQ 99)

($0 = PI% +P2TJ2, (EQ 100)

just as in the Standard Model. This adaptation of the standard model to my problem is

identical to what was done in the 1-D slab geometry except that in the spherical geometry

there is a twist. The statistics are not HM in this case. This, combined with the materird to

temperature coupling acting as an effective scatterer, make for two levels of approximation

to explore.

11.4 The Su-Pomraning Closure with the Effective Scatterer - Implementation

Just as in Sec. (8.4.2) apply the Su-Pomraning closure using the effective scatterer Eq.

(69). Once again this closure has the form,

with two proposed formulas for the weighting parameters K and rl. The spherical equa-

tions then are

[::+~~+ p a,a ‘L+ OuJ(pil+fi)= p~.$i+ c~(PiOi) + (WVXJ , (EQ 102)

and



with i, j = 1, 2 and i # j, with the coupling term ( WVXi) given by the closure relation

Eq. (101) and the ensemble averages given by Eqs. (99) and (100). Once again the two

variations on the forms for the weighting parameters K and q are given by Eqs. (73) and

(74) (variation 1) and by Eqs. (77) and (78) (variation 2).

12.0 Numerical Results

Now investigate how the various model formulations in Sec. (11.0) perform relative to

the benchmark.

12.1 Numerical Techniques

All methods are solved using a 1-D spherical generalization of diamond difference for

discretization of the gradient operator - see Appendix B or reference [17], and implicit

time-dlscretization for the temperature and specific intensity time derivatives. The angular

variable p is treated by standard discrete ordinate methods - again see Appendix B or ref-

erence [17]. At every time step, the temperature and speeific intensity were updated to the

same time stamp via an inner (fixed point) iteration, of fixed length. The maximum size

Ap of the radiaf grid spacing was chosen according to the same relation as was used for

the slab geometry case. Here it does not necessarily guarantee positivity, but lacking an

equivalent formula for the spherical geometry it was used anyway. The time step At is

again fixed at the value At = 1.Oe – 12 seconds for the same reasons explained in the
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slab geometry section.

In all of the numerical tests for the 1-D sphere, the temperature of the core was held to

be constant. Also were specified a constant and isotropic radiation source in the core only.

However, the radiation specific intensity within the core is aflowed to change. Thk retains

the effect of the cross-problem connectivity, as discussed in Sec. ( 10.0), inherent to this

geometry. Because this introduces an effect not present in the 1-D geometry runs, it makes

it difficult to compare the 1-D slab with the 1-D spherical runs. Because of time con-

straints no tests were done with the radiation field in the core held constant - what would

essentially be a curved slab geometry.. not a true sphere.

12.2 Results - Constant Opacities without Temperature Coupling

The Standard Model has never before been used in the 1-D spherical geometry. If this

were a 1-D slab geometry with HM statistics and constant opacities, then the Standard

Model would in principle give the exact result. But this is not a 1-D slab geometry and

hence the statistics are not homogeneous as explained in Sec. (10.0). So in order to explore

the performance of the Standard Model in this new geometry without the additional com-

plication of coupling to material temperature, first compute solutions to the different meth-

ods without materird temperature coupling. Table (3) has the physical parameters used in

these runs.

The radius of the core is given by Rcore and the thickness of the surrounding mixing

region by L.. The radiation source is constant, isotropic, specified by Score, ~d is zero

everywhere outside the core.

—
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Table 3: Parameters for 1-D Sphere without Temperature

Cia, = 1000lcm Ga2 = S/cm

‘a Core = era*

Score = 0.3 KeV

R CO,==0.1 cm

L = 0.15cm

I W, 38 I 5.Oe-5 I 5.Oe-3 I

I 35,39 I 5.Oe-6 I 5.Oe-4 I

Just as in the slab geometry, the volume ratio for material i at any given point is equal

l..
to the probability of finding that material there, i.e. Vi = Pi = ~. And again the

(Ll + k~)

different Ii were specifically chosen so that the volume ratios were the same for all the

test runs, just as in the slab geometry inns. Hence the results for the atomic mix model will

again be the same for all test inns.

Each of the figures (32) through (35) has three curves. Curve (A) is the benchmark

vafue. Curve (B) is the value returned by the atomic mix model Eq. (95). Curve (C) is the

result from the standard model adaptation given by Eq. (97). Because there is no material

temperature or scattering for these runs, there is no adaptation of the Su-Pomraning

model.

Because there is no material temperature, only the radiation transport equation is being
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( Trans)solved. The results, Figs. (32) through (35), are plotted as plots of — versus time
caT~

step as computed for the three different models and the benchmark, where

Trans = [VS..f...P4. (EQ 104)

In other words, it shows the time evolution of the ensemble average of the radiant energy

streaming off the surface of the sphere as shown in Fig. (30). It is also scaled to

To = 0.03ffe V. This is the same value used for the initial material temperature in the

temperature coupled runs made later in this chapter. The scaling was kept the same just for

consistency.

The values of - were plotted with time on a log scale for these runs. This was

o

only done for these mns to better bring out the differences between the benchmark and the

Standard Model.

The benchmark variance in the transmission is shown in Figs. (36) through (39) and is

~((Trans)2) - (Tratss)2
a plot of

(Trans)
as a function of time step. The time step axis is on a

log scale.

—
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FIGURE 32. ( Trans) versus Time Step withoutTemperatureCoupling
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FIGURE 34. (Tram) versus Time Step without Temperature Coupling
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FIGURE 36. Benchmark Variance without Temperature Coupling
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FIGURE 39. Benchmark Variance without Temperature Coupling

The Standard Model performed extremely well here. It fact it performed remarkably

well. Evidently the variation from HM statistics that is introduced by going to the 1-D

spherical geometry is not nearly as important as was the introduction of temperature

dependent opacities in the slab geometry.

Notice that all the different methods converge to the atomic mix answer in the small

correlation length limit, i.e as the ki go to zero. Notice too that the atomic mix answer is

now getting the transient correct in this limit. Tfris is because the temperature equation is

not part of the picture here and the purely local nature of the temperature equation is not

introducing error into the atomic mix answer. Also notice that because the atomic mix

approximation is correct here in the small correlation limit, the variances are all going to

zero in this limit as well. Hence the big hump in the transient for the variance is gone.

For these runs without the material heating there is no scattering type of effect. There is

no redistribution in dkection. So a photon starts out going one direction and keeps going

in that direction unless absorbed. This means that the cross problem connectivity dis-

cussed above is not present in these mns. All the radiation source is in the core so photons

— —..
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never stream back into the core from the mixing region. They only stream outward. This

problem is more of a curved slab than a sphere. This might help explain why the standard

model performs so well here.

Notice that the relative position of the atomic mix model is the same here as it was in

the 1-D slab geometry runs. It continues to over absorb radiation resulting in a lower

steady state outgoing flux than the benchmark or the standard model.

The next thing to do is turn the coupling to material temperature back on, still keeping

the opacities constant, and redo the runs.

12.3 Results - Constant Opacities with Temperature Coupling

Here are presented the results of the different methods in a 1-D spherical geometry with

the material temperature coupling turned back on but with the opacities still held constant.

The parameters of the problem are given in Table (4). Again the volume ratios of the two

Table 4: Parameters for 1-D Sphere with Temperature - Constant Opacities

Cra, = 1000lcm 0=2 = 51cm

‘aCore = cra~

Score = 0.3 KeV

T core =0.3 KeV

TO =0.03 Kev

R ~ore =0.1 an

L = 0.15cm

—.
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Table 4: Parameters for 1-D Sphere with Temperature - Constant Opacities

Cla, = 1000/cm 00* = S/cm

OaCOre = cra~

~Core = 0.3 KeV

T CO,== 0.3 KeV

TO = 0.03 Kev

R =0,< = 0.1 cm

L = 0.15cm

Figure # 11 (cm) 2.2 (cm)

43,47,51 5.Oe-6 5 .Oe-4

material were held constant as the size of the materird chunks were made smafler. The

material temperature, isotropic radiation source and material properties in the core were

constant and given by the values in Table (4). However the radiation specific intensity in

the core was allowed to change as photons were redirected via thermal emission and

streamed back into the core from the mixing region. This represents a 1-D sphere now -

not just a curved slab geometry as discussed above.

Each of the figures (40) through (47) have four curves. Curve (A) is the benchmark

vafrre. Curve (B) is the value returned by the atomic mix model, Eqs. (95) and (96). Curve

(C) is the result from the standard model adaptation given by Eqs. (97) and (98). Curve

(D) is the result from the adaptation of the Su-Pomraning model, Eqs. (101) through

(103), with the effective scattering Eq. (69) used in calculation of the weighting factors via

Eqs. (73) and (74), i.e. variation number 1. Because the method with weighting factors

Eqs. (77) and (78), i.e. variation number 2, was not stable under source iteration (refer to

Sec. (9.3)) it was not used.
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Figures (40) through (43) are plots of ~ versus time step as computed for the four
a T:

different methods. In other words, the time evolution of the ensemble average of the mate-

rial temperature energy density scaled to the initial material temperature To, as computed

at the surface of the sphere, as shown in Fig. (30).

(Trans)
Figures (44) through (47) are plots of — versus time step as computed for the

caT~

three different models and the benchmark, where

Trans = ((v(r,Z=L,I. L)WI.L. (EQ 105)

In other words, the time evolution of the ensemble average of the radiant energy

streaming off the surface of the sphere and scaled to the initial material temperature To.

Figures (48) through (51 ) are plots of the variance in the benchmark for material tem-

perature energy density and radiation specific intensity as scaled by the answer for each

T ~dtime step. In other words it is plots of percentage variance given by

~((Trans)2) - (Trans)z

( Trans)
as a function of time step. The time step axis for the variances

is on a log scale.
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FIGURE 40. ((p) versus Time Step - Constant Opacities
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FIGURE 42. (q) versus Time Step - Constant Opacities
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FIGURE 44. ( Tra ns) versus Time Step - Constant Opacities
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FIGURE 46. ( Trans) versus Time Step - Constant Opacities
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FIGURE 48. Benchmark Variances - Constant Opacities

,.00

E“’”

A TempVariance
B: Trans Variance

oso

“~
.00

,.00 10.cm , m.m

FIGURE 49. Benchmark Variances - Constant Opacities

!
A TempVariance
B: TransVariance

O“sO/%
FIGURE 50. Benchmark Variances - Constant Opacities

‘“”~

0.50

L~..--+.__--------./-- -----
❑ .00

,.00 ,mca lm.00



82

FIGURE 51. Benchmark Variances - Constant Opacities
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First notice that as the size of the material chunks (shell widths) is made smaller, i.e.

the smrdl correlation length limit, all of the methods converge to the same steady state

answer. This is a good check and is what should be happening. Also notice that the atomic

mix model (B) once again does not get the transient stage correct, even though the steady

state answers are converging. This is precisely for the same reasons explained in Sec.

(9.3).

Also notice that because the atomic mix is once again not the correct small correlation

limit, the hump in the transient period for the variance is back. But it still goes to zero in

the steady state in this limit as it should.

Wkit regards to the temperature, the standard model (C) and Su-Pomraning with effec-

tive scattering (D) have almost identical performance and only slightly better than the

atomic mix model (B). However for the radiation, the atomic mix actually does a better

job. Notice too that the relative performance of the atomic mix model has changed. It now

is resulting in steady state temperatures that are consistently higher than the other models.

This was not the case in the 1-D slab geometry. Why this is happening is not yet clear, but
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it may well be connected to the fact that the sphere now has the connectivity across the

source (the core) not contained in the 1-D slab.

The standard model and the Su-Pomraning with effective scattering show little if any

improvement over the atomic mix model for this problem.

12.4 Results - Temperature Dependent opacities

Now redo the mns from the previous section but allow the opacities for the two materi-

als to change with temperature. Again use the same temperature dependence as was used

in the 1-D slab geometry runs. Allow the opacities of the two materials to depend on tem-

perature as

Ci
‘ai=_+_s’ (EQ 106)

with Cl = 1.07x1028 and C2 = 1.73x1022. The remaining parameters are shown in

Table (5). Again the source of radiation in the core is constant and isotropic, the tempera-

ture in the core is held fixed (and hence so are the opacities) and the radiation is aflowed to

stream across the core region. And again the volume ratios of the two materiafs are held

constant while the average shell widths of the two materials are made smaller.

Each of Figs. (52) through (59) has four curves. Curve (A) is the benchmark value.

Curve (B) is the value returned by the atomic mix model, Eqs. (95) and (96). Curve (C)is

the result from the standard model adaptation given by Eqs. (97) and (98). Curve (D) is the

result from the adaptation of the Su-Pommning model, Eqs. (101) through (103), with the

effective scattering Eq. (69) used in calculation of the weighting factors via Eqs. (73) and
*

—
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(74), i.e. variation number 1.

Table 5: Parameters for 1-D Sphere with Temperature - Variable Opacities

‘aCore = cra~

s ~Ore = 0.3 KeV

T CO,, =0.3 KeV

TO = 0.03 Kev

R ~O,e =0.1 cm

L = O.lScm

54,58,62 5.Oe-5 5.oe-3

55,59,63 5.Oe-6 5.Oe-4

Again the method with weighting factors Eqs. (77) and (78), i.e. variation number 2, was

not used.

Again Trans is defined by Eq. (105) and all values are scaled to TO just as in all previ-

(q)ous inns. Figures (53) through (56) are plots of — versus time step as computed for
a T:

the four different methods at the surface of the sphere. Figures (57) through (59) are plots

of (Trarrs)
— versus time step as computed for the four different methods at the surface the

ca T:

sphere. The benchmark variances for (rp) and ( qr) are plotted versus time step Figs. (60)

through (63). Again these are plotted with the tim~ axis on a log scale.

—.. .
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FIGURE 52. ((p) versus Time Step - Variable Opacities

lWW ~

FIGURE 53.

5L100-

o.m

. ... D--. -----. -”-. -’-”-- ”-”D-”-.-”-”””-S

.@”L--
--. JL------C-------- C--- 1

P
.:. -

,,q’

/’...””

v

, ~.
t’ ,,:

;’
r.

/’&
, ;.

f
;

;

;

l;/; A Benchmark
B: Atomic Mix
C: StandardMcdel

41 D: Su-Pomranin~Var.1 1
pLJ

1, 1~,,,, 1,,,~,,,,,

O.m 5B.DI 100.00 lam zm,m zm.m

($1) versus Time Step - Variable Opacities

I m.m

moo

O.m

4'''' ''''' ''''` '''') ''"'''''''''''''''''''''''''''k

,tiL,r!B!%:’
am w.m loaoo 1a3m zm.m zw.m



86

FIGURE 54.

FIGURE 55.

(q) versus Time Step -Variable Opacities
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PIGURE 56. (Trans) versus Time Step -Variable Opacities
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FIGURE 58.

FIGURE 59.

( Trans) versus Time Step - Variable Opacities
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FIGURE 60. Benchmark Variances - VariabIe Opacities
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FIGURE 63. Benchmark Variances - Variable Opacities
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Once again, the introduction of new and strong correlations with the temperature

dependent opacities wreak havoc with the solutions. This is exactly what happened with

the 1-D slab geometry models and it should come as no surprise here. This is because the

closure relations Eqs. (37) and (38) were both derived from the two state partitioning of

the total possible set of statistical realizations, as described in Sec. (3.2). Neither coupling

relation was designed to handle the correlations arising from continuously variable opaci-

ties.

Again the four methods are all converging to the atomic mix answer in the small corre-

lation length limit. However it is difficult to see from the plots of (q) and (Tram) what

is happening to the atomic mix model in this limit due to the errors involved. Clearly the

problem has not evolved to steady state within the time frame of the runs, so it is difficult

to judge the behavior of the models there either. Yet the convergent behavior is evident

none the less. Again, thk is a good check. It is however clear from the variances that the

atomic mix answer is once again wrong for the transient period in the small correlation

length limit. Hence the big hump once again seen in the variance there.

—..
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CONCLUSIONS

The four main chapters of this thesis contain many results and they are summarized

here.

13.0 So What Was Learned In all This?

13.1 Atomic MIX Assumptions and Spatial Connectivity

When it was decided to include the atomic mix formulation as one of the approximate

methods to test, it was beIieved that the atomic mix was a built in check on the small cor-

relation length limit behavior of any approximate model. It was believed that any proposed

model should recover the same answer as the atomic mix formulation when the chunk

sizes were shrunk to very small sizes. After all, thk is the case for the standard model[l 1]

and the Su-Pomraning variations [1.6] as they were originally developed, i.e for the radia-

tion transport equation rdone. So it was quite surprising when it was found that (for this

problem) the approximate models and the benchmark converged in the small chunk limit,

but that the atomic mix model did not. True, all the methods converged in the steady state

for small chunks, but not in the transient. Clearly there was either an error in one of the

solvers of there was something else going on. Eventually came an understanding of the

following. The atomic mix formulation is a kind of spatial/volumetric averaging of the

material properties. And this avemging is correct in the Iirnit of small mixing only ~~tfre

process being modeled has some kind of spatial smoothing in its formulation. In other

words, the differential equation being modeled must have some spatial operator connect-

ing the quantity through space. In formulating the equation for material temperature, ther-
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mal diffusion is neglected here. And hence there is no spatial derivative in that equation.

The temperature equation is a purely local equation in space. This is why the atomic mix

method was not getting the correct answer in the transient. It recovered the correct answer

in the steady state only because of it’s coupling to the transport equation, which does

recover the atomic mix formulation in the smafl correlation length limit. Refer to the dis-

cussion in Sec. (9.3) for further anafysis.

13.2 Stability of Coupled Source Iteration

When confronted with the task of numerically solving a differential equation, it is often

much easier to develop a method then to determine the method’s numerical stability. Ana-

lytic evaluation of a method’s stability criteria is often very dfficult, if possible at all. So it

was a pleasant surprise to arrive at the stability criteria presented in Appendix (A). Not

only does this result lend confidence in the use of a method, it can explain what is going

on when the method fails - as was the case in Sec. (9.3) when the adaptation of the Su-

pomraning model failed to converge after the idea of temperature coupling as an effective

scattering was incorporated.

13.3 The Role of Thermal Emfssion in Stochastic ‘Ikansport

In hindsight it is obvious that scattering and thermal emission of photons should play

similar roles in the stochastic radiation transport process. But thk was not at all clear when

this project started. The initial formulations of the standard model as presented in Sec.

(8.3) were meant to simulate the type of problem when the standard model gets the exact

answer, but with a materiaf temperature equation thrown in. It was not expected that this

simple extension to change the exactness of the standard model formulation. But it did. In

trying to understand why this was so, I came clear that the way scattering redirects pho-



93

tons into other directions is much like the way thermal emission redirects photons into

other directions. And for both processes, the act of computing the ensemble average of the

radiation specific intensity (at any point) now means averaging over all past possible flight

histories of the photon, in all directions. Without scattering or thermal emission, one need

only average over the past flight on a single quadrature ray. It is this coupling of the aver-

age to the flight histories over all directions that explains why the standard model did not

get the exact answer for the model in Sec. (8,3).

This led to the idea of treating the thermal emission as a kind of effective scattering-like

process and the use of the Su-Pomraning model with effective scattering coefficient. This

idea showed promise in the 1-D slab case by consistently improving over the standard

model formulation. But this improvement was not there in the 1-D spherical case. It may

well be that the generalization of the Su-Pomraning closure does not naively generalize to

the 1-D spherical geometry. It was after all derived on the 1-D slab geometry, and it was

adopted it here in an ad hoc way. It might be instructive to redo the Su-Pomraning deriva-

tion of their closure forms but in a 1-D spherical geometry, and see if the closure changes.

13.4 Correlations from Temperature Dependent Opacitiea

Whatever the performance of the various (non-benchmark) methods when used with

constant opacities, all performed badly when the opacities were allowed to depend on

material temperature. The starrdard model and the Su-Pomraning variations both depend

on the idea that the total of all possible states of material distributions can be divided into

two convenient partitions - either material A or material B is located at point ?. And that

within these two partitions the value of the opacities are constant. If the opacities are not

constant, one cannot compute averages involving the material opacities over the two parti-
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tions in a simple way. But this is exactly what the formulation of the standard model and

the Su-Pomraning model depend on for their simplicity. They assume that the value of the

opacities do not correlate to the value of anything else within the two natural partitions of

the total set of allowable states. Hence, when the opacities are temperature dependent, all

sorts of new strong correlations are ignored by the standard and Su-pomraning models.

This results in the large errors seen in Sec. (9.4) and Sec. ( 12.4).

13.5 Usefulness of ‘ho-Partition Restricted Average Operators

The poor performance of the models based on coupled transport like equations (stan-

dard model and Su-Pomraning variations) when using temperature dependent opacities led

me to the conclusion that two-partition restricted average operators (refer to Sec. (3.2))

may not be useful for treating problems with continuously variable stochastic coefficients.

One really needs restricted average operators that average over afl possible allowable val-

ues of the continuously variable stochastic coefficients. This leads not to two coupled

transport-like equations (for example Eq.(21) ) but rather to an infinite number of coupled

equations. For example this would replace the two equations represented by Eq. (21) with

a set of equations - one equation for each vafue that cri( T) could attain. Given the large

number of resulting equations one would have to solve, the practicrd usefulness of this

approach is questionable.

13.6 Slab Geometry Models - General Comments

The use of materiaf temperature as an effective scattering showed significant improve-

ment over the standard model, and it was much better generally than the atomic mix

method also. The choice of chunk sizes demonstrates clearly that mix structure has an

—.
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important role in the solution and that the atomic mix answer can be very wrong. The use

of time dependence was important in that it brought out the limitations of the atomic mix

approximation for uses in the small correlation length limit. With temperature dependent

opacities, nothing compared well with the benchmark, although all methods showed con-

vergence to the same steady state answer in the smafl chunk limits. The methods afso

clearly demonstrated the generally accepted behavior of over absorption by the atomic

mix method[ 11] - something which was mysteriously lacklng from the 1-D spherical runs.

13.7 Spherical Geometry Modefs - General Comments

The standard model without any material coupling did remarkably well in this geome-

try in spite of the fact that the mixing statistics are no longer HM. With the coupling to

material temperature, the standard model and the Su-Pomraning variation with effective

scattering did equally well (or badly as the case may be). Neither did any better than sim-

ple atomic mix in this case. This turnaround was quite surprising considering the success

demonstrated by the standard model when material temperature was excluded.

It was afso surprising to see that the atomic mix method consistently had higher steady

state values than the other methods - except when the material temperature coupling was

turned off. It was expected that the atomic mix model to achieve lower steady state vafues

for al} the runs, just as it did in the slab geometry runs. After afl, it is a “well known” phe-

nomena[ 11]. The fact that the atomic mix method only achieved lower steady state value

with the material temperature coupling turned o~and just the opposite when the material

temperature coupling is turned on, leads me to suspect that thk may have something to do

with the geometry involved here. It is suspected that this “something’ lies in the way that

mixing regions can exchange photons across the core. This is a connectivity between parts
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of the mixing region which is not present in the slab geometry runs. However, if the only

source of photons is in the core (as it was for all my tests), this connectivity only occurs if

there is a redirection in angle for the photons. In other words if there is scattering or ther-

mal emission. Otherwise the photons start out streaming outward from the core and just

keep on going. They never get redirected back inward. So this means that this mixing

region connectivity vanishes when there is no scattering or coupling to material tempera-

ture. Hence perhaps, the observed difference in relative behavior between the models

when the material temperature coupling was absent versus when it was present

14.0 Needed Improvements

There is still much to be done. This work only scratched the surface of this field.

14.1 Better Temperature Models

The correlations introduced by continuously variable stochastic coefficients cannot be

ignored. They must be accounted for if accurate solutions are to be obtained. Clearly,

ignoring them as was done in deriving the methods using the two-partition restricted aver-

age operators and standard closure forms, gets the wrong answer when the opacities are

allowed to vary with temperature. Many real problems will have variable stochastic coeffi-

cients and this problem will need to be addressed to treat them. This may well require an

entire re-thinking of the problem.

14.2 Other Statistics

It appears that the use of the standard model (and others based on it) with mixing statis-
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tics that are not HM may yet provide useful results. It would be interesting to perform an

entire series of tests on these models to see just how sensitive they are to variations in the

mixing statistics. Can one just repface the average chunk size Aj in Eq. (37) with the

average for whatever statistics are used? how well would that work? It be interesting to

find out. It certainly seemed to do fairly well in the I-D sphere when temperature coupling

was not present.

Regardless of the approach taken to the formulation, one needs to be able to treat more

than just Poisson distributed materials if one hopes to model real life problems. One set of

statistics of particular interest are Levy statistics. As mentioned earlier in the survey chap-

ter, it has been suggested that Levy statistics are a much better representation of turbulent

mixing in Rayleigh-Taylor instabilities[2 1], than say Poisson statistics. After all, the goal

is to eventually make the connection between real problems and the stochastic models.

And this means using real statistics - not dictating statistics of convenience to the problem.

Therefore, methods for treating an arbitrwy set of mixing statistics need to be developed

and tested.

14.3 Other Geometries

Just as one would like to use a set of statistics appropriate to any problem at hand, the

same is true for the geometry of the problem. Clearly, real problems will rarely conform

themselves to conveniently fit within 1-D formulations. To treat reaf problems, models are

needed that can be adapted to formulation and testing on the geometry at hand. The stan-

dard model can easily be formulated on any geometry. But because of the difficulties asso-

ciated with generating computational meshes which are good examples of a given

—..



98

statistics, the benchmarks cannot generafly be computed for comparison. However, given

real experimental data this would not be necessary as one would then just compare to data.

14.4 Comparison with Experiment

Which brings us to an important point. I know of no examples in the literature where

the various methods were compared to real experimental data. This kind of testing could

provide invaluable insight into the various processes involved and the relative importance

of the processes. Generating models is one thing, but getting them to work predicting real

processes is another. The time is ripe for someone to take the theory and approximate

models that have been developed in the literature over that past ten or fifteen years and

examine their performance on a real stochastic media.

15.0 Epilog

When I first set out on this project, I knew little of the actual direction this work would

take. It is part of the process, I suppose, that producing a doctoral dksertation involves a

genuine exploration. But littfe did I expect to spent as much time in the act of searching for

new ways to contribute to the field of stochastic transport as actually trying solve the prob-

lems. Stochastic transport is a very difficult problem in it’s complete generality. And that I

was able to make some contributions to help further it’s understanding is gratifjfing. I

learned much that I didn’t know when I started this. And hopefully, it will help others take

the process further.
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APPENDIX A: Numerical Stability of Coupled Source

Iteration

When the numerical solution of an equation (or set of equations) involves an iteration

process, the successful solution requires that the iteration process be a stable one. In the

case of the solution to dkcretized differential equations, one often is confronted with an

iterative solution which can be written in matrixhector form. Then the requirement of sta-

bility for the iterative linear system can be written in the following way. Let vector kn be

the solution after the nth iteration of the process

kfkn = Nin., +h, (EQ 107)

where the M and N are matrices specific to the problem. Then the iteration Eq. (107) is

stable if the spectral radius of the matrix A = M-l N is less than one. Whh this in mind,

consider the numerical stability of a generalized class of coupled stochastic radiation

transport equations.

The source-free equation of neutral particle transport for single energy group and con-

stant opacities is in steady state

(EQ 108)
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where Q is the direction of particle travel, o is the totrd opacity, of is the scattering opac-

ity, w is the particle specific intensity, and e = ~dfi is a dimensionality constant. The

direction integral is taken over all directions. When the background material is randomly

mixed the total opacity cr and the scattering opacity cr~ are binary stochastic quantities

known only via some statistical description. Hence the specific intensity v(), fi) is a con-

tinuous stochastic quantity. The goal then is to obtain, as the solution to this problem, the

ensemble average of the specific intensity which is denoted as (@

Consider here a general form for the solution of (~) based on a model due to Su and

Pomrarring, which is

llj%~fi’ nJv2d@
fiv~l+~lyl =~jyqdfi’+~-$+—— —

2
EM,(h) - ek2(fi)

and

~~%dfi’ ~~%d~’
fi Vri.rz+ 02V, = ~~v2dfi’ + K% -3 + —-—

1 e@) e?q(.et)

where the ensemble average of the specific intensity is then given by

(v) = Vl+wz.

(EQ 109)

(EQ 110)

(EQ 111)

Here Oi and IS~i are the total and scattering opacities for material i and Ii(fi) is the aver-

age size of a chunk of material i as seen by a particle moving along the ray h. The K and
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q are positive weighting constants. The Ci and CT,iare now constant and the problem has

been reduced to solving two coupled deterministic transport-like equations.

A common numerical technique for the solution of Eq. (108) is known as Source Itera-

tion. In this method the right hand side of Eq. ( 108) is held constant as the left hand side is

inverted. The right hand side is then updated and the process is repeated. Denote the n
th

iteration of the specific intensity as W“. Then the method can be expressed as the follow-

ing recursion,

fi. vyJn+’(},rt)+c7yr”+’(}, r’))= ;J&i&

It can be shown that this technique is stable if

(EQ 112)

(EQ 113)

The number c is called the scattering ratio and Eq. (113) is a standard result well known

within the transport literature [22],

The Source Iteration technique applied to Eqs. (109) and ( 110) gives tbe coupled recur-

sion

—.—
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It is shown that the stability criteria similar to Eq. (1 13) but generalized to the recursion

Eqs. (1 14) and (1 15) in a 1-D slab geometry is

‘ax[?,%:l=max[clc2 :l<1 (EQ 116)

16.0 Von Neumann Stability

To evaluate the stability of the coupled recursion Eqs. (1 14) and (1 15), perform a Von

Neumann stability analysis. This essentially means that if tbe problem is stable in Fourier

space then it will be stable in position space as well.

But first, replace the direction integrals in Eqs. (1 14) and ( 115) with quadrature rule

approximations. This is a common method called Discrete Ordinates [17] for the numeri-

cal solution of Eq. (108) and it is adopted here. This gives

(EQ 117)
fn=l

where yIPm = VP( ?, fire), Wm are the quadrature weights, and M is the total number of

quadrature directions. Then @P is a vector of length M with components VPm and the

integral in Eq. (117) can be represented in tbe matrix-vector form

—..
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where W is the MxM matrix

I I
w] W2 . W’M

w, W2 . . . . w~

w= : :’

w, W2 w~

(EQ 118)

(EQ 119)

Notice the matrix W is rank 1 and has only one non-zero eigenvalue given by

M

Aw = ~ Wm = tr(W). (EQ 120)

In=l

Now transform to Fourier space. Make the ansatz that v can be expanded in a discrete

Fourier basis,

Then

(EQ 121)

(EQ 122)

—.
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where the recursion index is dropped for now. The expansion coefficients IXkP~can now

be isolated using the orthogonality of the expansion basis. First, substitute Eqs. (12 1) and

(122) into Eqs. (114) and(115) to get

and

Multiplying both sides of Eqs. (123) and (124) by e-is’ * and integrating over all 2 gives

and

(’fi.”’+”’+&Y’”-+=&+*)jl”l”g’’-*:l”r”g‘EQ’2’)
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for all q. Relabel q back to k. Let us denote rm = ii$m ~ and drop the k index on the

ctkP~. Then, putting the index for the recursion iteration back in gives the Fourier compo-

nent recursion equivalent to Eqs. (1 14) and (115),

( K) -&”::’n+l
‘m+ol+~ alm

‘F+kl:,w”nl’-%},””n” ‘EQ127)

and

( ) ‘+’-&”::l~m+a2+#- a2m
2m

‘&+&]j1w,an2,-~:lw,anI(EQl’8)

Now write this in matrix form. Define the four MxM matrices DP, OP, QP, and RP as

the diagonal matrices with components

and

D p, mm . r.+OP+~,
pm

(EQ 129)

(EQ 130)

(EQ 131)

(EQ 132)
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Also define the vector &P as the vector of length M with the components apm. Then

rewrite Eqs. (127) and (128) in matrix form as

KJ+’’A”N
where the recursion matrix A is the 2Mx2M matrix defined by

‘=(%3’”E$X!

(EQ 133)

(EQ 134)

The recursion given by Eqs. (1 14) and (1 15) will be stable if tbe spectral radius of A is

less than one. Denote the spectral radius of A as p(A). The next task is to compute p(A).

17.0 Computing the Spectral Radius

To compute the spectral radirs of A, begin by computing the eigenvalues of the matrix

A.

Theorem 1: There exist two non-zero eigenvalues of the matrix A given either by

* _ (Al ‘A4)+! (Al -A4)2+4(A@.
+–

— _
2 2

(EQ 135)

or

with

A+ = Al, A4— (EQ 136)
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[(
Al=~~

rm+.,+fi)(%+~)-~]wm

(EQ 137)
~=1

( )(

2

)( )
rm+O1+#- r~+~z+~ . &--

Im 2m Im 2m

M [*(.s2+*)-*~m+.2+&)].m
A2=:~ (EQ 138)

m=l

( )(

2

)( )
rm+ol+~ rm+02+~ – ~

lm 2m lm 2m

[(rm+”l+zwsz+t)-al”.
A4=~~ (EQ 140)

In=l

( )(

2“

)( )
rm+al+.~ r~+02+$ . ~

lm 2m lm 2m

Proof: Make use of the fact that the matrices D,, D2, 01, and 02 are all diagonal,

and hence commute with each other, to evaluate the inverse matrix in Eq. (134) giving

diagonal matrix x = [Dl D2 - 0102]-1 with components

—.
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x
1

mm = (EQ 142)

( )(

2’

)( )
rm+al+~ r.+Oz+~ – ~

I“, 2m Ifn Zm

Then the matrix A can be written

[

X(D2QI–02RI)W
A=;

X( OIQI-RID1)W

X(02 Q2-%%)W]

1“ (EQ 143)

X(DIQ2-OI%)W

Define the four MxM sub-block matrices

Al = ~X(D2Q1–02R1)W,

A2 = ~X(02Q2–R2D2)W,

As = ~X(OIQ1–RIDl)W,

A4 = ~X(D{Q2–01R2)W,

so that

[1A= A1A2

A3 A4 “

Define the 2M eigenvalues of the matrix A as A

(EQ 148)

The A can be found using the char-

acteristic equation for A. In other words by solving

(EQ 144)

(EQ 145)

(EQ 146)

(EQ 147)

—..
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(EQ 149)

for the values A.

Fkst consider the case where the A cannot be one of the eigenvakres of., or.4. Fac-

toring the determinant gives

[

Del (Al -1A) O 1[IDet
(Al -IA)-1A2 1=O.(EQ 150)

A3 (A4 - IA) o 1– (A4– IA)-1A3(A1 –IA)-1A2

Using the fact that the determinant of block triangular matrices is the product of the deter-

minants of the diagonal blocks, Eq. (150) becomes

Der[.l -IA] Def[A4- IA] Det[Z - (A4– ZA)-1A3(.1 –~A)-1A21= 0. (EQ 151)

The determinant of a matrix is just the product of its eigenvalues so

M

Det[.l -1A] = ~ (A1i-A)>
i=l

M

Det[A4-IA] = ~ (A4j - A)
j=l

and

M

Der[I - (A4-IA)-1A3(A1 -IA)-1.21 = ~ (1 -.f~(A))

k=l

(EQ 152)

(EQ 153)

(EQ 154)

—.
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where A ~~ and A4i are the i th eigenwdues of A, and A4, and the $k(A ) are the k th

eigenvalues of the matrix (Ad – IA )-1A3 (A, – IA)-l AZ and are functions of A. Then the

eigenvalues of the matrix A are given by the roots of

fi(A1i-A)fi(A4j-A)fi(l-fk)=0
i=l j=l k=l

(EQ 155)

At this point, Eq. (155) can be simplified by exploiting the properties of the sub-block

matrices. Note that all four of the sub-block matrices have the form of a diagonal matrix

times the matrix W. This means that each of the sub-block matrices have one and only one

linearly independent row and hence only one non-zero eigenvalue. This one non-zero

eigenvalue is easily found to just be the trace of the matrix. Denote the one non-zero

eigenvalue of the sub-block matrix Ai as Ai = tr(Ai), then Eq. (155) becomes

(+(A-A4)fi(l-fk)=O. (EQ 156)

k=l

The vahres f ~ are found by further making use of the properties of the Ai sub-blocks.

Consider that all the Ai matrices have the form of products of a diagonal matrix, which is

labeled Ai, and the matrix W. So that in general

Ai = AiW. (EQ 157)

Denote the eigenvector of Ai corresponding to it’s single non-zero eigenvalue Ai, as *i,

so that
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Ai.2; = AiW.2i = Ai2i, (EQ 158)

Also denote the eigenvector which corresponds to the one non-zero eigenvalue of W as 2.

It is easily seen by demonstration that 2 is just the vector of length M comprised of all

1‘s.

II
1

2=:

1

(EQ 159)

Then it is also easily seen that the eigenvectors .?i are just

.2i=Ai.2. (EQ 160)

Now multiply Eq. (158) through by the inverse of Ai. Using Eq. (160) gives

W2i = Ai3. (EQ 161)

Multiplying Eq. (161) through by Ak and using Eq. (160) again gives the rule that

Ak 2i = Ai*k (EQ 162)

Moreover, because the sub-block matrices are all of rank one, one has the general property

that taking the dot product of the A j sub-block onto an arbitrary vector $ with compo-

nents yk the resulting product must lie in the space sprarned by the single eigenvector ~j.

—.
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In other words

(EQ 163)

where C is a constant given by

M

c = ~wkyk. (EQ 164)

k=l

To compute the fk one more rule is needed. Multiply the vector ti by the matrix

(Ak - IA) and use Eq. (162). This gives

(Ak-IA) ti = Ai2k - A2i.

Inverting (Ak – IA) gives

Aikk
2i = —– A(Ak– IA)-l . ji

(Ak-A)

Rearranging Eq. (166) gives the other needed identity

(EQ 165)

(EQ 166)

(EQ 167)

Now get the eigenvalues of the matrix [(A4 – IA)-* A3(A1 – IA)-l A2]. Take the dot

product of this matrix onto an arbitrary vector j, and using Eqs. (162) through ( 164) and

Eq. (167) gives
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-1 A2C

[

A3
[( A4-IA)-*A3(A1 –IA) 4421“f’ = A(A1 –A) (A4– A)

1—24 -23 (EQ 168)

Using a different ~ vector will only change the vafue of the constant C. Cleady then the

matrix [(A4 – IA)–l A3 (A, – IA)–l A2] is also of rank one and possesses but a single non-

zero eigenvalue. Then

is the eigenvector corresponding to the single non-zero eigenvafue

A2A3

~ = (AI- A)(A4-A)”

Now Eq. (156) reduces to

(
A2A3

(A- A1)(A-A4) 1 ‘(AI _A)(A4_A) )
=0

(EQ 169)

(EQ 170)

(EQ 171)

and one has tftat the two non-zero eigenvrdues of the matrix A are given from the roots of

the quadratic

A2– A(A1 +A4)+(A1A4– A2A3) = O

which are explicitly

A _ ‘Al‘A4)f1 (Al -A4)2+’I(AzA3)
*– 2 2

when AZ or A3 are not zero.

(EQ 172)

(EQ 173)

—
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Now consider the case where the A are allowed to be either Al or A4. In this case the

factoring of the determinant in Eq. (150) is not allowed. First notice that in general the

matrix A has at most two non-zero eigenvalues. This can easily be seen by taking the dot

product of A onto an arbitrary vector ~ ~ r and using Eq. (163) to get

(EQ 174)

where the constants CP and Cq are given by Eq. (164). Clearly the matrix A maps any

vector into the space spanned by the two vectors [2, 2J f and [*2 *J t. Then it follows

that A can have at most two non-zero eigenvafues. And since the sum of the eigenvahres

of A is just the trace of A, i.e.

tr(A) = tr(A1) + Ir(A4) = Al + A4 (EQ 175)

it follows that if one of tbe eigenvahres of A is A, the other must be A4, and vice versa,

giving

A+ = Al, A4

Thus we have the result

(EQ 176)

A _ (A1+A4) 1
*– + ~ (Al –A4)2 + 4( A2A3) or Al> Al.—_

2
(EQ 177)

Combining the definitions of the sub-block matrices with the fact that Ai = tr(Ai)
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gives

[(
Al=::

‘.+”Z+&)(”+t)-&l”.
. . . (EQ 178)

.
WI=l ( )(

2

)[ ]
rm+~l+~ r,n+cz+~ – ~

lm 21n In! 2m

M [&(.s2+*)-&L+.2+&
A2=~~ (EQ 179)

(

2m=l

)( )[ )
r.+ Oi +/$- r~+02+~ – ~

lm 2m Im 2fn

M [t(”.l+t)-tk.+”l++)1”.
A3=:~ (EQ 180)

(

2m=l

)( )( )
rm+~l+~ r~+02i.~ – ~

lm 2m lm 2m

M [(‘m+ol+&)(”sZ+*)-alumA4=:Z (EQ 181)

(

2In=l

)( )[ ]
rw+~l+$ r~+oz+~ – ~

lm 2m lm 2m

proving Theorem 1. QED,

Ultimately, the goal is to compute the spectral radius of the matrix A which is the larg-

est eigenvahre in absolute vahre, so that

P(A) = max[lA+l, IA.11. (EQ 182)

Given the complicated form of the eigenvalues of the sub-blocks and the form of Eq.

(173), this looks to be a difficult task. To make things a bit easier, consider the problem in
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a l-D slab geometry.

In a 1-D slab geomet~ the Lim become

““=h (EQ 183)

where pm is the cosine of the angle the quadrature ray % makes with the axis of sYmme-

try. Then the Ai become

~ Il%nl”
– “J’+y)-%(i’m’+”’+ y)lwm ,EQ,85)[(

A2=;~ 2
m=l

(
iJmk+o,+~)(iWm~+~2+~)-[*)

1 2 12
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Calculation of Eq. (182) is complicated by the fact that the maximum is taken over afl

possible Fourier components k. There is however good evidence suggesting that the spec-

tral radius is in fact dominated by the k = O mode. It is easy to see that this is true for the

simpler case of ordinary source iteration Eq. (112). Performing the Von Neumann analysis

in slab geome~ on Eq. (112) gives the recursion equation

M

(i~mk+o)an+ ‘m = ~ ~ W,anl. (EQ 188)

1=1

Label the single non-zero eigenvalue of the resulting recursion matrix as L. Then the

spectral radius of this recursion is the largest absolute value of L. Explicitly

Taking the absolute value of Eq. (189) gives

(EQ 189)

(EQ 190)

With a Gaussian quadrature rule, the second sum in Eq. (190) is identically zero. Clearly

then I.LI has the maximum at k = O and Eq. (190) reduces to ILI = ~. In light of the

evidence, make the assumption that only the k = O mode need be considered for comput-

ing Eq. (182).
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Theorem 2: In a I-D slab geometry and assuming the k=O mode, then

[:%:1p(A) = max[lA+l, lA.1] <max ~ (EQ 191)

in the limit of an exact quadrawre rule.

Proofi

With k = O, Eqs. (184) through (187) become

(EQ 193)

(EQ 194)

A., ~ ~Q”l+l~.l(K~+n~)]w.
4

(EQ 195)

‘m=’ ~l”2+Kl~A~+<)]

So equations Eqs. (177) and ( 192) through ( 195) give the exact spectral radius for the

recursion Eqs. (114) and(115) for slab geometry with continuous space and discretized

—
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angle variables.

Now, consider that Eqs. (192) through Eq. (195) are just quadrature mle approxima-

tions to integrals over all scattering directions. Indeed, taking the limit of a perfect quadra-

ture, these become integrals over direction. Then in this limit the eigenvalues of the sub-

blocks are

These integrals can be computed explicitly. Define the following quantities

a, = k,o~,

a~ = @J~ ,

(EQ 196)

(EQ 197)

(EQ 198)

(EQ 199)

(EQ 200)

(EQ 201)



p=
CX,CL2

K(Ctl + C12) ‘

()g=~lnl+~
P’

where O S ~ <- and O < g S 1. Then computing the integrals gives

G,, (ct2g + cl, )

() ()
+~cx2(l -g)

“ = ~ (al +ct2) K (LZl+Ct2)

()~sz T1 (l–g)
A2=k102<–– —

K ((Zl + CL2)‘

cr,2 (cclg + aJ

() ()
+~al(l-g)

‘4 = ~ (al +cc*) K (Ctl + ~2) “

I20

(EQ 202)

(EQ 203)

(EQ 204)

(EQ 205)

(EQ 206)

(EQ 207)

Now Eqs. (177), (182) and (204) through (207) give the spectral radius of the iteration

equations (114) and (11 5) for a slab geometry and in the limit of a perfect quadrature,

assuming the k=O mode. One last step is to explicitly find the maximum that the eigenval-

ues from can attain. Denote the following quantities

G,i
Ci=—,

ci

nr=–,
K

(EQ 208)

(EQ 209)
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and

‘si ’11
ri=— ——=cr —r.

CTi K

Then if the eigenvalues of A are given by Eq. (173), they become

* _ ~ + (cc2r, +rs1r2)g+ (Ulcl +~2c2)* J
+—2 2(IZ, + r12)

(EQ 210)

(EQ211)

where

h = [(rx2r,-r31r2)g + cclr,-a2r212 +4ct, a2rlr2(l –g)2. (EQ 212)

So the eigenvalues A+ as given by Eq. (173) are pseudo-linear functions of g. All that

remains is to find their largest absolute vahres.

timmal: h> Oforall OSg S1.

Proof: Consider Eq. (212). The only parameters which can be negative are the ri.

Clearly then h is positive if rl and r2 are of the same sign, both negative or both Positive.

To see that h is positive also for the case that the ri are of opposite signs, notice that h is

a quadratic in g. Then h(g) will have one extrema, be it a maximum or a minimum. Label

the extremum point go. Solving ~ = O for g gives
dg

rlrz(a?+aj) –alaz(r~ + r; –4r1r2)
go =

(cc2r1 + cc1r2)2
(EQ 213)
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The point go is clearly negative when the ri have opposite signs. Since h has only one

extrema and that point lies outside the range O < g S 1, h must be monotonic in this range

when the ri has opposite signs. But h(0) = (ccl r] + ct2r2)2 and

h(1) = (al + ~2)2(r1 - rz)z are both positive. Therefore h is positive for all Os gs 1.

QED.

Lemma 2:?!!. >Oforal105g<l when r1r2<0.ag

F’roo$ Taking the derivative of h with respect to g gives

ah
z = – rxlctzrlrz(l –g) + 2(a2r1 – ct1r2)(cx1r1 – a2r2 + g(cr2r1 – rx1r2)). (EQ 214)

The result is obvious by inspection. QED.

Lemma 3: The A+ are monotonic in g for all 0< g <1.

Proof: Taking the derivative of A* with respect to g gives

3A*
4~h(ct, + cx2)Z = 2.,/Z(cc2r1 +rt1r2) **.

And since 4fi(rt1 + rZ2)>0 by Lemma 1,

‘ign{2}=si@{2J@2rl

ah
}

+cc1r2)*Z

(EQ 215)

(EQ 216)

Now if



Ii
12fi(a2r} +ct,r,)l > ~~ ,

ag

one can conclude from Eq. (216) that

{}

aA+

‘ign ~ =
sign{ 2~h(a2r1 +ctlrz)}.

Likewise if

one can conclude that

‘i’n{~}=s’gn{+l

123

(EQ 217)

(EQ 218)

(EQ 219)

(EQ 220)

To determine if either of these cases is in general true, compute the difference in their

squares,

(~y- J-(2 h(cs2r1 + ct1r2))2 = -16ctlcx2rlr2(ctl + cx2)2(r1 - r2)2. (EQ 221)

The right hand side of Eq. (221) is negative if the t-i have the same sign and is positive if

the ri have opposite signs. So if the ri have the same sign, then Eq. (218) is true and by

Lemma 1 the A~ are monotonic for all O S g S 1. If the ri have opposite signs then Eq.

(220) is true and by Lemma 2 the At are monotonic for all O S g <1. QED.

Because the A+ are monotonic in g, the maximum values of lA+ I occur either at
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g = O or 1 Evaluating the A+ at g = O and at g = 1 gives

(alcl +Ct2C2)*(a1r, +ct2r2) (alc, +a2c2)
Atlg=o=;+ 2(cx1 +a2) = “ (a, + ‘X*)

(EQ 222)

and

(cl +C2)*(C1 -Cz) = c,, q

A* I,=,= 2

All four of these values are positive. Then using

(ct*c1+cc2c2)
S max[cl, c2]

(a, + a2)

(EQ 223)

(EQ 224)

gives the result that

p(A) = max[lA+l, IA.1] S max[c,, C2, r]. (EQ 225)

If the eigenvalues of the matrix A are given by Eq. (176) then they are linear functions

of g and hence their maximums either occur at g = O or 1. Taking these limits gives

(Cqcl + Cqr) (Cqr+%%)
‘*lg=o= (cq+ct2) ‘ (ccl + q

and

Then using

(%r + ~zcz) < max[r, C21

(a, +cc2) -

(EQ 226)

(EQ 227)

(EQ 228)
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and

(cqc1+ct2i-)
<max[r, cl]

(al + cx*)

again recovers the same result Eq. (225) proving Theorem 2. QED.

The requirement for convergence

p(A) 51

then becomes in a 1-D slab geometry

p(A) <rrrax[cl, c2, ~1~ 1.

(EQ 229)

(EQ 230)

(EQ 231)
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APPENDIX B: Discretization Methods

To generate numerical solutions of the transport equation it is necessary to replace each

term in the equation with discrete approximations. The prima~ terms requiring special

attention are the streaming operator fi V v and the integral over direction ~ Vdti,
all n

where h is the direction of photon travel. One common method to discretize the stream-

ing operator is the diamond difference method [17]. A common method to discretize the

direction integral is the discrete ordinates method [17].

The diamond difference discretization is a bit different in 1-D slab and 1-D spherical

geometries so they are presented separately.

18.0 Discretizations in a 1-D Slab

In a 1-D slab geometry the discretization of space and rmgle can be done independent

of each other.

18.1 Diamond Difference

Let z denote the spatial axis in a 1-D slab geometry. Then In a 1-D slab geometry the

streaming operator becomes

C?2.vv =$’ (EQ 232)

where v is the cosine of the angle fi makes with the z axis. Define yr(zi)= I+Ii.The dia-
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mend difference discretization simply says

ar+i
az ,,

vi. ~–vi_ !
2. 2

—

(
z ,–2 ,

i+- i–-
2 2

)

combined with the auxiliary relation

(EQ 233)

(EQ 234)

18.2 Discrete Ordinates

In the 1-D slab geometry the integral over direction becomes

The discrete ordinates methods is a replacement of the integral over direction with a

quadrature rule approximation. Essentially this means that the possible directions of pho-

ton travel are divided into “bins” which act as the ordinates in the quadrature rule. This

method is afso referred to as the SN method. Tlis in gener~ yields a discrete approxima-

tion to the direction integral

(EQ 236)

where the Wn are the weights for the chosen quadrature rule and N is the order of the

quadrature.
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19.0 Discretizations inal-D Sphere

In the spherical geometry the discretization of angle and direction are related to each

other so they are presented together here.

19.1 Diamond Difference/Discrete Ordinates

Letp betheradial direction inal-Dspherical geomet~. Let~bethe cosine of the

angle fi makes with the p axis. Then thestreaming operator becomes

(EQ 237)

The integral over direction is represented the same as in the 1-D slab geometry, i.e. by

Eqs. (235) and (236). But now the streaming operator contains a derivative with respect to

av
angle so that it becomes necessary to discretize the — term on the same ordinates used inap

Eq. (236). This is done in the following way. The streaming operator is first written in con-

servation form as

Now denote yr(pn, pi) = w., i. Then the angulm derivative is discretized as

[ 1$lJ1-pz)v E&n rl+:yr+l-tx_ilv_!
k 2 22

(EQ 238)

(EQ 239)

The ai are weighting factors which are generated from the quadrature weights according



129

to the recursion

et =el ~_!—l%wn. (EQ 240)
.+!

2 2

The purpose of the et” weights are to guarantee that the streaming term vanishes in the

limit of a uniform isotropic flux in an infinite medium. See reference [17] for further dis-

cussion.

To discretize the radial derivative the equation is volume averaged over a spherical shell

to get

Fa2 .5
~~P v

,[
–V, Ai+lWni+l– A. Iv 1

pP 2 ‘ 2 ‘–” ‘“-52
1

P+%

(EQ 241)

and

(A 1–A, 1)
@#w2)v ~ ‘+;W ‘-z ~ ~yl 1 .–~ Iv 1~__J i (EQ 242)

In
n+j “+.j, t

P#. 2T

The quantities Ai are the surface area of a sphere at radius r’and the Vi are the volume of

a spherical shell from radius P ~ to P, 1. The @. GW through (242) me then corn-
i-- t+~

2

bined with the auxiliary relations

(Vn, i = ~ ‘n, i+~+v., i-!
2
)

(EQ 243)

and



[Vn, i= ~,vn+~,i+vn-~,i )
to complete the discretization.

I30

(EQ 244)



131

REFERENCES

1, P. Boisse, Astrorr. Astrophysics 228,483 ( 1990)

2. H. Storzer, J. Stutzki, A. Sternberg, Astron. Astrophysics 310,592 ( 1996)

3. A. N. Witt, K. D. Gordon, Astrophys. J. 463,681 ( 1996)

4. F. R. Malvagi, R. N. Byrne, R. Somerville, J. Atmos. .Sci. 50,2146

5. G. L. Stephens, P.M. Gabriel, S. C. Tsay, Trans. Theory Statist. Phys. 20, 139(1991)

6. C. Deutsch and D. Vanderhaegen, JQSRT 44, 163 (1990).

7. N. A. Tahir and K. A. Long, Phys. Fluids 29, 1282 (1986).

8. H. J. Kull, Phys. Rev. A 33, 1957 (1986).

9. C. D. Levermore, G.C. Pornraning, D. L. Sanzo, J. Wong, J. Math. Phys. 27,2526

(1986).

10. C. D. Levermore, G.C. Pomraning, and J. Wong, J. Math. Phys. 29,995 (1988).

11. G.C. Pomraning, Linear Kinetic Theory and Particle Transport in Stochastic Mixtures,

World Scientific, Singapore (1991).

12. D. Vanderhaegen, JQSRT 36,557 (1986).

13. D. Vanderhaegen and C. Deutsch, J. Statist. Phys. 54,331 (1989).

14. M. L. Adams, E. W. Larsen, and G.C. Pommning, JQSRT 42,253 (1989).

15. Richard Sanchez, J. Math. Phys. 30,2498 (1989).

16. Bingjing Su and G.C. Pommning, JQSRT51, 893 (1994).

17. E. E. Lewis and W. F. Miller Jr., Neutron Transport, American Nuclear Society Inc.,



132

Lagrange Park, Illinois (1993),

18. D. R. Cox, Renewal Theory, Methuen & Co. LTD. London ( 1970)

19. S. Audit, H. Frisch, JQ,SRT50, 127(1993).

20. A. Brissaud, U. Frisch, J. Math. Phys. 15,524 ( 1974).

21. J. A. Viecelli, Applied Optics 35, (1996)

22. E. W. Larsen, Nuclear Ski. and Eng. 82,47 (1982)

23. C. Lin, J. W. Harbaugh, Graphic Display of two and three dimensional Markov Com-

puter Models in Geology, Van Nostrand Reinhold, New York ( 1984)


