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“Condensed History” algorithms are Monte Carlo models for electron transport prob-

lems, They describe the aggregate effect of multiple collisions that occur when an electron

travels a path length so. This path length is the distance each Monte Carlo electron trav-

els between Condensed History steps. Conventional Condensed History schemes employ a

splitting routine over the range O < s < SO.l For example, the Random Hingez method splits

each path length step into two substeps; one with length <SOand one with length (1 – OSO,

where & is a random number from O < ,$ < 1.

Here we develop a new Condensed History algorithm to improve the accuracy of electron

transport simulations by preserving the mean position and the variance in the mean of elec-

trons that have traveled a path length s and are traveling with the direction cosine ,u. These

means and variances are obtained from the zeroth-, first-, and second-order spatial moments

of the Boltzmann transport equation. Hence, our method is a Monte Carlo application of

the “Method of Moments”.

For deriving these spatial moments, we consider the one speed transport equation in

planar geometry with continuous slowing down energy dependence. Neglecting absorption,

this equation is given by

with the initial condition of one particle at z = O traveling down the z-axis in the direction

p=l,

?l@, u,o) = d(z)~(y - 1) (2)
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To obtain the zeroth-order spatial moment, we integrate Eqs. (1) and (2) over all space.

That is, we operate by J (.) d,z, and we define the function:
—cc

@o(P, s) = ~d+,w)dz (3)
—m

The resulting differential equation for @o(u, s) is given by

‘<2n+l
~@’O(P, ‘) + ‘sO@O(k s) = ~ ~ % p.(p) j Pn(LL’)@@, S) dJ , (4)

11.,Q –1

where X,,. = & = macroscopic scattering cross section, and @o(p, O) = ci(~ – 1). The

solution to Eq. (4) is the following:

where X.,. = Z,. – Z,n. *O(u, s) is known as the Goudsmit-Saunderson distribution. Phys-

ically, it is the probability distribution function for the direction cosine p for particles that

have traveled a path length s.

We can also find the first-order spatial moment by operating on Eqs. (1) and (2) by

~ z() dz and by defining the function:
–’X

The differential equation governing *Z(p, s) is given by

with the initial condition @z(~, O) = O. The solution for this first-order moment is shown

below:

[

+ n + 1 exp(– Xans) – exp(–~a,n+ls)

2 X,n – X,,n+l 1} (8)

Similarly, we can obtain the second-order spatial moment by operating on Eqs. (l’) and (2)

by ~ Z2(.) dz and by defining the function
—m

@zz(P)s)= ~Z2d@,jhS) dz (9)
—m
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After performing this operation, we solve the resulting equation for rJZZ(~, S).3

As the zeroth-order moment provides the Goudsmit-Saunderson distribution, the first-

order moment provides the mean position (z) (u, s) for electrons that have generated a path

length s and are traveling in the direction p. The mean position is defined as

~zrj(z,p,s)dz

(Z)(p, s) = -+ = L(P) s)

_f, r) (z)P)s) d~ *o(P, .)
(lo)

The second-order moment allows the variance in the mean position to be determined. The

variance is given by

*ZZ(LL .)

[1

_ 4.(/4 s) 2U:(LS,s) = (zZ)(p,s) – (.Z)*(p,s) = — —
*O(P, s) ‘+O(k s)

(11)

Our new Monte Carlo algorithm is designed such that the mean and variance are preserved

in each Condensed History step, Simi Iar to existing methods, the user specifies the path

length s (step size) at the beginning of each step. Next, the direction of flight p is sampled

from the Goudsmit-Saunderson distribution given by Eq, (5). However, unlike existing

methods, we use p and s to evaluate (-z)(p, s) and a~(p, s). Then, at the end of the step, we

move the electron history to a position that is sampled from a Gaussian distribution with

mean (z) (y, s) and variance u~(~, s).

To test the Moment Condensed History method, we simulate a monoenergetic 12.5 keV

electron pencil beam at z = Ocm in an infinite medium of aluminum. The continuous slowing

down approximation is employed with multigroup cross sections from EEDL database.4 As

the electrons slow down to 0.06 keV, the dose (energy deposited per unit mass) is calculated

as a function of depth (z coordinate). Three different simulations are used to obtain these

results: (i) Moment Condensed History (MCH), (ii) Random Hinge Condensed History (RH),

and (iii) Analog Monte Carlo (AMC). For the Condensed History models, s is chosen to be

the path length required for the electron to lose the energy of one group. The MCH and

RH methods use 36 steps, while AMC, on the average, needs 355 collisions to model this

problem. We simulate one million electron histories.

The depth-dose curve for the 12.5 keV beam is shown in Figure 1. The dose predicted

by MCH resembles the AMC distribution more closely than the results determined by RH.

The differences are as much as 7% at the depths O < z < 5X10-5 cm. Figure 1 indicates

that MCH’S capability of preserving h[gher-order moments enhances the accuracy of dose

calculations as compared to RH which (does not preserve these moments. This improvement

in accuracy, however, is slightly offset by a loss in efficiency. While the RH simulation is

about ten times more efficient than AMC, the MCH algorithm is only about eight times

faster.

In summary, we have developed a new Condensed History algorithm for electron transport

that preserves the zeroth-, first-, and second-order spatial moments of the transport equation.
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This enables Moment Condensed History to more wcurately predict the locations of electrons

after Condensed History steps. In the future, we plan to improve the efficiency of our scheme

by alleviating the costly expense of evaluating the infinite summations involved with the

moments. Perhaps Molibre theory5, which has been used to approximate the Goudsmit-

Saunderson distribution by replacing it with a simpler function, could be extended to the

first- and second-order solutions.

This work was performed under the auspices of the U.S. Department of Energy by the

Lawrence Livermore National Laboratory under contract W-7405-ENG-48.
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Figure 1: Dose Deposited as a Function of Depth into Aluminum (EO = 12.5 keV)
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