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Adaptive mesh refinement dynamically focuses computational effort in the areas 
of interest, such as near the shock fronts in this hydrodynamics simulation. 
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Executive Summary of the Comprehensive Report 

We develop scalable algorithms and object-oriented code frameworks for terascale 
scientific simulations on massively parallel processors (MPPs). Our research in 
multigrid-based linear solvers and adaptive mesh refinement enables Laboratory 
programs to use MPPs to explore important physical phenomena. For example, our 
research aids stockpile stewardship by making practical detailed 3D simulations of 
radiation transport. 

The need to solve large linear systems arises in many applications, including radiation 
transport, structural dynamics, combustion, and flow in porous media. I hese systems 
result from discretizations of partial differential equations on computational meshes. Our 
first research objective is to develop multigrid preconditioned iterative methods for such 
problems and to demonstrate their scalability on MPPs. 

Scalability describes how total computational work grows with problem size; it measures 
how effectively additional resources can help solve increasingly larger problems. Many 
factors contribute to scalability: computer architecture, parallel implementation, and 
choice of algorithm. Scalable algorithms have been shown to decrease simulation times 
by several orders of magnitude. 

Multigrid is an example of a scalable linear solver. It uses a relaxation method such as 
Gauss-Seidel to damp high-frequency error, leaving only low-frequency (smooth) error- 
which can be efficiently solved for on a coarser (smaller) grid. Recursively applying this 
to each subsequent coarse-grid system creates a multigrid V-cycle, so named because one 
first descends a hierarchy of successively coarser grids, solves a small problem, and then 
ascends the hierarchy of grids. Interpolation and prolongation are used to traverse the 
hierarchy. If these operations are defined properly, the algorithm’s computational costs 
grow linearly with problem size. 

We explore geometric and algebraic multigrid techniques. Geometric multigrid is 
typically used in problems on structured meshes. Such an algorithm, based on Shaffer’s 
semi-coarsening method, sped up the linear algebra in an ASCI code by a factor of 27, 
reducing overall simulation time 10-fold for a 2D test problem (128,000 unknowns). 
Algorithmic scalability was shown in 3D test problems on the ASCI Blue Pacific and Red 
MPPs. In particular, using Red we solved a problem with 134 million unknowns in 24 
seconds on 2048 processors. We investigate algebraic multigrid methods for problems 
defined on unstructured meshes. We have parallelized Ruge’s method and will run 
scalability experiments in FY99. 

Our second research objective is to develop an object-oriented code framework for 
structured adaptive mesh refinement (AMR) applications. AMR allows efficient use of 
computing resources (CPU time and memory) by focusing numerical effort locally within 
the computational domain with varying degrees of spatial and temporal resolution. This 
makes practical simulations-especiall y those involving complex physics and large 



spatial domains-that would be too expensive on a uniform mesh. Our framework, 
SAMRAI, provides extensible software support for rapid development of parallel AMR 
applications. 

We completed the basic framework in FY98, including grid hierarchy management, 
adaptivity control, and visualization support. This parallel 3D framework is being used to 
develop several simulation codes, most notably one for studying laser-plasma 
interactions. SAMRAI is also used by the Utah ASCI Alliance Center of Excellence for 
its fire safety simulation code. In FY99, we will implement numerical methods and will 
work with application teams to run large-scale simulations on ASCI platforms. 
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ALGEBRAIC MULTIGRID BASED ON 
ELEMENT INTERPOLATION (AMGe) 

R?. BREZISA’, A.  J .  CLE.L\RYt. R. D. FALGOUT’. lr. E. HESSOSl.  J E .JOSESt 
T. -4. IZI;\STEUFFEL*, S. F. MCCORR.IICK*, A N D  J. it-. RUGE’ 

Abstract .  We introduce A MGe, a.n algebraic multigrid method for solving the discrete 
equations that arise in Ritz-type finite element methods for  partial differential equations. 
Assuming access to the element stiflness matrices, AMGe is based on the use of two local 
measures derived from global measures h a t  appear in existing multigrid theory. These new 
measures are used to determine local representations of algebraically “smooth ’‘ error compo- 
nents. These representations provide the basis for  constructing eflective interpolation and, 
hence, the coarsening process for  AMG. Here, we focus on the interpolation process; choice 
of the coarse ‘(grids” based on these measures is  the subject of current research. We develop a 
theoretical foundation for  AMGe and present numerical results that demonstrate the eficacy 
of the method. 

1. Introduction. Computer simulations play an increasingly important role in scien- 
tific investigations. Indeed, as experimentation becomes more expensive, impracticable, or 
even proscribed, scientists are turning more and more to numerical simulation. Modern 
packages are extremely complex, with many physics components: hydrodynamics, radiation, 
transport, structures, thermal, chemistry, and electromagnetic, among many others. Also, 
the problems are frequently posed in multi-material regimes, with contact surfaces, inter- 
penetrability constraints, and intricate geometries complicating matters. As a result, codes 
are being developed to solve complex multi-physics problems on highly resolved, unstruc- 
tured grids. Such large grid simulations often require massively parallel computing as well 
as scalable numerical algorithms such as multigrid (see e.g., [l]). 

Algebraic Multigrid (AMG) [5, 3, 4, 6, 19, 16, 18, 171 is a method for solving matrix 
equations that is based on multigrid concepts. It examines the matrix entries to determine 
a sequence of smaller matrix problems that serve as coarse-level equations. AMG also deter- 
mines associated interlevel transfer operators (restriction and prolongation), then solves the 
original matrix equation in a multigrid-like process based on these automatically-constructed 
components. AMG has been shown to be well-suited for solving unstructured grid problems, 
and to work well over a wide variety of applications (see,e.g., [9]). It has been applied suc- 
cessfully to $1-matrix problems where the so-called strength of connection is easily measured 
(this measure is used to determine which variables are strongly representative of the errors 
left by relaxation, so that they can be used to construct the coarse levels). It also applies 
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well to  scalar prob]en1s that (jepart, substantially from kI-inatris discretizations. Howm-~r.  
for prot,lcnis Ivhcrc strc11:tIl of c a r i n t ~ ~ i o n  is ]lot  ~ i l ~ i l ~  I I I P ~ ~ S U I - ~ Y ~ .  - \ l lG is 1iot cffec:tiv(\ Ivit 11- 

out certain problein-specifit: nlodifications 01- careful pararriet,er tuning. For such cases, t Iicr(. 
is no systematic -1hIG i\pproach that has proven effective in an>- kind of general conwxt. 
There are still other problems (e.g., tliin-body elasticity on unstructured grids) for which 
AMG and other iterative methods in general have failed to achieve full optimality. The goal 
of our research is to develop a more robust AMG method for solving these difficult problems. 

This paper introduces an algebraic multigrid method for solving partial differential equa- 
tions discretized by Ritz finite element methods. As a departure from standard AMG, where 
only the operator matrix is required, this approach assumes access to element stiffness ma- 
trices. We thus refer to it as AMGe (the acronym AMG henceforth refers to the stpndard 
scheme). This new approach is based on the use of either of two measures (derived from 
global measures used in existing theory) to determine algebraically “smooth” error and to 
construct effective interpolation. AMGe uses a minimization principle based on the element 
interpolation scheme first introduced in [15]. Other multigrid methods, using minimization 
principles for constructing energetically stable inter-grid transfer operators. have recently 
appeared in [22, 23, 111. While the focus here is on the interpolation process. we also briefly 
describe our current research that is aimed at using these measures to improve the coarse-grid 
selection process. Although the key ideas behind AMG are summarized in the next section 
for clarity, we assume that the reader is familiar with AMG methods and terminology. For 
more detail, see [17]. For recent results and for understanding the following in context, see 

In the next section, we introduce some notation and review the AMG algorithm. In 
particular, we discuss the notion of strength of dependence and its role in defining the basic 
AMG components. In section 3, we define a heuristic based on two global measures and 
establish a corresponding two-level convergence result. We “localize” these measures in 
section 4, and describe how they can be used to  compute the interpolation operator for 
AMGe. We also discuss the relationship between the local and global measures in subsection 
4.3. Section 5 contains numerical results supporting the theory and demonstrating the 
efficacy of the approach. In section 6, we discuss preliminary approaches for selecting coarse 
grids based on these locai measures. Concluding remarks are made in section 7. 

. *  

- _ _  . 

2. Preliminaries. We begin this section by describing notation. Capital Roman letters 
(A ,B ,P ,R)  denote matrices and bold lower case Roman and Greek letters denote vectors 
(u, v, E ) .  The ith component of the vector q is denoted by qi. Other lower case letters denote 
scalars, while capital caligraphic letters denote sets and spaces (C, F, S), with the singular 
exception that A is used to denote finite element stiffness matrices. We define the A-inner 
product by {e, - )A  := {As, e), where (-, -) is the standard Euclidean inner product, and the 
A-norm (also called the energy norm) by l l - l l A  := (., -)y. 

Assume that we are given an n x n symmetric positive definite matrix A expressed as 
the sum of a given set of finite element stiffness matrices, 



for a given f E R". Standard iterative schemes, like Gauss-Seidel and KryIov space methods, 
tend to converge slowly for large-scale problems of this type that arise from partial differential 
equations. The difficulty is that smooth error components are typically attenuated very 
slowly by these simple processes, because they are based on local properties (i.e., local 
connections in A ) .  Multigrid methods attempt &,, correct this limitation by representing the 
smooth errors on increasingly coarser, and, therefore, more global levels. 

To describe how system (2.2) could be solved by a multilevel method, let P be an n x n, 
interpolation or prolongation matrix, with nc < n. We call PT the restriction matrix. The 
two-grid method for solving (2.2) is defined as follows: 

(2.3a) 

(2.3b) 
(2 .3~)  

Relax v1 times on Au = f .  
Correct u t u + P(PTAP)-'PT(f - Au). 
Relax v2 times on Au = f .  

Note the use of PTAP in correction step (2.3b). This so-called Galerkin coarse-grid operator, 
together with the use of PT as the restriction operator amount to a variational form of 
multigrid. When A is symmetric, it can be shown the correction step minimizes the energy 
norm of fine-grid error over all possible corrections from the range of P. 

To solve (2.2) in practice, one would use a multilevel method that recursively applies 
algorithm (2.3) to solve the linear system involving PTAP in correction step (2.3b). 

Examining (2.3) reveals that relaxation and coarse-grid correction must be chosen to 
complement each other; that is, error not reduced by one must be reduced by the other. In 
this paper, we fm the choice of relaxation, then determine interpolation. The relaxation we 
choose is a simple pointwise method, like Richardson, damped Jacobi, or Gauss-Seidel, that 
satisfies the following heuristic: 

H1: Error in the direction of an eigenvector associated with a large eigenvalue is 
rapidly reduced by relaxation, while error in the direction of an eigenvector 
associated with a small eigenvalue is reduced by  a factor that may approach 
1 as the eigenvalue approaches 0. 

Error that is not rapidly reduced by relaxation is called algebraically smooth. The actual 
character of algebraically smooth error depends on the operator and the type of relaxation, 
but it loosely means that the residual is small when compared to the error itself (we will 
be more precise about this shortly). This does not mean that the error is smooth in any 
geometric sense. Thus, error at a point may be very different from the errors a t  neighboring 
points, yet it might be difficult to reduce the error by relaxation. Such is the case for 
anisotropic problems, where algebraically smooth error that  point Gauss-Seidel relaxation 
cannot effectively reduce can be geometrically oscillatory in the direction of small coefficients 



2.1. AMG. To define the multigrid components in -4MG. we use the following heuristic 
based on special properties of M-matrices: 

H2: Smooth error varies slowest in the direction of strong dependence. 

Here, we say that unknown i strongly depends on unknown j if 

-aif 2 8max{-a+}, for some fixed 8 E (0, l ) .  
(2-4) k f i  

Thus, strong dependence is characterized by matrix coefficients that are large in the sense 
of (2.4). A typical choice for parameter 8 is 0.25. 

Although AMG was developed with M-matrices in mind, in practice i t  is not limited 
to this class of problems. However, the method does rely on H2, and our sense of strong 
dependence may not be suitable for many important classes of problems. 

One simple problem with which AMG has difficulty is the Poisson equation on a rectan- 
gular grid, discretized with bilinear quadrilateral elements, where the fine-grid elements are 
stretched to a 10 : 1 aspect ratio. This yields the coefficient stencil 

-1 -3.9 -1 

-1 -3.9 -1 
[ 1.9 8 1 . 9 1  

In (2.5), it  is not readily apparent from the size of the off-diagonal entries that the direction 
of strongest dependence is vertical. Since H2 is used to define all of the AMG components, 
and it requi.res a clear understanding of strong dependence, AMG can exhibit degrading per- 
formance (see Table 5.1). For this simple case, slow convergence of AMG can be ameliorated 
by simply tuning its parameters (e.g., setting 8 = 0.5) or by more elaborate algorithtnic 
“fixes” (e.g., iteratiwe weight interpolation [9] or geometric/algebraic intei-polation methods 
[lo, 8, 71). Another approach is to replace H2 by a heuristic that leads to a more robust 
AMG algorithm. Exploring this possibility, as we begin to  do in the next section, is the 
primary aim of this paper. 

3. Global Measures and Convergence Bounds. This paper takes a slightly dif- 
ferent approach, using a heuristic based not on M-matrices but on the eigenvectors of A. 
In a two-grid scheme, coarse-grid correction will completely eliminate error in Range (P) ,  
the range of the interpolation operator P. To complement the action of relaxation, which 
satisfies H1, the interpolation matrix must satisfy the following heuristic. 

H3: Interpolation must be able to approximate an eigenvector with error bound 
proportional to the size of the associated eigenvalue. 

To make H3 more rigorous, define Q : R.” -+ R” to be a convenient projection onto 
Range ( P ) ,  that is, 

(3-1) Q = PR, 



for  some rcstriction operator R : R7L -+ IR'" such t h a t  RP = I ( .  t hc  idrntit!r on IR"'. Tlic 
specific. fol-ni for (1 (and. l i t t n w .  I<) will not hcw)iiie illiport i i11T iiiit,il swrioii 1. For m y  

\-cct,or e E Range ( P ) ;  n-e have &e = e. Thus, I - (2 c x i  be uscd to  rrieasure t h c  clt.fect o f  
interpolation. Vi-it11 this in mind. we now define two measures of how well H3 is satisfied: 

(3.3) 

The measure M2 was used in the early multigrid theory [14, 12, 131 to establish optimal 
convergence of the V-cycle algorithm under full regulari';; assuniptions on the associated 
partial differential equation. The measure Ml was introduced in [-I] and used more recently 
to establish convergence, independent of the coarse-grid size, of a two-level method for linear 
elasticity [21]. It is also an essential ingredient of the regularity-free multilevel theory found 
in 121. We develop the relevant two-grid theory here for both measures so that we can tailor 
the results to our needs. 

It has not been our practice to  use diagonal conditioning of -4 in conventional AMG. 
Such a scaling generally changes the nature of smooth errors. Since current schemes at  
some point rely on a premise of how smooth error behaves (e.g., that it is locally constant), 
then diagonal scaling can make it more difficult for AMG to handle. However, no such 
premise of smoothness is made anywhere in AMGe. Thus, in the remainder of this paper, 
we are free to assume for convenience that matrix A has been scaled so that its diagonal 
is the identity. For a general symmetric positive-definite matrix with diagonal D # I ,  this 
can be assured by replacing A with D-1/2AD-'/2. Note that this transformation must be 
considered in the representation of A as a sum of local stiffness matrices, but this is just a 
straightforward rescaling of the variables. This scaling does, however, bear on the practicality 
of our results because we analyze AMG based on Richardson iteration, which is not generally 
a good smoother for matrices that have widely varying diagonal entries. For such matrices, 
a damped Jacobi method with proper under-relaxation should be used, but then measures 
Ad1 and Mz must be changed accordingly (e.g., for A41 in (3.2), D would appear in the 
numerator's inner product). 

This theory assumes that either A41 or Mz be bounded uniformly in e E Rn\{0}. To 
see how this assumption relates to H3, suppose that e is an eigenvector of A corresponding 
to a small eigenvalue. Then, for MI or M2 to be bounded, since the denominators of the two 
measures are small, the numerators must also be small. Thus, Q must accurately interpolate 
eigenvectors belonging to small eigenvalues. On the other hand, if e is an eigenvector of A 
corresponding to a large eigenvalue, then the denominators of the two measures are large, so 
the numerators may be large. Thus, Q need not accurately interpolate eigenvectors belonging 
to large eigenvalues. 

We now prove convergence results based on A l l  or M2 for the two-level algorithm (2.3). 
LEMMA 3.1. Let Q be any projection onto Range (P) .  Assume that either of the fol- 

lowing two approximation properties are satisfied for  some constant K :  

(3.4) 



(3.6) 

Proof. The upper bound in (3.6) follows easily from the definition of the matrix norm. 
To prove the lower bound, note that Range (Q) = Range ( P ) .  Hence: if e is A-orthogonal to 
Range ( P )  then 

(3.7) (Ae, Qv) = 0 V v  E W .  

First, assume that (3.4) holds. From (3.7) and the Cauchy-Schwartz inequality, we have 

(Ae ,  e )  = (Ae, ( I - & ) e )  
I 11Ae11 I I ( I  - Q>ell 
I IlAell (Ae, e> K1/2 

The lower bound in (3.6) now follows by dividing through by (Ae, e) K’j2 and squaring the 
result. 

Now, assume that (3.5) holds. From (3.7) and the Cauchy-Schwartz inequality, we have 

(Ae, e) I (Ae, e )  + (AQe, Q4 
= (Ae, e) - (Ae, Qe) - (AQe, e )  + (AQe, &e) 
= (A(I  - Q)e, ( I  - Q)e) 

5 IIAe1l2K- 

The lower bound in (3.6) now follows by dividing through by (Ae: e )  K .  . I 
Define the A-orthogonal projection onto the Range (P):  

(3-8) S := P(PTAP)-’PTA. 

The error propagation matrix for the coarse-grid correction step (2.3b) is I -S .  A Richardson 
iteration with relaxation parameter s = w /  llAll, w E (0,2),  has the error propagation matrix 
G = I - SA. If we choose (vl, v2) = (0,l)  in (2.3), then the associated error propagation 
matrix for this simple two-grid scheme is G(I - S). The following theorem analyzes its 
convergence by bounding its error propagation matrix in the A-norm. Convergence results 
for other values of ( V I ,  v2) then follow naturally [13]. 

Analogous multilevel results can be found in [14,12,13] for approximation property (3.5), 
and in [2, 201 for (3.4) under the additional assumption of energetic stability of interpolation, 
which requires that ~ ~ P ( P T P ) - ’ P T ~ ~ A  is bounded uniformly on all levels. 

THEOREM 3.2. Assume that either approximation property (3.4) or  (3.5) is satisfied 
for some constant K .  Then 

(3-9) 



R.eplacing e with ( I  - S)e  and applying the result in Lemma 3.1 yields 

I 
Notice that the bound on the convergence factor approaches 1 as I< becomes large. 

Conversely, smaller K yields a smaller bound on the convergence factor. Our aim is to 
determine P so that, for some appropriate Q, either (3.4) or (3.5) is satisfied for a reasonably 
small K .  

We also remark that the above results can be generalized to apply when (2.2) is a 
consistent system with symmetric positive semi-definite matrix A. Measures Ml and M2 
must be restricted to e # Null(A). A finite bound K in (3.4) or (3.5) then implies that 
interpolation is exact for e E Null(A), which in turn implies that the correction step involves 
a consistent system. A zero initial guess and relaxation using a polynomial method like 
Richardson iteration ensures that the approximate solution remains orthogonal to  Null( A ) .  

4. Interpolation Using Local Measures. The quantities M I  and Mz are global 
measures of the quality of interpolation. Our incent is to use these measures to determine 
an effective strategy for constructing interpolation in AMG, but it is not practical to do 
this globally. In this section, we discuss an approach for localizing these measures for linear 
systems (2.2) that arise from finite element discretizations. 

Recall that A is given as the sum of finite element stiffness matrices: A = CaE7da. 
While we do not assume access to an underlying spatial grid (see (2.1)), we can construct 
an artificial grid based on the graph associated with A,  with vertices := {1,2,. . . , n} and 
edges E := { ( i , j )  : aij # 0 for i # j } .  Grid point (vertex) i E G is associated with unknown 
U l .  

We first define the point set of an element, 

( 4 4  M ,  := { j  : &TA&j # 0}, 

where &j is the canonical basis vector associated with unknown j .  Next, define the neigh- 
borhood of grid point i as the set of elements and set of points 



s 

FIG. 4.1. Local neighborhoods. 

respectively (see Figure 4.1). Define the local matrices on neighborhood i by 

(4.5) 

We also assume that a coarse grid has been selected, that is, the points in G have 
been partitioned into coarse-grid points C and fine-grid points 3 such that C U 3 = G and 
C n 3  = 0. We now seek the n x n, interpolation matrix P ,  where n, = ICI, that interpolates 
from the coarse-grid points C to  the entire grid G. 

Two conflicting goals drive the construction of P. The first is to minimize the bound 
on measure AI, or M2, while the second is to preserve the sparsity of the coarse-grid system 
involving PTAP. Focusing on the second goal first, we assume that the coarse-grid points 
interpolate to  themselves exactly, that is, P restricted to C is the identity, while fine-grid 
points interpolate only from coarse-grid points in their neighborhood, that is, from Ci := 

To make the construction more clear, suppose that the rows and columns of A have been 
arranged so that the fine-grid points come first, followed by the coarse-grid points. We may 
then write A in block form as follows: 

Ni n C.  

In this context, the interpolation matrix has the block form 

(4.7) .=[TI. 
Alternatively, we may define the projection 

0 Pfc 
Q = [  0 I , ] ,  

which implies the choice of R = [0, I,] as the restriction in (3.1). 

of Q corresponding to each point i E 3, which we denote 
In what follows, we develop a strategy for constructing the rows of Pr,, that is, the rows 

(4.9) 



We now localize measures AI, and Ad2 by defining 

(4.11) 

(4.12) 

for any e # Null(Ai). Notice for i E C that = MQ = 0, while for 1 t F the above 
measures only depend on the ith row of Q, which is to be chosen in 2i. To emphasize this 
dependence, when the meaning is clear we write 

(4.13) 

(4.14) 

for qi E Zi and e 

local eigenvectors of Ai.  This makes it practical to  use Mill and Mi,2 to compute interpo- 
lation. Since we wish to make these local measures small, interpolation is defined so that 
the qi in (4.9) is the argmin (that is, the argument that attains the minimum) of one of the 
following min-max problems: 

Null(Ai). (Recall that A has unit diagonal.) 
Heuristic H3, as applied to these local measures, now relates int-rpolation accuracy t 

(4.15) := min max Mi,p(qi,e), 
qi E Zi eGNull (A,) 

for p = 1 or 2. Note that if there exists a q; E 2i that yields Kip < 00, then qi satisfies the 
constraint 

(G - q;)Te = 0 Ve E Null(Ai). 

Thus, the min-max problem (4.15) can be restated as the constrained min-max problem: 

(4.16) Ki,p = min max Mi,p(qi,e), subject to  (Ei - qi)Te = 0 V e  E Null(Ai), 
qiEZi e l N u l l ( A i )  

for p = 1 or 2. The next two subsections focus on the solution of these min-max problems. 
In Section 4.3, we relate the local measures to the global measures. 

4.1. Computing Interpolation by Fitting Eigenvectors. One way to compute the 
qi in (4.15) or (4.16) is to “fit” the eigenvectors of Ai, as quantified in the following theorem. 

THEOREM 4.1. Suppose we have computed the eigen-decomposition 

I 

(4.17) Ai& = IQIi, KT% = I. 



(4.18) 

Then man-max problem (4.16) as equzvalent to the followang constraaned least-squares problem. 

(4.19) 

f o r p =  107-2. 
Proof. n'ote that the null-spacc. constraint in (4.16) is equivalent to that in (4.19). 

Assume first that q, satisfies (4.16) with p = 1. Since e I Null(A,), we can write e = 

x+AL:'2w, which yields 

2 
min l l . l ~ ~ ' 2 q ~ ( ~ t  - qz)/l . subject to  V , ; ( E ~  - qZ) = 0, 

q1 

2 I/ (Ei - qi)TK+&!'2Wll 
min max Mi,l(qi,e) = min rnax 

q , E Z i  e l N u l l ( A , )  q z E 2 i  W l1W1l2 

Assume now that q, satisfies (4.16) with p = 2. Writing e = V,+&!w, we then have 

I 
Computing the interpolation weights qi using (4.19) requires eigen-decomposition (4.17), 

which is not the most efficient method. We introduce a simpler approach in the next sub- 
section. However, we include this notion of fitting eigenvectors because it is useful for 
understanding the basic principles involved in selecting interpolation. 

4.2. A More Practical Algorithm for Computing Interpolation. This subsec- 
tion describes a practical algorithm for determining when (4.15) or (4.16) has a (unique) 
solution for i E 3, and for computing Q when a solution does exist. One important conse- 
quence of this characterization is that, whenever the solution with the current interpolatory 
set does not exist, we can add points to Ci until a solution does exist. 

Assume first that grid point i E 3 has a neighborhood, as depicted in Figure 4.1, 
consisting of ni points in set Ni, with nf fine-grid points and n, coarse-grid points in Ci. 
Next, order the unknowns and equations of matrix Ai so that unknown i is first, followed by 
the other fine-grid points, with the coarse-grid points last. The neighborhood matrix and 
its square can then be written as 



Z := { e  €EtTLf : e3 = O Vj @ Cz} . 

We can then interpret (4.16) with p = 1 or 2 as the problem of determining a vector q f 2 
that minimizes max,#Null(Ai) Mi,p (q ,  e ) ,  subject to the constraint 

( E ~  - q)Te = 0 'd e E Null(Ai) = Null(,4;). 

That is, we require 

(4.20) €1 - q E Range (Ai) = Range (A;)  . 

Our first concern is the existence of such a vector q. For this, we let f Rnf denote 
the first canonical basis vector of length n f .  

LEMMA 4.2. There exists q E 2 such that € 1  - q E Range(AT) if and only if 

Z1 E Range ( A F )  , 

with p = 1 OT 2. 
Proof. Assume that i1 E Range (AY) so that 

€or some 81 E Et"'. Then 

and q E 2. 

exists 6 such that 
Conversely, suppose there exists q E 2 such that - q E Range (A:), that is, there 

This, in turn, implies that 

21 = [A?), A$)] 6 E Range ([A?), A:)]) 

The proof will be completed by demonstrating that 

(P) Ab) 
Range ([Aff f c ] )  = Range (A/@:) - 



Since A! is symmetric positive semi-definite, 0 is an extreme value of (A:., e); which implies 
that the vector (8, 0)' is an eigenvector of Af with eigenvalue 0. In other words, (8, 0)' E 
Null(AP), which implies that 

which, in turn, implies that 

and the lemma is proved. 

Rewriting (4.20), we want 6 €EXn1 such that 
I 

for some q E 2. By the proof of Lemma 4.2, the set of all such 6 is 

If Y ( P )  is empty, then the constraint in (4.16) cannot be satisfied and K,,p = 00. In this case, 
more points must be added to Ci for (4.16) to have a solution. If Y(P) is not empty, then 
any 6 E Y(P) can be written as 6 = 6* + y, where 6' is a particular element of Y(P) and 
y E Null([AE, A:",]]). From the proof of Lemma 4.2, we may choose 6* = O)', where 
AI@:& = Zl- We now show that 

yields the unique solution to (4.15) or (4.16). 

THEOREM 4.3. If 21 # Range (A?)), then Ki,p = 00. If 21 = Ay'81, then the unique 
solution of (4.15) is given by 

(4.21) 

L 

and Ki,p =< Z1, d1 >, for p = 1 or 2. 

(81, 0)'. Using the substitution 
Proof. The first statement follows from Lemma 4.2. To prove the second, let 6* = 



1 .3 

with 6 E then (4.15) can be written as 

= r r i i r i  (.4:6. 6) 
((E1 - 4% (E1 - # e )  

riiin ~ i i a x  
q € 2  e$\,dl(.'l;) (A:% 4 6 E 1 . ( I '  1 

(4.22) - - min (A:(6* + 7 ) :  (S* + 7 ) ) .  
y~ry..ii([A?), .4:)]) 

Any solution of (4.22) is characterized by y* E Null([Ay), A;)]) such that 

(4.23) 

that is, 

(Af(6' + ?*), 7) = 0 V y  E Null([Ay], AE)]); 

(4.24) A%(6* + ?*) E Range ([;$I). 
But ?* = 0 satisfies (4.23) by construction of 6*, which proves that (4.21) solves (4.15). 

Then 
To prove uniqueness, suppose there are two such solutions to (4.23), say, 6' and p*. 

for some w E R"'. Since both 6* and p* are in Y(P), we have w E N~ll(Af'j).  From Lemma 
4.2, we have Null(A:') = Null(A$)), which implies that A:(6* - p*) = 0 and that q* is 
unique. 

Finally, substituting S* into (4.22) yields 

Ki, = (A:S*, 6.) = ( E l ,  81), 

which completes the proof. 

For p = 1, set 
A practical algorithm for determining Q is as follows: 

I 

For p = 2, set 
(2) - A2 (2) - Aff - ff + AfcAc,, A,, - ACfAff + AccAcf. 

Perform a QR factorization on A: using Householder reflections and column pivoting to 
detect rank deficiency. If 

@ I ^  - A,,& - 4 
has a solution, then set 

q*= ( "@,- ) 
-A, S1 

and Ki,P = (el, 8,); otherwise, set Ki, = m. 



4.3. Local-Global Measure. Thls subsection shows t h ~ t  I f  1 01 -\I7 2 is 1)oundt.d 

THEOREM -1.4. Lct p = 1 or 2 urd ossurne t h a t  the lo to l  niipl-o.ciiric~t/otl  property  
for mcry 1 E F ill(>I1 tilt. gI~)1)ilI 11l~it\111(’ Jli 15  SO 1)01111tl(~i 

(4.25) Alz,p(Q.e) 5 ICzlp ‘de E IR” 

holds for some Kz,p and all 2 E 3. Then global upproxzmatzon property (3.4) 2s also satzsfied 
wzth 

(4.26) 

Straightforward application of the above techniques can be used to bound M2 in terms 
of Mi,2. However, the resulting bounds on A42 can be much larger than the maximum value 
of Mi,2. While this may not be sharp, it  is simple to construct an example where M2 is 
much larger than the largest MQ and, hence, much larger than MI. In this case, using M2 

to estimate convergence could lead to the erroneous conclusion that the resulting two-level 
method is slow to converge. 

The local measure bounds, Ki,p, can be used as a diagnostic tool: Theorem 4.4 shows 
that they contribute to the bound K ,  used to establish convergence in Theorem 3.2. While 
neither measure provides a sharp bound when the algorithm exhibits a small convergence 
factor, they can provide a warning: if Ki,,, is large for some i, it may be profitable to 
reexamine the choice of the coarse grid, perhaps adding more grid points to C. This will be 
discussed in greater detail in section 6. 

As an alternative to  increasing the size of C, we could respond to large values of Ki,p 
locally by increasing the size of the neighborhood. Define the set A((k) of kth removed 
neighbors recursively by letting N;’” := A( and 

(4.27) 

Then interpolation could be allowed from the set Ci := n C, which are the coarse-grid 
points connected to point i by a path of length k in the graph of A. While this would yield 
more accurate interpolation, the complexity of PTAP would certainly increase. 



5 .  Numerical Results. 111 this sec:tioii t lit. t>]t)m(qlt, i r 1 t p q m I ~  t ion  m ~ t h o t f s  a Io  ;ipplit.tf 
t ( I  t ~ v o  i 11 11 r t I 'il t i X-P PU 111 1 ) i t  's : ; i riO issc 1 I (v lu i l  1 ic 11 1 ( I i s ~ x  t i zv ( 1 o 11 5 t I' 1) t t.1 i( Y 1 q 11 ;it 11-i 1 a t,c> r i\ Is a 11 ( I 
a plane-strcss cantilc~-er beani. IITe compare our numerical results t o  the b o u , d s  1)retlictetI 
by our theory and demonstrate the improved robust,ness of t,he nen- rnetho(k over AMG. 

The only difference here between Ah4Ge and AhlG is that we use the element interpo- 
lation method in ilMGe to construct the interpolation operators. Thus: the coarse grids are 
selected in the same way that they are in AMG. We are currently exploring the possibility 
of using the -4llGe measures to determine coarsening. Some comments in this direction are 
included in the next section. 

To conform to the theory, for the AMGe tests the linear systems are scaled so that 
the diagonal is ti?;. identity. That is, we actually solve Au = f :  where A = D-1/2AD-1/2, 
ii = D1/*u: and f = D-'j2f. Our initial experiments use V(0, 1) cycles based on damped 
Jacobi with a relaxation parameter of 1/2. In the examples below 1JAl l  is between 2.5 and 
3.0 so that &, 5 s 5 &. For AMG, we use the original unscaled matrix -4. 

From equation (3.9) in Theorem 3.2 we have a bound on the convergence factor: 

where K is the bound 
If we replace K from 

on either MI or M2. As we will see, the bound is rather pessimistic. 
(4.26) by Kp = maxiK+, then we have a more realistic but still 

. pessimistic estimate for the convergence factor. 
results below. 

Three different definitions are considered 
(AMGel), and local measure 2 (AMGe2). 

In the multilevel algorithm, we construct 
follows: 

These factors are included in the numerical 

for interpolation: AMG, local measure 1 

"coarse element stiffness matrices" A,,, as 

(5-2) A,,, = PTA, P. 

To reduce computational complexity and storage costs, we combine coarse elements that 
operate on the same points by summing them. That is, we define 

(5.3) M ~ , ~  := { j  : E T A ~ , ~ E ~  # 0) 

and, when M,,, = Mc,o, we combine A,,, and A c , ~  t o  form a single coarse element stiffness 
matrix. 

5.1. Stretched Quadrilateral. Consider the stretched quadrilateral problem intro- 
duced in Section 2, which consists of a Poisson equation on a rectangular grid discretized 
with n, x ny bilinear quadrilateral elements. The fine-grid elements have a 10 : 1 aspect ratio, 
yielding the stencil in (2.5). The boundary conditions are Dirichlet, which are eliminated 
from the matrix during discretization. 

In all cases, we use the AMG coarsening algorithm with parameter 8 = 0.25. This 
produces a semi-coarsened grid for the first coarsening. The resulting interpolation operators 



(5.4) 

- (5.6) PAMGe2 - 

The stencils at boundaries are similar. 

0.084 0.3:3‘2 0.os-l 

0.084 0.332 0.084 

0.007 0.486 0.007 

0.007 0.486 0.007 

0.003 0.494 0.003 

0.003 0.494 0.003 

x 

* 

* 

Note that interpolation for all of the algorithms 
involves corner points, but the associated weights for AMGel and AMGe2 are much smaller 
than for Ah4G. The large element aspect ratio effectively decouples each vertical line of grid 
points from the other vertical lines. In geometric multigrid, this situation is treated by semi- 
coarsening, that is. by choosing coarse-grid points along each vertical line. Interpolation is 
then performed only in the y direction. The typical interpolation weights used in geometric 
semi-coarsening do not involve corner points, so smaller weights intuitively make more sense 
here. 

The experimental results are presented in Table 5.1. Two grid sizes, 64 x 64 and 128 x 
128, are used. For each grid we show the convergence factors resulting from application 
of AMG, AMGel, and AMGe2. Factors are shown for both two-level and multilevel cases. 
For the two-level case, we show the bound on the convergence factor corresponding to  using 
(4.26) in Theorem 3.2 for MI. This is computed using IlAll = 2.97 and K 1  = 2.68. As 
expected, the bound is pessimistic. We also show the convergence factor (labeled “estimate”) 
that would result from substituting K1 = maxi Ki,l = 1.34 and Kz = masi KQ = 2.0 for 
(4.26) in Theorem 3.2. This provides a more realistic, but still pessimistic, value for the 
convergence factor. This behavior is typical of most multigrid theory, where results often 
exceed theoretical expectations. 

The key observation to be made from the data in Table 5.1 is that both AMGel and 
AMGe2 produce substantial improvement over AMG for stretched quadrilaterals. As noted 
in section 2, there are “fixes” available in AMG (such as iterative weight definition or a 
judicious choice of the threshold 8, or perhaps the geometric/algebraic interpolation methods 
of [lo, 8, 71) that improve the performance of AMG. For example, if we apply iterative weight 
definition to either the 64 x 64 or 128 x 128 stretched quadrilateral problem, we obtain 
convergence factors of 0.28 for both two-level and multilevel cycling. Similarly, if we use 
AMG with a threshold of 8 = 0.5 we obtain convergence factors of 0.28 (two-level) or 0.29 
(multilevel) on both problem sizes. Such techniques, however, tend to be somewhat ad hoc, 
and are not based on theoretical considerations. As such, we cannot determine in advance 
whether such treatments will be useful for a given problem. By contrast, we expect AMGel 
and AMGe2 to perform well in more general problems involving high aspect ratios, so they 
should find wide applicability for problems based on unstructured grids having thin domains 



I ‘ I  Two-Le\rc1 
SlZ? .4\lC . \ l l G l  - l l l C : ( ~ 2  

1 G-l x 64 j 0.82 0.27 0.27 
128 x 128 1 0.82 0.28 0.28 

Bound 0.97 0.90 - 

Estimate 0.81 0.87 

or regions 

1 I 11 1 t i 1 el-? 1 
.-1lIG -1lIGcl 1 -4lIG1.2 
0.84 0.32 0.27 
0.84 0.31 0.28 
- - - 

- - - 

5.2. Plane-Stress Cantilever Beam. Consider the 2D linear elasticity equations 

1 - u  l + u  

1 - u  l + u  

u x z  4- 2 uyy + 2 u x y  = fl, 

vyy + T U z z  + - uxy = f 2 ,  2 

where u and 21 are displacements in the z and y directions, respectively. We take u = 0.3 
for the tests. The problem, depicted in Figure 5.1, has free boundaries, except on the left 
where u = u = 0. We discretize with bilinear finite elements on a uniform rectangular mesh 
with spacing h in both directions (square elements). To make a fair comparison between the 
different methods, we use the geometric coarsening strategy of doubling the element size in 
both directions until there is only one element in the 9 direction, then doubling the element 
size in the x direction only. For the multilevel results, we coarsen until h, = 2hy. The 
so-called “unknown approach” I171 was used to define interpolation for AMG. 

FIG. 5.1. Plane-stress cantilever beam problem. 

Experimental results from the plane-stress cantilever beam problem are shown in Table 
5.2. Several different thicknesses are used for the beam, ranging from a square cross section, 
d = 1, to a very thin beam, d = 1/64. AMG is ineffective on this problem, both as a two- 
level and as a multilevel algorithm. Indeed, the theoretical bounds and estimates suggest 
extremely slow convergence for AMGel and AMGe2, and do not indicate that AMG will 
converge at all. In fact, however, both AMGel and AMGe2 achieve substantial improvement, 
especially for the two-level algorithm, where they greatly exceed the predictions. The bound 



1/16 
1/32 

Bound 
Estimate 

Tn.0- L e\-e 1 34 ul t i level 
-4lIG ~ - \ l IGel  

0.97 
0.87 

A l I G c2 
0.48 
0.47 
0.45 
0.45 
0.50 
0.28 

I t . \ \ - t .  A l I G  - \ l IGcl  
0.317 0.98 0.65 
0.80 0.98 0.68 
0.8’7 0.99 0.64 
1.00 0.99 0.58 
0.97 0.98 0.51 
0.98 0.98 0.39 

I1 

-4llGc’ 1 1t.\\-t. 
0.8.5 0.87 

0.81 
0 . K  
0.56 
0.28 0.98 

Computed convergence factors, bound predicted by  theory, and ’improvement’ of observed over predicted 
for plane-stress, h = 1/64. 

is based on IlAll = 2.50 and K1 = 12.25, while the predictions are based on maxi K ~ J  = 2.84 
and maxi Ki,z = 8.31. 

Two observations are significant: the two-level performance of AMGel and AMGe2 is 
generally independent of the beam thickness until d = h,, where even greater improvement 
occurs; and the multilevel performance of AMGel and AMGe2 improves steadily as the 
beam becomes thinner. I‘ve also include columns indicating the best values obtained with 
the “fixes,” of iterative weight definition and choice of 8. The best combination (determined 
empirically) uses iterative weight definition and 8 = 0.5. Unlike the previous example, here 
these methods do not result in improvements similar to those produced by the AMGel and 
AMGe2 methods. We note that the results of [8, 71 apply to  a somewhat different elasticity 
problem than the thin beam considered here, and are not comparable to the experiments we 
report. 

While this paper concentrates on the effect of the new interpolation method, it should be 
kept in mind that there are other techniques that may be applied to enhance performance of 
the algorithm. For instance, all multilevel experiments shown here were attained using Jacobi 
relaxation and a (0,l) V-cycle. The relaxation method and its parameters can be chosen 
differently. For example, the multilevel AMGel case with d = 1/4 shows a convergence 
factor of 0.65 in Table 5.2. A Jacobi (1,l) V-cycle improves this factor to 0.58, while a 
(1,l) F-cycle (see [14]) attains a convergence factor of 0.31. Nearly identical results, 0.65 for 
V(O,l), 0.56 for V(l,l),  and 0.33 for F(l,l), are obtained if the Jacobi relaxation is replaced 
by nodal Gauss-Seidel symmetric CF relaxation, which sweeps over the C points followed 
by the F points on the downward leg of the V-cycle, and over the F points followed by the 
C points on the upward leg. Another possibility is the use of a single multigrid V(1,l) cycle 
as a preconditioner for a conjugate gradient iteration. Applied to the plane-stress problem 
using the nodal relaxation described above, this yields convergence factors ranging from 0.16 
to 0.26 per CG iteration. 

For both sets of experiments, the AMGe interpolation achieves significant improvement 
over conventional AMG performance. We believe that further improvement is possible by 
using more sophisticated coarse-grid selection. We observe that local measures Mi,l and 



Af7.2  carry ;j great, (leal of inform;ltio1] about the nature o f  t h t  tintier-lyirlg p1‘ol)le111 and its 
tiisc.~.c.tiz;itic,ii. aiid IVP should 1~ ablct t o  c:sploit t liis iriforriiat io i i  t o  dc>toi-iiiino 1110r-v dfectii-o 
coarse grids. The following section liints at some possible direct,ioiis of this ongoing research. 

6. Coarse-Grid Selection. The focus of this paper is on defining interpolation using 
local measures Mi,l in (4.11) and Mi,z in (4.12). The numerical tests in the previous section 
examine a version of AMGe that differs from AMG only in its construction of the inter- 
polation operators. But, we would also like to use these measures to guide the coarse-grid 
selection process. Defining a practical procedure for doing this, however, is not straight- 
forward and is the subject of current research. The purpose of this section is to present 
one very simple approach that fits into the current AMG coarsening procedure. The only 
modification to conventional AMG that this approach makes is to use local measures Mi,l 
or Mi,2 to  redefine the AMG notion of strength of dependence. 

We proceed by first defining a strength matrix, S, with the same nonzero structure as 
A.  Denote the (i,  j) entry of S by si,j. We say that point i strongly depends on point j if 

s i j  2 Omax{si,k}, for some fixed O E (0, l ) .  
k f i  

The matrix S may be defined in any number of ways. The simplest approach we consider 
here is to define 

1 I 

for each j E N ,  where M(j) denotes either Mi,* or MQ restricted to the case Ci = { j } .  
This approach can be interpreted as a way of measuring the “importance” of each potential 
interpolation point j E Ni individually as if j were the only point in Ci. This approach fits 
easily into the current AMG coarse-grid selection process. 

Because of its focus on individual points, we do not expect this simple scheme to support 
effective coarsening in all cases. However, we do see improvement over standard AMG in 
some important cases, as the stretched quadrilateral problem in Section 5.1 illustrates. For 
this case, the strength matrix based on Mi,l is 

0.19 5.09 0.19 

0.19 5.09 0.19 
s = [ 0.20 * 0.201 . 

This shows that the direction of strongest coupling is vertical, as it should be. 
This approach can break down for more complicated systems. For example, in 2D 

elasticity on unstructured grids, local stiffness matrix Ai has three null space eigenvectors. 
It is generally not possible to  fit all three vectors with interpolation from a single j E Ni, 
and the result is that My’ = 00 for all j E x. This difficulty is due to the limitation of 
this approach to the examination of only two points at a time, asking the question “How 
well can the value zli be interpolated if j is the only interpolation point?” A possibly more 
effective approach is to examine A 4 1  or MZ for several (or even all) subsets of Ni, with the 
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ELEAIEST-FREE AMGE: GENERAL ALGORITHMS FOR 
COMPUTING INTERPOLATION WEIGHTS IN AMG 

\-.AX EMDEN HENSON AND P.ANAYOT S. VASSILE\-SKI 

ABSTRACT. We propose a new general algorithm for constructing interpolation 
weights in algebraic multigrid (AMG). It exploits a proper extension mapping out- 
side a neighborhood about a fine degree of freedom (dof) to be interpolated. The 
extension mapping provides boundary values (based on the coarse dofs used to per- 
form the interpolation) at the boundary of the neighborhood. The interpolation 
value is then obtained by matrix dependent harmonic extension of the boundary 
values into the interior of the neighborhood. 

We describe the method, present examples of useful extension operators, pro- 
vide a two-grid analysis on model problems, and, by way of numerical experiments, 
demonstrate the successful application of the method to discretized elliptic prob- 
lems. 

1. INTRODUCTION 

The classical algebraic multigrid (AMG) algorithm [a, 3, 91 was developed for op- 
erators represented by symmetric, positive-definite, M-matrices. 19-hile the algorithm 
works well for many real-world problems [lo, 6 ,  111, there are situations in which 
it does not perform particularly well. One reason for this is that in some instances 
the classical definition of interpolation does not adequately interpolate the smooth 
modes of the error. More specifically, standard AMG interpolation makes certain as- 
sumptions about the nature of the smooth error which may not be valid for operators 
that are not M-matrices. A more sophisticated characterization of smooth error is 
required to develop an adequate interpolation formula. 

To provide a better characterization of smooth error, a method known as AMGe, 
for element-based algebraic multigrid, was developed recently 141 for finite-element 
discretizations. AMGe provides an accurate interpolation formula by using the in- 
dividual element stiffness matrices to construct a neighborhood matrix for each fine 
degree of freedom (dof). The sum of the individual stiffness matrices for all the el- 
ements containing the point at which the dof is defined, the neighborhood matrix 
acts as a local “Neumann”-type version of the original operator. According to AMGe 
theory, once the local matrix is developed and coarse-grid points are chosen, solving 
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a simple minimization problcr~i !;it>lds the! optimal interpolation operator for cach dof. 
It is slion~n in 14; . .  t ha t  tlic rnet,lioci iiiclccd prodiic.t>s siipt.rior i r i t  ~r110liiti011 il1ld leads 
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problems and s\-stems of PDEs: such as elast,icit>- problcnis. 
An obvious drawback to A41MGe. naturall>-, is that it requircs that the eleiiient 

stiffness matrices be available. U’hile this is often the case, their storage can be 
expensive. Further, AMGe requires that coarse level elements be constructed and 
their individual stiffness matrices be available. Determining the coarse elements is a 
difficult and laborious task. 

In this paper we examine the construction of the interpolation operator in both 
classical AMG and AMGe, and present them within a common framework. Our pur- 
pose is to extend and generalize the classical interpolation. originally motivated for 
M-matrices, to develop a rule applicable in more general settings. Accordingly, we 
then propose a new method for determining the interpolation weights that at,tempts 
to capture the benefits of AMGe interpolation without requiring access to the indi- 
vidual element stiffness matrices. This method is applicable to finite difference, finite 
element, or finite volume discretizations, and we concentrate on the symmetric posi- 
tive definite case. Essentially, it seeks to  determine, for each fine dof, a neighborhood 
matrix that can be utilized in the same manner that the local assembled stiffness 
matrix is used in AMGe. We do this by defining a neighborhood for the fine dof and 
examining the rows of the original matrix that correspond to the points in that neigh- 
borhood. A set of exterior dofs is defined, and a mapping developed that extends 
functions on the neighborhood to the exterior dofs. This essentially imposes a set of 
boundary conditions on the neighborhood. Here we propose a unified way of building 
these boundary conditions. One may view them as an extension (extrapolation) of a 
vector defined on the neighborhood to its immediate exterior. This extension can be 
performed using constant vectors or any other vectors that may be of interest (such 
as the rigid body motions in elasticity problems). The extension can be built for each 
dof in the exterior based on the matrix sparsity pattern. 

By incorporating the action of the extension operator into the local connections 
of the neighborhood, a. modified local matrix is created. This matrix is then used 
in a manner similar to  that employed in AMGe, that is, by solving a minimization 
problem, to create the interpolation operator. The construction of the extension 
operator and the respective minimization procedure to build the interpolation weights 
we consider as our main contribution. We give examples of several extension operators 
and show how they relate to both classical AMG and other, more recently proposed 
algorithms. A two-grid model analysis of the properties of the resulting interpolation 
mappings is provided as well. In particular, we prove that they exhibit approximately 
“harmonic” property as well as “partition of unity” property, desirable in standard 
two-grid analyses of the AMG methods. 

Numerical results are presented demonstrating the method. We include both scalar 
problems and systems of PDEs in the form of elasticity problems. Finally, we draw 
some conclusions and comment of the direction that continued research will take. 



Some notational con\-ention: to denote a vector we will use boldface: e.g.. v. w: .... 
The i th  coiiiponent of A-  n-ill be denoted in diffcwiit cont,exts ;is v(i). v(7) or 1 1 , .  In 
the latter two casts v ( i . t> . .  iiot 111 1)oldf;ic.c:) will lla\-o a rlleariirig of' ii ..grid" f'unct,ion. 

2. A FRAMEWORK FOR AMG INTERPOLATIOl 

Assume that the problem Ax = f is to be solved, where A is a sparse, symmetric, 
positive-definite matrix. AMG is a multigrid method in which no geometric grid 
information is used (and often isn't available or doesn't even exist). Accordingly, 
all of the components of a multigrid algorithm, the hierarchy of grids, interpolation 
and restriction operators. and the coarse-grid versions of the original operator, must 
be constructed using only the information contained in the entries of A. For any 
multigrid algorithm, several basic components are required. In the case of ,4MG, 
they can be described as follows: 

0 A fine grid is required. For AMG, this is generally a set D comprising the degrees 
of freedom of the original problem. 

0 A coarse grid 0, is necessary. This set of dofs is typically a subset of D. Gen- 
erally, a hierarchy of coarse grids D 3 D1 3 Dz 3 . . . 3 DJ is present. 

0 An interpolation (prolongation) operator is necessary to  map vector functions 
defined on the coarse grid D, to the fine grid D ,  P : D, -+ D. Such an 
operator is required mapping functions on each grid to the next finer grid. Unlike 
many conventional (geometric) multigrid algorithms, in AMG the interpolation 
operators are rarely the same for different levels. 

0 A restriction operator R : D + D,, mapping fine-grid functions to the coarse 
grid, is needed. For AMG the restriction is frequently defined by R = PT, and 
we will use that definition here. 

0 A coarse-grid version of the original operator A is needed for each coarse level. 
For AMG the coarse operators are generally defined by the Galerkin relation 
A, = PTAP. 

. 0 A smoothing iteration is used on each level (except the coarsest grid). It is typical 
to use a point-relaxation method such as GauSSeidel or Jacobi relaxation. 

There are many ways in which to  select the coarse-grid dofs in AMG [9, 11, 51. 
Commonly, the coarse set D, is a maximally independent subset of D, but this is not 
required. We will not discuss the question of coarse-grid selection further, except to  
note that each fine-grid dof i is connected to its nearest neighbors (e.g., j )  by way 
of having a nonzero coefficient aij, and that the value of a prolonged function at i is 
typically an interpolation of the values of its nearest neighbors that are coarse-grid 
dofs. For the remainder of this paper, we shall simply assume that a coarse grid has 
been selected and that the coarse neighbors are known for any fine dof. 

With this description of the basic components of AMG, we can describe a simple 
framework for computing the entries of the interpolation operator. Let i E D be a 
fine-grid dof whose value is to be interpolated. We first define a subset sl(i) c D to 
be the neighborhood of i. For now we place no particular restrictions on what dofs 
can be in Q(i). For example, the set Q(i) could consist of i and all of its nearest 
neighbors, or i and its nearest coarse neighbors, or i, its neighbors, and all of their 
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nciglibors. Indeed. wii,hin t lie franicwork we describe here, the exact character of the 
intcrpoliltion opcrator v-ill dtyend l;u-gc:l!- 0 1 1  Ivllat sort of' nc~ighborliood is d d i n c d .  
Sincct the \-aluc. at i n.il1 interpo1;tt ccf from (.oars(+ points in t l i e  ncigii1,orlloocl. i t  is 
useful to denote the set of coarse dofs in the neighborhood to be OC(z). 

To construct the interpolation for i. we examine the entries of the operator -4 in 
the following way. \ire begin, without loss of generality, by permuting the rows and 
columns of A and partitioning it so the the first set of rows and columns corresponds 
to i and the fine dofs in the neighborhood, that is, to O(i)\Oc(z). The next set of 
rows and columns corresponds to the coarse neighbors Oc(i ) ,  while the final set of 
rows and columns corresponds to the rest of the grid D\O(i). Hence the partitioning 
of A,  along with the identity of the rows corresponding to the partitions, appears as 

For our purposes we are only concerned with two blocks of the partitioned matrix. 
The block A,, gives the connections among i and the fine-grid neighbors while the 
block A,, links i and the fine neighbors to the coarse neighbors. 

3. INTERPOLATION IN AMG 

For classical AMG [9], the interpolation is computed in the following fashion. The 
neighborhood Q(i) is defined to be the dof i and all dofs connected to i t  (all j for which 
ai; # 0). The fine-to-fine block, A,, is then replaced with a modified version, 2,~. 
This block is modified in two ways. First, we modify the row corresponding to the dof 
i (which we will hereafter refer to as the i th row, regardless of the actual numerical 
ordering) by adding to the diagonal element aii any off-diagonal entries ai; for dofs 
j that are weakly connected to i, and then setting ai; = 0. By weakly connected we 
mean that the magnitude of ai; is smaller than some pre-defined threshold. A common 
choice is that if the magnitude of ai; is less than 8 times the largest magnitude of all 
off-diagonal entries in the ith row then j is considered to  be weakly connected to  i. 
The second modification to A f f  is that for each row j corresponding to a dof strongly 
connected t o  i, the diagonal element a j j  is replaced by 

k € R ( i )  

after which the off diagonal entries of the j t h  row are set to zero. Once the modified 
block is computed, the entries of the i th row of the interpolation matrix P are 
determined by taking the entries of the ith row of the matrix 

4. INTERPOLATION IN AMGE 
For AMGe a similar description of the interpolation is easily given. In this setting, 

the neighborhood Q ( i )  is defined naturally as the union of all finite elements having i 
as a vertex (Figure 1). In the figure, the set Q(i)  consists of all vertices in the shaded 



FIGURE 1. The neighborhood of the f ine dof i (large open circle). 

region, including i (the open circle in the center). The shaded region consists of the 
six triangular finite elements having i as a vertex. Members of Q2,(i) are indicated by 
the square vertices. Since -4MGe gives us access to  the individual element stiffness 
matrices, we may create a neighborhood matrix An(i) simply by summing together 
all the individual element stiffness matrices of the elements in the neighborhood. In 
AMGe the interpolation operator for the dof i is determined by solving a constrained 
min-max problem, that is. by finding interpolation coefficients that minimize a certain 
measure from finite element theory. The solution to the min-max problem can be 
computed in several ways. one of which fits into the framework we are developing 
here. We partition the neighborhood matrix into the rows and columns associated 
with the fine dofs in the neighborhood and the rows and columns associated with the 
coarse dofs, as 

Again, our only interest is in the rows of the neighborhood matrix corresponding to 
the fine dofs, including i. With this partitioning, it turns out that one way to solve 
the min-max problem is to take, its the coefficients for the interpolation operator for 
i, the entries of the ith row of the matrix 

It is useful to  note that, unlike the classical AMG case, there is no need to modify 
the matrix A f f  prior to computing the interpolation coefficients. Essentially, this 
is because the element stiffness matrices automatically carry with them the correct 
handling of strong and weak connections, so that the neighborhood matrix already 
has the correct relationships built into it. 

For many problems the -4MGe method produces a superior interpolation, and re- 
sults in good convergence rates [4]. In the remainder of this paper our goal is to 
accomplish a similar superior interpolation without the knowledge (and hence, ex- 
pense) of the individual stiffness matrices. 

5. INTERPOLATION FOR ELEMENT-FREE AMGE 

The process we propose for building the interpolation operator is very similar to 
the processes described for AMG and AMGe. Once again, we will proceed by defining 
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FIGURE 2.  The extended neighborhood D($), including the fine dofs 
to  be interpolated (solid circles), the coarse interpolatory set GJ$) 
(squares), and thp extension dofs (open cir-les marked X ) .  

a neighborhood of the fine dofs and an associated neighborhood matrix. Let $ be 
a set of fine dofs whose values we wish to interpolate. We define a(@) to be the 
neighborhood of @, which includes the coarse dofs that will be used to interpolate the 
dofs in $I. The set of coarse dofs in the neighborhood we denote Ozc($). 

Now, however, we define a third set of dofs 

fix($) = { j W ( $ I )  I aij # 0 for some i E Q($)\Qc($)} ' 

That is, a(@) can be viewed as the interior of the set a($) 3 O($) U ax($). Figure 
2 gives an example of such a neighborhood. 

We begin the construction of a neighborhood matrix by examining the rows of the 
matrix A that correspond to the fine dofs in $; that is, we will be concerned with the 
following partitioning of A: 

A f f  A f C  AfX 1 \%($I) 

} everything else on grid. 

5.1. Local (neighborhood) quadratic form. Our task next is to define a matrix 
associated with Q that yields a local version of the operator A, performing the same 
function as does the neighborhood matrix in AMGe. To do this we first build an 
extension mapping (matrix) E($)  that maps a vector defined on SI($) to a($) 

using the relation 

That is, the extension operator looks like 



For now we n-ill not be specific about the exact nature of tlic cstcrisioii operator. 
Rather. WP n i l l  describe how i t  ma!- bc I I S ~  to d ~ ~ ~ l o p  ;tri Intc’I  pojation f ( ~ 1 1 ~ ~ u l i i .  

after whicli n e  shall discuss desiraI)le piopertlc’s o f  the opclatoi 
I‘ve construct a neighborhood matrix from the first block of rwvs of the partitioned 

matrix 

For any vector [ 2 1,  consider its extension v = 

so that 

Vf 
v, 
VX 

, where vx is given by 
L -I 

vx = ~Xf(+)V, + Exc($)vc.  Let 

-A;; (AfCVC + A f x v x )  
? = [  vc 

VX 

be the so-called harmonic extension of v J ~ ~ ( + ) ~ ~ ~ ( + )  into St($) \ OC($). That is, one 
extends v, restricted to the “boundary” flc($) U fix($), into the “interior” fl($) \ 

We use the vi that minimizes the difference v - v^ in energy norm in the interpo- 
lation procedure. Since 

its energy norm is computable and equals 

llvr - ( W l A  = (Vf - (v^)dTAff(Vf - (3f) 
= (Vf + A;; (AfcVc + AfxVx))TAff(Vf + AT; ( A f C V C  + AjxVx)). 

Since A,, is positive definite, this implies that if we solve the equation 

0 = AffVf + ( A f C V C  + A J x v x )  
= (Aff + AfXEXf)Vf + (Afc + ~ f X J % c ) V c  

= &Vf + &VC, 

the minimization of {lvf-(V^)f((A is attained with zero minimum by vf = -i;;ifcvc. 
We can actually show (see Remark 7.1 and Lemma 7.1) that in the model finite 

element case considered in Section 7 the minimization procedure is equivalent to a 
quadratic functional minimization involving Neumann assembled matrices, as in the 
AMGe method (cf., [4]). 



6. EXAMPLES OF EXTENSION OPERATORS 

We describe here three extension operators E that can be used to construct the 
interpolation operator in the element-free approach. These are by no means all the 
useful extensions that we could concoct; they form, however, a simple set of esam- 
ples that will allow us to demonstrate the efficacy of the method and its underlying 
philosophy. 

The first we call the L2-extension because it is a simple averaging method. Given 
v defined on Q(i) ,  we wish to exterih it to vx, defined on Ox(q). Suppose that ix is 
an exterior dof, that is, a point from Ox($) whose value we wish to determine from 
the values of the dofs in O(i ) .  Let S = { j  E O ( i )  : a i x j  # 0); that is, S comprises 
those dofs in a(i)  to which the point ix is connected. It seems natural to consider 
using a simple average over these dofs as the extension at ix. Thus, the extension 
formula, for the dof ix, is given by 

j € S  

A somewhat more sophisticated extension we call the A-extension because it is a 
simple operator-induced method. The A-extension operator for the dof ix is given 
by the formula 

j G  

It may be seen that in this case the extension to  the exterior is a simple weighted 
average of the .values of the neighborhood dofs to which the exterior point is connected. 
The weights in the average are given by the absolute values of the matrix coefficients. 

The two methods just described share the property that they are computed point- 
by-point. That is, the extension formulas for the dofs in ax($) are determined 
independently. A second feature shared by the methods is that if the neighborhood 
vector v is constant, then the extended values are also constant, and have the same 
value as the entries of the neighborhood vector. This feature is clearly desirable for 
many elliptic PDEs, where the constant vector is in the null space or near-null space 
of the operator A. 

The third esample we describe is based on the minimization of a quadratic func- 
tional. Again, let v be a vector defined on Q(i)  that we wish to extend to Qx(+). 
We construct the extension to be that operator which produces vx that minimizes 
the functional Q(vx), where 



It  is cvidcni that.  likv the previous extension operators, if v is constant, on f2(i) 
t l i t>n t lie clofs in  n-ill also 1121-c t h e  S ~ I C  constmt ~i11110. L-iilikc t,hc prcvious 
extension oprrat,ors. w1iic:h arc dcternii~ied one tfof at  ii time. t liis is a "siiniiit~rieous:' 
extension, computing formulas for extending to all of tlic exterior dofs together. -4s 
such, it is necessarily more expensive to compute. FT-e also note that this extension, 
and the interpolation it generates, is equivalent to the method recently proposed in 

-4 final example is given by minimizing the following "cut-off" quadratic functional: 
111. 

(13v)~A,~~,(Bv) e min 

subject to vf ,  vc fixed. Here 

is a diagonal matrix. A good choice is, a diagonal matrix formed from the vector 

Here we used the blocks of A corresponding to its fix($) rows. 
It is easily seen that the extension mapping is actually defined as 

VX = EXcvc + E X f v J  

= -s,'(Axx)-'[Axf, Ax,] [ 21 . 
Note that this extension mapping is also a simultaneous extension operator and an 
averaging one; i.e., if v, = (l)= and VJ = (l)f, then vx = (1)X. 

6.1. Classical AMG as an extension method. The interpolation method of the 
classical AMG algorithm popularized by Ruge and Stuben [9] may be viewed as an 
extension method. Here the neighborhood is just the dof to be interpolated together 
with the dofs that will be used to compute the interpolated value. That is, Q(i) = 
{i} uRc(i). The extended neighborhood then includes all fine dofs that are connected 
to i, 

An A-extension is defined in the following manner. For each ix E ax($), set vi* = vi 
if ix is weakly connected to  i (Recall that in classical AMG, as developed for M -  
matrices, the dof i is said to be strongly connected to the dof j if 

where 6 is a user-specified parameter, and weakly-connected otherwise). If ix is 
strongly connected to i the extension is defined by 

1 
vax = aixjvj. 

aixi i  jcfic(+) 
jEflc(+) 
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FIGURE 3 .  The neighborhood of the fine dof i (large solid circle) for the 
stretched quadrilateral element problem. The problem. is semicoarsened; 
squares denote the coarse neighbors L?,(i) while the open circles are the 
exterior points Rx ($). 

A simple example should suffice to illustrate these extension methods. Suppose the 
problem -Uxz - UYv = f(z, y) is discretized using a regular Cartesian grid of points 
making up the vertices of quadrilateral elements. Suppose further that the elements 
had dimension h, x h, where h, >> h,. As h,/h, -+ 0 the operator stencil tends 
toward 

[ -; -: -:I 
-1 -4 -1 

Since there is effectively no coupling between a given point and its neighbors to the 
east or west, the appropriate choice is to semicoarsen, selecting every other line of 
points with constant y-coordinate to be coarse points. Using the same logic, the 
natural interpolation is to  have each fine dof interpolated only using the values to the 
north and south of it, each with equal weighting of 1/2. Consider the interpolation 
of one point, i ,  shown in the center of its neighborhood in Figure 3. For either the 
Lz- or A-extensions, we might select O(i)  = i U G,(i) where, in this instance, Qc(i )  = 
{N,S,SW, NIK SE,NE}.  Then St,(+) = {W,E}. We see then that Aff = [SI, 
AI, = [ -4 -4 -1 -1 -1 -1 1, and A,, = [ 2 2 1. For the A-extension it is 
easy to compute the extension operators 

) and 4 4  Ex, = - 

from which 
1 

2ff = (;) and Aft=--( -11 -11 -1 -1 -1 -1) 

which yields a interpolation operator 
1 I PA=-(  11 11 1 1 1 1 ) .  

26 
We see that the values to the north and south are used in the interpolation with 
weights 11/26 zz 0.423 and that  the four points diagonally adjacent to i all are 
weighted 1/26 M 0.038. The ideal weights, of course, are 0.5 and 0, respectively, so 



Here the dofs to  the north and south are weighted 16/44 M 0.364 while the diagonally 
adjacent dofs are weighted by 3/44 M 0.068. For this problem, then, the A-extension 
is significantly better than the &extension. 

By contrast. it is a straightforward calculation to show that classical AMG produces 
the interpolation operator 

where the north and south dofs are weighted by 4/12 M 0.333 and the diagonally 
adjacent dofs are weighted by 1/12 M 0.083; these weights are farther from the ideal 
than the weights produced by either the A- or &-extension. 

Finally consider the extension operator based on minimizing the ''cutkofY qua- 
dratic functional. The additional matrix blocks involved read: 

Axx 

AXf 

Axc 
-4 
0 

-4 
0 

0 
-4 -4 O I .  

The vectoi = ( 1 ) ~ .  This is seen as follows = -A,:[Axj Axc] 

and hence 

Axj(1)j  +Ax& = - w x ,  

which implies 

That is, the diagonal matrix 8 is the identity and hence the extension matrices then 
read: 

Exf = -A,',Axf = --$ [ 1 ,  
1 Ex, = - A , ~ A ~ ~  = $ [  1 1 0 0 4 4  

1 1 4 4 0 0  



h 

The modified matrices &-Iff and ,zlc take the form: 

- 

= 7, 

= [-4, -4, -1, -1, -1, -11 + [2, 2 ] i  X j c  = Aj ,  + A,,yE,, 
- - [-4, -4, -1, -1, -1, -I] + [i, ;, 1,1,1,1] 

= [-;, -;, o,o,  o,o]. 
That is, the interpolation coefficients are the “perfect” ones: 

7. TWO-GRID ANALYSIS FOR A MODEL FINITE ELEMENT PROBLEM 

Before providing numerical results, we present an analysis of the quality of the 
“element-free -4MGe” interpolation. That is, we prove an “approximate” harmonic 
property of the interpolation mapping and show that it provides a partition of unity. 
Specifically, we assume that the problem is a standard finite element discretization of 
a second order elliptic problem 

U(U, E )  U(X)VU - VU dx = (f, E )  21 E I< J 
where V is a finite element space of piecewise linear functions over quasiuniform tri- 
angular elements that cover a given 2 4  polygonal domain. For simplicity, we assume 
that homogeneous Neumann boundary conditions are imposed and that (f, 1) = 0 
(to insure solvability). 

Let us denote, for any element e,  

In the following, we assume (only for simplicity) that the neighborhood a(i) f 
S2(i)URx(i) for any fine dof i is formed by union of triangles that share dof i as a com- 
mon vertex. Thus we will use i instead of .rl, denoting the neighborhoods (n(i), Qx(i) ,  
and Q,(i)) and the extension mappings. In particular, we denote Ei = [ExJ, EX,] 
where for brevity  EX^ = E ~ j ( i )  and E X ,  = ExC(i).  A closer look at the analysis to 
follow, however, shows that it applies as well to more general (Le., larger) neighbor- 
hoods. 

In what follows, for any subdomain (union of triangles) G, we let UG(. ,  .) denote 
the bilinear form a restricted to G. The corresponding subdomain matrix (assem- 
bled from the individual element matrices A,) will be denoted by A:. We omit the 
superscript N when there is no confusion between A: and Ac, the submatrix of 
the original matrix A (corresponding to G). Note that in the latter case =1G cor- 
responds to a matrix with homogeneous Dirichlet boundary conditions imposed on 
a(G U {elements neighboring G}). 



For this discussion n ~ l  asslime t,hat E,, the local extension mapping used to tiuild the 
interpolation c*ocffic.itnts. is Imsccl 011 awraging. alt,lioilgh 110 specific. r i i l ~  is a s~ i i~n rx l .  

do, hon-c\-cr. assiiiiic' that ,  E = E ( i )  has the particular form 

I W  [ i: Y ] } Q c ( i )  
0 Ex, }Rx(i) 

That is, Ex,  = 0 and Ei = [0, Exc].  

Remark 7.1. The general case of E; = [Exf ,  Ex,] can be reduced to  the particular 
case above b y  using the modified extension mapping Ei = [o, Ex,] where 

h h 

h 

Ex, = Exf ( ---ii;if,) + EX,. 
h 

To see this, recall that Aff = A,, + AfxExf  and zfc = Af, + AfxEx,, and note that 
the modified extension mapping extends a constant vector defined on R,(i) to be the 
same constant on Rx(i), that is, 

n n  

-@XC(l)C = -ExfA;;AfC(1), + E xc ( 1)c  
= Ex f (1) f + Ex,( 1)c 
= (1)x. 

A f x ( ~ ) x + A f c ( ~ ) c = O  t henAf f (1 ) f  +A,X(EXf(l)f  h n  + ~ x c ( ~ ) c ) + A f , ( l ) c  = o .  That 
Here we have used the fact that since (for the second order elliptic problem) Afj (  l)f + 

is, i f f ( l ) f  + z fc ( l ) c  = 0, implying that (1)f = -A;flAf,(l),. 

terpolation as does E*, i e . ,  that 
W e  still must show that the modified extension mapping Ei leads to the same in- 

Consider the minimization problem 

0 

= inf ~ a ( ~ ) ( w ,  w). 
w: wc=vc 
wx=Eiw 

(7.2) find vf such that 
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Thus we seek uUf7 the value of‘ u; or1 12(i) \ Q , ( Z ) ,  which rniriiriiizes the quadratic form 
fl,n(i) (uj> ,I[ , )  n-hen tht  values o f  71: arc fixed at  the coarse points and are “ s I a \ ~ “  iit tlic 
exterior points (Q,y(z)): t ha t  is. the!- are extrapolated from the interior I ) ( / )  i t~id thc 
coarse points s2,(i) by E,u;. 

Lemma 7.1. The solution to the rninirnizution problem (7.2) produces the some in- 
terpolation coeficients element-free AMGe, namely, those given b y  -A?; ( A J , ~  Exc + 
A f , ) .  That is, the minimizer is given b y  wf = vj E -A$(AJxExc  + Afc)v,. 

Proof. Consider the Neumann matrix 

We use the superscript “N” for the blocks which differ from the corresponding blocks 
of An(i), the principal submatrix of the original matrix A corresponding to the sub- 
domain n(i). Note that the “N” blocks are not accessible (available) and not used 
in our algorithm. We have E,vlaX(,) = EXJV,. Hence, u ~ ( ~ , ( w ,  w) for w, = vc and 
wx = E i ~ l ~ ~ ( ~ )  leads to the following matrix expression: 

Minimizing this symmetric positive semi-definite quadratic form with respect to wf 
is equivalent to solving the equation 

AffWf + ( A f c  + A,xExc)% = 0, 
which is the same equation that specifies in the element-free AMGe interpolation 
procedure. 0 

In the next lemma we will remove the constraint on v being fixed at the aX(i)  
points. 

Lemma 7.2. The following quadratic forms are spectral13 equivalent, 

ql(zI,, v,) inf u ~ ( ~ , ( v ,  v), and q~(v,,vc) z inf aa(i,(v, v). 
v: Vln,(it=u‘ u: u, fied 

UX=E;V 

That is, there exists a positive constant r] such that 

d v c ,  v c )  I 42(vc, VC) L vqI(vc1 VC) for all vc. 



Proof. It suffices to show that the two quadratic forms have the s a n i ~  null-space. Tlie 
~iiill-spacr~ of gl is T:, = coilst and the niill-space. of q.. is t h c  sa11io ;is t h a t  of u g ( , ~ , ( ~ : ;  7 ' )  

wit11 'I; : '(;(. = const and E, c = const, 011 O,y( i j .  Sot e that ( I , ~ ( ~ )  ( 1 % .  I . )  = 0 iriiplics 'cf is 
the same constant as uc. Then Eiu is also the same constant, since it is an a\-eraging 
operator based on the values of 'u, and 'u j .  Hence the forms q, and q2 bot.li.vanish 
only for constant 21,. In order to show that the constant 7 is bounded independently 
of Ei, one first easily sees that 

The constant C depends only on the number of points used in the averaging procedure 
(E;) ,  i.e., it is bounded by the total number of coarse points R,(i) (plus the interior 
point i). The dofs I and k in the summation are either coarse dofs or i, and p(e )  is 
defined in (7.1) to be the maximal value of the local ellipticity bound associated with 
the original elliptic operator coefficient a(z). More specifically, for each ix E Qx(i)  

v ( ix )  = ( & v ) ( i x )  = % , k . ( k ) ,  
kcRc(i)U{i} 

where 



It is also true that 

This shows that 77 can be chosen bounded independently of the actual averaging 

Then the following corollary, involving the element-free AMGe interpolated vector 
PvC, is proved in the same way as Lemma 7.2. 

- Corollary 7.1. Consider the extended neighborhood of i, 6(i) = u { e ,  e c a(i) or e c 
O ( j ) ,  for all j E O x ( i ) } .  There is a constant K = ~ f i ( ~ )  > 0, locally estimated, such 
that the following bound holds: 

extension mapping Ei. 0 

Proof. Let 21 be defined on 6(i) as follows: 

(P.C>(k), k E a@>, 
v ( k )  = vc(k), k is a coarse dof outside a(i), { (Ejv)(k), k E St&), for some j E Rx(i). 

We see that 21 at every fine dof k in 6(i) is an average value of some neighboring 
coarse dofs from 6(i). Hence, in the same way as in the proof of Lemma 7.2, we 
establish the inequality 

a ~ ~ ) ( v , v )  5 ~1 inf ahli)(w, w). 
w: wc=uc 

Since ( Pvc, Pvc) 5 ah(*) (v, v ) ,  the desired result follows. 0 

For each fine dof i ,  define 2(i) to  be the number of overlapping domains on f i( i) ,  
that is, the number of domains h(j) such that h(j) n h(i) # 8. Then we may state 
the following theorem. 

Theorem 7.1. The element-free interpolation mapping P exhibits the following ap- 
proximate harmonic property: 

u(PvC, Pvc) 5 IE inf u(w, w), 
w: wc=uc 

where the constant K = 

Corollary 7. I. 
max ~fi(~)Z(i) ,  and the ~ f i ( ~ )  are the local constants from 

;=fine dof 
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Prooj. The proof simply follows from the fact that 

z=fine dof 

and by summation of the local estimates from Corollar? 7.1. 

Another important property of the element-free interpolation 
it partitions unity, as we show in the following theorem. 

Theorem 7.2. P provides a partition of unity. Specifically, the 
1. 

0 

mapping P is that 

.. 

row sums of P are 

Proof. Let vi = Pv, be given by vf = C a ~ , ~ , v c ( i c ) .  Assume that vc(ic) = 1 

on CI,(i). Now, P uses the formula that minimizes (7.2) and the minimum (zero) is 
achieved for Eiv(j) = 1 at slx(i) and vf = 1. That is, we find that 

1, €0, ( a )  

a, €a, (1) 

which is the desired unity row-sum property of P. 0 

Remark 7.2. Theorems 7.1 and 7.2 are the main goals of many two-grid convergence 
analyses and they imply convergence of the respective two-grid AMG methods, cf., 
e.g., ~ 4 1 ,  181, 1131, and 171. 

8. NUMERICAL EXPERIMENTS 

We describe here several sets of numerical experiments designed to test the efficacy 
of the element-free AMGe methods described above. For each of several problems we 
apply a set of interpolation rules within an AMG code. The problems are then solved 
using a CG solver, preconditioned with one V-cycle of AMG. 

. The interpolation rules are: 
the AMGe rule [7] for the finite element problems; 
three element-free AMGe rules from Section 6: 

1. &-extension; 
2. A-extension; 
3. (only for scalar PDE) the simultaneous extension based on minimizing the 

For systems problems the unknowns are split into physical variables. That is, for 
scalar problems the rule is as described in Section 6, while for 2-d elasticity, with 
physical variables u and v (displacement in the x- and y-directions, respectively) we 
perform the extensions (and associated interpolation) of exterior dofs of type u using 
only neighborhood dofs of type u; similarly, the extension to exterior dofs of type 
are carried out using neighborhood dofs of type v; this applies both to L2 and A- 
extensions. The local neighborhood about a point is defined by the sparsity pattern 
of the matrix about that point and the averaging involves only dofs from the sparsity 
pattern set S (see Section 6). 

quadratic functional described in Section 6 .  



FIGURE 4. Sequence increasingly coarse elements, formed by element agglomeration. 

8.1. An elliptic problem on a triangular element mesh. We apply the various 
interpolation rules to a second order elliptic PDE 
(8.1) - V -  (A(z,y)Vu) = f (5 ,y)  on G 

where G is the unit square. The matrix of diffusion coefficients includes functions 
with relatively benign characteristics- there is both spatial variability and jump dis- 
continuity in the coefficients, but the jumps are of relatively small magnitude and the 
variation is mild. The discretization is by a finite-element method on an unstructured 
triangular mesh. The coarsening algorithm is one of element agglomeration. That 
is, the coarse grids are the vertices of coarse elements produced by an agglomeration 
algorithm proposed in [7]. Figure 4 displays the coarsening sequence for a typical 

(8.2) u ( w )  = S(5,Y) on 



TABLE 1. Coarsenzng hzstory f o r  the problem -V-A(x.y)Vu = f o n  on  
unstructured trzangular fine grad. For each level of each problem sue .  
(‘nz” 2s the number of nonzero entries in the operator matrzx, .*dofs“ 
gives the number of degrees of freedom, and (‘elts” gives the number of 
finite elements in the agglomerated grid. 

0 

1 

2 

3 

5 

8 1 x 3  

9 n z  

10 

nz 
dofs 
elts 
nz 

dofs 
elts 
nz 

dofs 
elts 
nz 

dofs 
elts 

4 n z  
dofs 
elts 
nz 

dofs 
elts 

6 n z  
dofs 
elts 

7 n z  
do& 
elts 

dofs 
elts 

dofs 
elts 

doh 
elts 

nz 

No. of elements n 
25600 
90321 
13041 
25600 
32898 
4108 
6013 
14305 
1507 
1489 
7193 
643 
392 

3458 
302 
158 

1580 
140 
70 

714 
68 
33 
274 
30 
14 

120 
16 
7 

42 
8 
3 
16 
4 
1 

I 6400 
22761 
3321 
6400 
9540 
1152 
1427 
4361 
451 
374 
2098 
198 
117 
975 
91 
47 
453 
45 
22 
188 
22 
10 
84 
12 
5 
30 
6 
2 
16 
4 
1 

1600 I 400 1 

I 
the number of elements decreases by about 75% at each coarsening for the first few 
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coarsenings. aft(y Iy11icil i t  d ( ~ ~ e a s ( ; ~  about 50% per I(:\T]. Tht. 1iiiiilber of 11oiizerO 
cntrios i n  the I11;jt r i r  <1(yyms()s I)!- approximately Xi% 1)cir I V ~ T I .  wliiIc t 1 1 ~  n 1 1 l ~ ~ h ~ r  of 
degrees of frodon1 teli(ls T O  t i c~ rcasc  11)- .30-60% n-ith cvi(;li siiccxssi\-r) I ( 3 1 - d .  

For each of the four interpolatioI1 rules. the problem is solved using a preconditioned 
conjugate gradient method: where the preconditioning consists of a single \ - (  1:l)- 
cycle of AMG, with a GauB-Seidel smoother. The iteration is run until the residual 
is less than in norm. We report the results in Table 2. For each problem size 
we display, for each interpolation rule, the number of preconditioned CG iterations 
required to  achieve the desired residual size and e, the average convergence factor 
over the iterations. 

Interp. rule 400 elts 1600 elts 
AMGe iterations 14 16 

A-estension iterations 13 15 

L2-estension iterations 13 16 

quadratic funct. iterations 13 15 

e 0.115 0.172 

e 0.118 0.158 

e 0.119 0.161 

min. e 0.105 0.152 

TABLE 2. CG convergence results; unstructured triangular fine grid; 
second order elliptic problem; V (  1, 1)-cycle MG, Gaufl-Seidel smoother 
used as preconditioner. 

6400 elts 
21 

0.252 
19 

0.218 
19 

0.227 
19 

0.222 

25600 elts 
23 

0.289 
20 

0.247 
21 

0.249 
19 

0.231 

Examination of the results reveals that all three of the extension methods, A- 
extension, ,?&extension, and quadratic functional minimization, perform at least as 
well oti this problem as does AMGe. In some cases the performance of the exten- 
sion methods is marginally better than AMGe. The amount of work entailed for 
the A-extension and the &-extension methods is comparable to that of AMGe, pro- 
vided that the neighborhoods are selected to be of comparable size as the element 
neighborhoods (which is the case in these experiments). For the quadratic functional 
minimization the work is somewhat greater, but still comparable. The advantage 
of the element-free methods is, of course, that there is no requirement to have the 
actual individual stiffness matrices that are required in AMGe. For this experiment 
this represents a considerable savings in storage. 

8.2. Two dimensional elasticity, the thin beam. We consider next the two di- 
mensional plane-stress elasticity problem on a cantilevered beam, fixed at one end. 
The domain of the problem is G = (0 , l )  x (0, d)  with d 5 1. For d << 1 this is the 
thin-beam problem. The problem is 

1 - u  l + u  
UZZ + 2 uyy + 2 vZuZy = f l y  

u xy + 2 vXX + vUyy = f2, 
l + u  1 - u  

2 
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ii 
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h 

FIGURE 5. The than-beam elasticity problem domazn. Homogeneous 
Dirichlet boundary condztions are applzed ut x = 0 .  

where u and 21 are displacements in the x and y directions, respectively. This can 
be a difficult problem for standard multigrid methods, especially when the domain 
is long and thin. The problem is discretized using uniform square finite elements of 
size h. Nodal coarsening is used, with the coarse nodes being the vertices of elements 
created by the agglomeration algorithm from 171. After certain levels of coarsening 
the algorithm agglomerates only along the z-direction. 

We present results in both the thick beam (d = 1.0) and thin beam (d = 0.05) 
cases. For each case we present results for three sizes of the discretization parameter: 
h = 0.05,0.025, and 0.0125 for the thick beam and and h = 0.025,0.0125, and 0.00625 
for the thin beam. The coarsening histories of the agglomeration algorithm are shown 
in Table 3. Table 4 shows the results of the experiments for the beam problem. As 
in section 8.1, preconditioned conjugate gradient is used as the solver, with a single 
V(1,l)-cycle of AMG as the preconditioner, with a Gauf-Seidel smoother. For this 
problem we show the number of iterations required to achieve a residual norm less 
than and also the convergence factor of the final iteration. For this problem we 
do not implement the quadratic minimization method described in section 6 .  That 
method is for scalar problems, while this problem is a system of PDEs. K e  use 
the standard AMGe method and compare it with the A- and Lz-extension methods 
described above. Our expectation is that AMGe should outperform the element-free 
methods, at least on the thin beam problem; this is the problem for which .\MGe 
was originally developed. We observe, however, that for the thick beam problems 
the element-free methods both outperform AMGe. First, we note that it takes fewer 
iterations to reach the tolerance. It is also apparent that the element-free methods 
are more scalable, in that the number of iterations does not grow with the problem 
size. The AMGe method requires more iterations for larger problems. 

For the thin beam problem, we observe the results we naturally expect. That is, 
AMGe outperforms the element-free methods, requiring fewer iterations. Further, 
AMGe appears to be more scalable on this problem than the extension methods. 
The Lz-extension method exhibits a distinct lack of scalability as the problem grows 
larger. 



Thick Beam d = 1.0 
h = 0.050 1 h = 0.025 I 11 = 0.0125 level 

9. CONCLUSIONS 

In this papen- we propose a general rule for building interpolation weights in AMG, 
thus extending the applicability of AMG to more general settings than the traditional 
M-matrix case. The applications include elliptic problems on unstructured finite 
element grids, where both scalar problems and systems (like elasticity) are considered. 
The element-free AMGe method seems as competitive as the AMGe methods but 
entail much less overhead. The element information and the element matrices, in 
particular, are essential for the AMGe methods but are not required for element-free 
AMGe. If we assume more information is available (such as the rigid body modes in 
the case of elasticity) i t  may be incorporated into the construction of the extension 
mappings. Thus element-free AMGe can be made to reproduce the extra modes in 
the interpolation from their coarse values. This property is important in the AMG 
methods for elasticity problems (cf. [12]), and incorporating it into element-free 
AMGe is a subject of ongoing research. 

Thin Beam d = 0.03 
h = 0.025 I h = 0.0125 I h = 0.00625 
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ROBUSTNESS AND SCALABILITY OF ALGEBRAIC MULTIGRID 

ANDREW J. CLEARY- , ROBERT D. FALGOUT’ , Vz4N EMDEN HENSON- , JIPI E 
JOKES’, THOh4.4S A. MANTEUFFELt ~ STEPHEN F. MCCORhfICKt . GERALD K. 

M I R A N D A ~  A N D  JOHN w. R U G E ~  

Abs t r ac t .  Algebraic multigrid (AMG) is currently undergoing a resurgence in popularity, due in 
part to the dramatic increase in the need to solve physical problems posed on very large, unstructured 
grids. IVhile AMG has proved its usefulness on various problem types, it is not commonly understood 
how wide a range of applicability the method has. In this study, we demonstrate that  range of 
applicability, while describing some of the recent advances in AMG technology. Moreover, in light of 
the imperatives of modern computer environments, we also examine AMG in terms of algorithmic 
scalability. Finally, we show sane of the situations in which standard AMG does not work well, and 
indicate the current directions taken by AMG researchers to alleviate these difficulties. 

Key words. algebraic multigrid, interpolation, unstructured meshes, scalability 

1. Introduction. Algebraic multigrid (AMG) was first introduced in the early 
1980’s [ l l ,  8, 10, 121, and immediately attracted substantial interest [32, 28, 30, 291. 
Research continued at a modest pace into the late 1980’s and early 1990’s [18, 14, 21, 
25, 20, 26, 221. Recently, however, there has been a major resurgence of interest in the 
field, for “classical” AMG as defined in [29], as well as for a host of other algebraic- 
type multilevel methods [3, 16, 34, 6, 2, 4, 5, 15, 33, 17, 35, 36, 371. Largely, this 
resurgence in AMG research is due to the need to solve increasingly larger systems, 
with hundreds of millions or billions of unknowns, on unstructured grids. The size 
of these problems dictates the use of large-scale parallel processing, which in turn 
demands algorithms that scale well as problem size increases. Two different types of 
scalability are important. Implementation scalability requires that a single iteration 
be scalable on a parallel computer. Less commonly discussed is algorithmic scalability, 
which requires that the computational work per iteration be a linear function of the 
problem size and that the convergence factor per iteration be bounded below 1 with 
bound independent of problem size. This type of scalability is a property of the 
algorithm, independent of parallelism, but is a necessary condition before a scalable 
implementation can be attained. 

Multigrid methods are well known to be scalable (both types) for elliptic prob- 
lems on regular grids. However, many modern problems involve extremely complex 
geometries, making structured geometric grids extremely difficult, if not impossible, 
to use. Application code designers axe turning in increasing numbers to very large 
unstructured grids, and AMG is seen by many as one of the most promising methods 
for solving the large-scale problems that arise in this context. 

This study has four components. First, we examine the performance of “classical” 
AMG on a variety of problems having regular structure, with the intent of determining 
its robustness. Second, we examine the performance of AMG on the same suite of 
problems, but now with unstructured grids and/or irregular domains. Third, we 
study the algorithmic scalability of AMG by examining its performance on several of 
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the problems usillg grids of increasing sizes. Finally. \ye i i i t  r-oduc~x ,i II('\Y met 1l0d for 
computing interpolation n-eights, and n e  s h o ~ .  that in cert,ain troublesome cases it 
can significantly improve AMG performance. 

Our study differs from previous reports on the performance of AIIG (e.g., [29. 301) 
primarily by our examination of algorithmic scalability, our emphasis on unstructured 
grids: and the introduction of a new algorithm for computing interpolation weights. 
In Section 2, a description of some details of the AMG algorithm is given to provide 
an understanding of the results and later discussion. In Section 3,  we present results 
of AIIG applied to a range of symmetric scalar problems, using finite element dis- 
cretizations on structured and unstructured 2D and 3D meshes. AMG is also tested 
on nonsymmetric problems, on both structured and unstructured meshes, and the re- 
sults are presented in Section 4. A version of AMG designed for systems of equations 
is tested, with the focus on problems in elasticity. Results are discussed in Section 
5. In Section 6 ,  we introduce and report on tests of a new method for computing 
interpolation weights. We concluding with some remarks in Section 7. 

2. The Scalar AMG Algorithm. We begin by outlining the basic principles 
and techniques that comprise AMG. Detailed explanations may be found in [29]. 
Consider a problem of the form 

where -4 is an n x n matrix with entries a,,. For convenience, the indices are iden- 
tified with grid points, so that ui denotes the value of u at point i, and the grid is 
denoted by R = { 1,2, .  . -, n}. In any multigrid method, the central idea is that error 
e not eliminated by relaxation must be removed by coarse-grid correction. Applied to 
elliptic problems, for example, simple relaxations (Jacobi, Gauss-Seidel) reduce high 
frequency error components efficiently, but are very slow at removing smooth compo- 
nents. However, the smooth error that remains after relaxation can be approximated 
accurately on a coarser grid. This is done by solving the residual equation Ae = r 
on a coarser grid, then interpolating the error back to the fine grid and using it to 
correct the fine-grid approximation. The coarse-grid problem itself is solved by a re- 
cursive application of this method. One iteration of this process, proceeding through 
all levels, is known as a multigrid cycle. In geometric multigrid, standard uniform 
coarsening and linear interpolation axe often used, so the main design task is to choose 
a relaxation scheme that reduces errors the coarsening process cannot approximate. 
One purpose of AMG is to  free the solver from dependence on geometry, so AMG 
instead fixes relaxation (normally Gauss-Seidel), and its main task is to  determine a 
coarsening process that approximates error that this relaxation cannot reduce. 

An underlying assumption in AMG is that smooth error is characterized by small 
residuals, that is, Ae = 0,  which is the basis for choosing coarse grids and defining 
interpolation weights. For simplicity of discussion here, we assume that A is a sym- 
metric positive-definite M-matrix, with a,, > 0,ajj 5 0 for j # i, and Caij  2 0. 
This assumption is made for convenience; AMG will frequently work well on matrices 
that are not M-matrices. To define any multigrid method, several components are 
required. Using superscripts to indicate level number, where 1 denotes the finest level 
so that A' = A and R' = R, the components that AMG needs are as follows: 

. 

1. "Grids" R' 3 R2 3 . . . 3 RM. 
2. Grid operators A', A2,. . . , A M .  
3. Grid transfer operators: 

Interpolation I:+l , k = 1,2, .  . . M - 1, 



Restriction I;+'.  k = 1 , 2 . .  . .AI - 1. 
1. Relaxation scheme for each level. 

Algorithm: M V k ( u k ,  fk) .  The (1-11, pl) V-cycle. 
Once these components are defined, the recursively defined cycle is as follon-s: . 

If k = M ,  set uM = (An')-'f". 
0 t herwise: 

Relax 1-11 times on A k u k  = f k  . 
Perform coarse grid correction: 

Set U k + l  = 0 f k + l  = I k + + ' ( f k  - Ak k 
7 k u 1. 

"Solve" on level k+l with MVk++'(uk++'  > f"' 1. 
Correct the solution by uk t u ~ + I ~ + + ' u ~ + ~ .  

Relax v2 times on Akuk  = fk .  
For this cycle to work efficiently, relaxation and coarse-grid correction must work 

together to effectively reduce all error components. This gives two principles that 
guide the choice of the components: 

P1: Error components no t  eficiently reduced by relaxation must be 
well approximated by the range of interpolation. 

P2: The coarse-grid problem must provide a good approximation to 
fine-grid error in the range of interpolation. 

Each of these affects a different set of components: given a relaxation scheme, 
P1 determines the coarse grids and interpolation, while P2 affects restriction and 
the coarse grid operators. In order to satisfy P1, AMG takes an algebraic approach: 
relaxation is fixed, and the coarse grid and interpolation are automatically chosen so 
that the range of the interpolation operator accurately approximates slowly dimin- 
ishing error components (which may not always appear to be Usmoothn in the usual 
sense). P2 is satisfied by defining restriction and the coarse-grid operator by the 
Galerkin formulation: 

When A is symmetric positive definite, this ensures that the correction from the 
exact solution of the coarse-grid problem is the best approximation in the range of 
interpolation (231, where "best" is meant in the A - n o m :  by llvll~ E ( A v , v ) ' / ~ .  

The choice of components in AMG is done in a separate preprocessing step: 
AMG Setup Phase: 

1. Set k = 1. 
2. Partition Rk into disjoint sets Ck and Fk.  

(a) Set Rk+l = Ck . 
(b) Define interpolation 

3. Set I:+' = (I:++')* and A'++' = Ik+'AkIk k k+l' 
4. Ifilk+' is small enough, set M = k+l and stop. Otherwise, 

set k = k + 1 and go to  step 2. 
Step 2 is the core of the AMG setup process. Since the focus is on coarsening a 

particular level k, such superscripts are omitted here and c and f are substituted for 
k + 1 and k where necessary to avoid confusion. The goal of the setup phase is to 
choose the set C of coarse-grid points and, for each fine-grid point t E F R - C, 
small set C, c C of interpolating points. Interpolation is then of the form: 



ix-iwre fs is the number of flops required to coarsen a subgrid. Lerting Is = 90 
(this is representative of what appears in the PFMG code mentioned belon-): 
we have that P z 207. For the PFMG algorithm, we set 

K ~ Q  = (CI + c2 + L ) p f s ~ ,  

n-hich yields a P that depends on n, cl, and c2. However, we can bound P 
as follows 

In the case of an isotropic problem, the smoothing cost per \,--cycle for the 
PFMG algorithm is the same as for MG, hence the lower bound in (7). The 
upper bound is roughly a factor of four larger, so that P =Z 898 for the 
parameters being considered here. Note from (6) and (7) that P depends 
strongly on the ratio of communication latency to computation speed. 

This analysis also bears out in practice. In Figure 1, we present results 
from an MPI-implementation of PFMG run on an Intel Paragon. The problem 
solved was the anisotropic diffusion problem (1) with n = 40, €1 = 1/10, 
and E Z  = 1/100. The figure compares the cost of coarsening using approach 
A2 (labeled “Coarsen”) with the cost of a V-cycle. The time for A2 was 
not computed directly, but estimated by taking the overall setup time, and 
subtracting the setup time for the single processor run. The figure suggests 
that the cost of replicating the grid coarsening procedure is greater than the 
cost of a V(1,l)  cycle when P is larger than about 500. 

(6/fs)(d,Y) L fi 5 (Wfs)(dr). ( 7 )  

PFMG Results 

0 lo00 2000 3000 4000 

procs (problem size) 

Fig. 1. PFMG results on an Intel Paragon comparing the cost of grid coarsening 
to the cost of a V-cycle. 

3.2 Ghost Zones 

The notion of ghost zones or shadow zones is commonly used in parallel 
linear solver codes, and is simply the extra “layer” of data needed from off- 
process to complete an on-process computation. The size of the ghost-zone 



layer can vary depending on the algorithm implementation. 1i-e will conside! 
here the use of a single layer of ghost zones in the library setting described 
earlier. Figure 2 illustrates (in 2D) the layout of data and ghost zones for 
tn-o 7 x 7 subgrids, and shows a typical communication pattern for a .%point 
stencil computation. Note that, to simplify code, subgrid data and ghost- 
zone data are stored together as part of a single array in memory. To reduce 
the number of copies, this extra ghost-zone memory is always present in the 
1-ector data structure (note that ghost-zone memory is usually not persistent 
in unstructured-grid multigrid codes). 

..e.. 
e.... 
...e. 

0 

0.e.e 

0 0 0 0 

Fig. 2. Ghost zones and communications for a 5-point stencil and 7 x 7 subgrids. 

For the MG and PFMG algorithms, the storage overhead associated with 
ghost zones is quite acceptable. But, for more robust methods like SMG, 
ghost zone storage can be problematic. To see this, we can again use the 
models presented in Section 2. The coefficient multiplying p in each model 
also estimates the amount of ghost-zone storage used. In Figure3, we plot this 
storage cost for the SMG algorithm relative to n3, the cost of storing a vector. 
We see that the ghost-zone overhead is quite high, but we also note that the 
growth rate is moderate. That is, a log, N dependence of the &term in a 
model does not necessarily produce a ghost-zone memory overhead problem. 
For example, consider using alternating line relaxation in a full-coarsening 
multigrid method. Using a similar derivation as for SMG, it is easy to see 
that the ghost-zone storage cost is approximately 6Ln2, or about 30% that 
of SMG. In comparison, the overhead for PFMG for the problem described 
in Section 3.1 is about 0.6, and does not grow with P. 

3.3 Mixed Programming Models 

There is a recent trend to build large, parallel computers out of commodity 
parts. The largest such computers are clusters of shared memory processors 
(SMPs). In this section, we will discuss the use of mixed programming models 
for implementing parallel multigrid methods. 



SMG Model (Ghost Overhead) 

0 2000 4000 6ooo so00 loo00 

procs (problem size) 

Fig. 3. SMG model illustrating relative storage costs of ghost zones. 

Figure 4 illustrates two basic approaches for distributing (and comput- 
ing on) subgrid data on a 4-processor SMP node. Pictured on the left (the 
mixed model) is one large subgrid with ghost layer (for communicating with 
other SMP nodes) and four regions of data, each assigned to different threads 
(these will usually be run on different processors). Pictured on the right (the 
message-passing model) are four subgrids with ghost layers, each subgrid as- 
signed to different processes (again, these will usually be run on different 
processors). 

s hared-memory 

Fig.4. Schematic of mixed model and message-passing model for a single 4- 
processor SMP node. 

In theory, the mixed model has a couple of advantages over the pure 
message-passing model. The first advantage is a reduction in the number 
of messages going in and out of the SMP node. For example, for a &point 
stencil computation, the mixed model depicted in the figure requires 4 com- 
munications outside of the SMP and the messagepassing model requires 8. 
The second advantage is the ghost-zone memory savings due to the fewer 



and larger subgrids in  the mixed model. In the figure, the ghost-zone nlcn- 
ory savings is a factor of two. On SMPs with larger numbers of processors. 
the memory savings can be even more substantial. 

Although the mixed model has these attractive features, our efforts to 
outperform the message-passing model have not yet succeeded in practice. 
We have developed two implementations of the mixed programming model, 
using MPI to do the message-passing in both cases. The first implementation 
uses POSIX threads, but we will discuss here only the second implementation, 
which uses OpenMP compiler directives. The approach taken was straight- 
forward loop-level parallelism of the compumtional kernel0 in the code. Each 
of the kernels is a triply-nested loop over data associated with a subgrid. The 
OpenMP directives can only parallelize a single loop, so effective parallelism 
can only be achieved when the size of this loop is at least as large as the 
number of processors. Since multigrid methods-especially semicoarsening 
methods-produce grids of varying shapes and sizes, a fourth outer loop was 
added that explicitly decomposes the subgrid into roughly equal sized regions 
to be assigned to the different threads. 

To be clear, consider the 2D example pictured on the left in Figure 4. Here, 
we have an outer loop as just described, but with only a doubly-nested inner 
loop. The outer loop has length four, and on each iteration, the inner loops 
iterate over the tall rectangular regions. If the outer loop is threaded using 
OpenMP, this means that each iteration is assigned to  a different thread. 
Hence, the computations on each region in the figure are handled by different 
processors. The decomposition of the subgrid is done by simply subdividing 
the largest subgrid dimension by the number of threads being used. 

In Figure 5, we show results comparing the MPI implementation to the 
mixed MPI-OpenMP implementation for conjugate gradient (CG) and CG 
with three different preconditioners: SMG, PFMG, and diagonal-scaling. We 
plot MPI time over MPI-OpenMP time. The MPI implementation is fastest 
in all cases. 

MPI vs. MPI-OpenMP 

E 
0.8 

5 0.6 
.- 

+ PFMG-CG 1 

O J  i 

0 200 400 600 
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Fig. 5. Comparison of MPI and mixed MPI-OpenMP implementations of various 
solvers on an IBM SP2. 



4 Conclusions 

Extra care must be taken when developing codes for large-scale parallel ar- 
chitectures. Techniques commonly used for moderate-sized parallelism can 
be problematic for large-scale parallelism. Parallel performance models can 
provide useful implementation guidance, especially regarding the tradeoffs 
of replicating computations in order to reduce communications. On clusters 
of SMPs, mixed programming models have several advantages over straight 
messagepassing, but these advantages are not yet born out in practice. 
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Abstract. With the increasing complexity and interdisciplinary nature 
of scientific applications, code reuse is becoming increasingly important 
in scientific computing. One method for facilitating code reuse is the 
use of components technologies (16, 17, 91, which have been used widely 
in industry. However, components have only recently worked their way 
into scientific computing [2, 1, 11, 181. Language interoperability is an 
important underlying technology for these component architectures. In 
this paper, we present an approach to language interoperability for a 
high-performance parallel, component architecture being developed by 
the Common Component Architecture (CCA) group.' Our approach is 
based on Interface Definition Language (IDL) techniques[6]. We have 
developed a Scientific Interface Definition Language (SIDL), as well as 
bindings to C and Fortran. We have also developed a SIDL compiler and 
run-time library support for reference counting, reflection, object man- 
agement, and exception handling (Babel). Results horn using Babel to 
call a standard numerical solver library (written in C) from C and Fortran 
show that the cost of using Babel is minimal, where as the savings in de- 
velopment time and the benefits of object-oriented development support 
for C and Fortran far outweigh the costs. 

. 

1 Introduction 

Component technologies and component programming methodologies are be- 
ginning to work their way into the scientific community [2, l, 11, 181 in the 
hopes of facilitating code reuse. One group developing a component architecture 
for high-performance, parallel computing is the C o w o n  Component Architec- 
ture group. An integral part to this component architecture is a mechanism for 
language interoperability. All components that operate within a component ar- 
chitecture should adhere to a standard behavior, which includes being able to 
easily interoperate with software written in other languages. With the prolifer- 
ation of languages used for numerical simulation in recent years, like C, C++, 
Fortran 90, Fortran 77, Java, and Python, language interoperability can be a 
huge barrier to developing components, as well as developing reusable scientific 
applications and libraries. 

The CCA group consists of representatives from DOE laboratories and academia 
working towards the specification of a component architecture for high-performance 
scientific computing 



Getting the many languages used in scientific computing to interoperate can 
be a difficiilt problem for developers. For both component and library devel- 
opers, the choice of implementation language may severely limit the reuse of 
their software. Without language interoperability, users of components may be 
required to adopt the language of the component for future applications devel- 
opment, even though better alternatives may exist. If language interoperability 
is desired, component developers and users would be forced to write “glue” code 
that mediates data representations and calling mechanisms between languages. 
However, this approach is labor-intensive and in many cases does not provide 
seamless language integration across the various calling languages. Fortran 90 
is a particular challenge for language interoperability, since Fortran 90 calling 
conventions vary widely from compiler to compiler. 

1.1 Pairwise Approaches 

There have been attempts at automatically generating glue code to support calls 
among a small set of targeted languages. For example, the SWIG package [3] 
reads C and C++ header files and generates glue code so that these routines can 
be called from scripting languages such as Python. Pf le  [19] is similar to SWIG 
except that it provides seamless integration of Python and C++. The problem 
with these approaches is that they either don’t provide two-way interoperability 
between the scripting language and the target language, or all calls between 
languages must occur through the scripting environment; which makes them 
inappropriate for a high-performance component architecture. For instance, if 
a simulation package written in C wanted to call a numerical solver package 
written in Fortran77 the package would have to make the call through the 
scripting environment. This would be much too inefficient for general use in 
scientific computing. These methods are not general enough to support a high- 
performance component architecture. 

Foreign invocation libraries, such as Java Native Interface [14], have been 
used to handle interoperability between two targeted languages. For instance, the 
Java Native Interface defines a set of library routines that enables Java code to 
interoperate with applications and libraries written in C and C++. The problem 
with this type of approach is that given N languages, O(N2) different software 
packages would be needed t o  get all the languages to interoperate. Again, this 
is not general enough to support a high-performance component architecture. 

1.2 IDL Approach 

One interoperability mechanism used successfully by the distributed systems and 
components community [16, 13, 17, 201 is based on the concept of an Interface 
Definition Language or IDL. The IDL is a new “language” that describes the call- 
ing interfaces to software p a g e s  written in standard programming languages 
such as C, Fortran, or Java Given an IDL description of the interface, IDL 
compilers automatically generate the glue code necessary to call that software 
component from other programming languages. 



This approach shows promise, however, current IDL implernentatrons are not 
sufficient for specifying interfaces to single-program multiple-data (SPMD) type 
of components. First, standard IDLs such as those defined by CORBA and C o l i  
do not include basic scientific computing data  types such as complex numbers or 
block style dynamic multidimensional arrays. Second, all of these approaches do 
not provide support for high-performance same address space function calls for 
all the programming languages needed in scientific computing. Our goal was to 
make the overhead of calls through the SIDL about as expensive as the invocation 
of a c++ virtual function. Third, some of these approaches don't have support 
for true multiple inheritance (e.g. COM does not support multiple inheritance 
and implementation inheritance is done with composition or aggregation, which 
can be computationally expensive or difficult to implement), and those that 
do have support use a limited object model (e.g. CORBA does not support 
method overriding and their implementation of multiple inheritance is prone to 
method name collisions). It is important that an IDL supports true multiple 
inheritance to allow specification of standards for numerical library interfaces, 
like the Equation Solver Interface (ESI) specification [lo]. 

?Ve have used an IDL approach for handling language interoperability in a 
scientific computing environment. We have developed a Scientific IDL (SIDL) as 
well as a run-time environment (Babel) that implements bindings to S I D L  and 
provides support necessary for a component architecture, like reflection . Cur- 
rently S I D L  has bindings to C and Fortran 77. Babel implements those bindings 
on Solaris and AIX, with plans t o  port them to most major platforms. Prelimi- 
nary efforts have shown that SIDL is expressive enough for scientific computing 
and that the binding implementations are fast. 
This paper is organized as follows. Section 2 describes the features of S I D L  

that axe necessary to  support high-performance parallel computing. Section 3 
describes the bindings of SIDL to C and Fortran 77, as well as Babel run-time 
environment, which includes a SIDL compiler and library support. Section 4 gives 
the results from wrapping a standard solver library with Babel and calling it 
from both C and Fortran. Finally, we conclude in Section 5 with an analysis of 
the lessons learned while wrapping h y p e  and identification of future research 
and additions to  Babel. 

2 Scientific Interface Definition Language 

For an IDL approach to work in the scientific domain, the IDL must be s&- 
. ciently expressive to  represent the abstractions and data types common in scien- 
tific computing, such as dynamic multidimensional arrays and complex numbers. 
Additionally, the IDL must have an object model that supports true multiple in- 
heritance. This is necessary for satisfying the CCA component architecture spec- 
ification as well as interface standardization efforts like those being implemented 
by the ESI. The IDL should also provide error handling mechanisms which are 
robust and efficient. Unfortunately, no standard IDL currently exists that s u p  
ports all of these, since most IDLs have been designed for operating systems [7,8] 



or for distributed client-server computing in the business domain [13. 17, 201. 
However, SIDL does borrow heavily from the CORBA IDL [17] and the Java 
programming language [12]. Some of the features SIDL provides are object 
model similar to Java, language constructs necessary for scientific computing 
like complex numbers and dynamic multi-dimensional arrays, and an error han- 
dling mechanism that is a cross between Java and c0RB.4’~ exception handling 
mechanisms. Also, implicit constructs in SIDL allow SIDL implementation en- 
vironments, like Babel, to provide reflection capabilities, which is a necessary 
feature for component architectures. 

2.1 SIDL Object Model 

Currently, interfaces and classes are the only two user defined types in SIDL. SIDL 
adopts the same object model as the Java programming language. The Java 
object model is advantageous because it is well defined, where other models, like 
those used in C++ and CORBA, are not as well defined. For instance, in C++, 
a class can inherit from multiple non-abstract classes. This poses a problem if 
any two or more of the parent classes have method(s) with the same signature. 
Java avoids this problem by only allowing single implementation inheritance and 
multiple interface inheritance. 

All methods are equivalent in semantics to C++ virtual functions. Methods 
can be overridden by child classes, which means the methods in all the parent 
classes and interfaces, which have the same signature as the method in the child . 
class, will be defined by that method in the child class. Methods can also be de- 
clared abstract, final, or static. An abstract method is purely declarative and 
has no implementation provided for it. When a method is declared abstract, 
the class also becomes abstract. All methods of interfaces are abstract. A final 
method is one which can not be overridden by child classes. We include the final 
construct to allow implementations of the S I D L  bindings to perform optimiza- 
tions by eliminating a lookup in a class’s virtual function table. A static method 
is also final, with additional semantics. Static methods are invoked through a 
class, not an instance of a class. They are the closest thing to ”global” methods 
in SIDL. We include the static construct to ease wrapping of non-object oriented 
language libraries and components. 

Every class belongs to a nested package scope. Packages in S I D L  are similar 
to namespaces in C++ and packages in Java. The package construct is used to 
create nested S I D L  name space scopes. It is the only S I D L  construct that creates 
a new name scope. Packages help prevent global naming collisions of classes and 
interfaces. 

. 

2.2 Scientific Data Types 

Most IDL’s, like those used in COM and CORBA, do not support all the types 
needed in scientiic computing. For instance, both COM and CORBh’s IDLs 
do not support complex numbers nor block style, dynamic multidimensional 
arrays. CORBA only supports static multidimensional arrays and sequences, 



where COM only support ragged dynamic multidimensional arrays. In addition 
to the standard types like int, char, bool, string, and double, we have included 
dcomplex, fcomplex, and array. dcomplex is a complex number of type double. 
fcomplex is a complex number of type float. The array type has both a t ype  
specification and a dimensions specification. The type specification tells what 
type of elements the array contains and the dimensions specification tells how 
many dimensions are in the array. A SIDL array is the same as a Fortran block 
style array. 

2.3 Fxception Handling 

Component architectures need robust mechanisms for error handling that can 
work across languages. For instance, COM requires all synchronous methods to 
return an error code and all asynchronous methods to return void. The mech- 
anism for COM is not robust and requires a lot of run-time support to gain 
meaningful results, as with an exception mechanism found in Java. CORBA 
uses an exception mechanism where an environment variable is passed as the 
last argument in an argument list in a method and exceptions are set in that 
environment variable. We use a mechanism very similar to CORBA except that 
exceptions are not defined as structures, as they are in CORBA, but rather as 
objects, as they are in Java. All exceptions in SIDL are objects that inherit from 
Throwable. Also, we are exploring using a static environment variable, which 
would allow exceptions to be thrown without explicitly passing an environment 
variable as a method argument. Of course implementations of this model will 
have to be thread safe since they will be used in parallel applications. 

2.4 Reflection 

SIDL has constructs that allow support tools to implement reflection capabilities, 
which is necessary for components (e.g. CCA components). Recall that SIDL’s 
object model is very similar to Java. SIDL also borrows it’s introspection ca- 
pabilities from Java. For instance, like Java, all S I D L  objects implicitly inherit 
from’ Object. Object has a method getClass which returns a Class object. This 
Class object contains information about a particular object’s methods, fields, and 
constructors, which can be queried and invoked at run-time. Every object has a 
Class object associated with it that contains information on it’s methods, fields, 
and constructors. Given this, SIDL implementation tools, like Babel, can provide 
reflection capabilities by implementing SIDL’S introspection specification. 

3 Bindings and Implementation 

This sections discusses the bindings of C and Fortran 77 to SIDL,  as well as the 
implementation of those in the Babel run-time environment. This discussion is 
of only the more challenging aspects of developing the bindings and implemen- 
tation. See [15] for a complete specification of S I D L  and it’s bindings to C and 
Fortran 77. 



3.1 

Mapping SIDL onto C and For t ran77 posed some interesting challenges. For 
instance, mapping SIDL objects into C and For t r an77  objects was not alto- 
gether obvious since neither language has object oriented features. Also, map- 
ping complex numbers to C as well as mapping the SIDL array syntax to the two 
languages, posed some challenges as well. Besides these, the mappings of SIDL 
to C and Fortran 77 were fairly straight forward. 

For Cy SIDL objects are mapped to opaque structure pointers. In For t ran  ~JI 

object is mapped to an integer. Of course a run-time environment that imple- 
ments ihese bindings will have to provide library support that can translate an 
integer representation of an object to the actual object, in order to get access 
to that object’s data and methods (this is done by the Babel run-time environ- 
ment). A method is invoked by passing the reference to the object, whether it be 
an integer in For t ran  or an opaque structure pointer in C, as the first argument 
in the argument list. 

Complex numbers in C are mapped to a structure with two elements. The 
first element is the real part of the number and the second part is the imaginary 
part. Arrays are mapped to structures in C that contain three elements. The first 
element is a single dimensional array that contains the lower bounds for each of 
the dimensions. The second element is the same as the first, except it contains the 
upper bounds. The third element is a pointer to the data. In Fortran,  arrays are 
simply mapped to the corresponding array representation in Fortran.  Bounds 
for the dimensions need to be specified explicitly in Fortran,  since For t ran  does 
not have structures. 

Bindings to C and Fortran 77 

3.2 

Most of the effort in developing the Babel compiler and run-time was in im- 
plemeuting the object model, namely: the virtual function tables, the object 
lookup table, reference counting, dynamic type casting, the exception handling 
mechanism, and feflection capabilities. The Babel run-time is implemented in C 
and the compiler is written in Java, however, the ”glue” code that is generated 
from the compiler is in C. All of the object support is contained in the “glue” 
code and the run-time library. For instance, every object has a skeleton associ- 
ated with it. The skeleton contains the implementation of the object, including 
the virtual function table (which is implemented like a static C++ virtual func- 
tion table), constructors, destructors, support for dynamic type casting, etc... 
The run-time library contains support for reference counting, the object lookup 
mechanisms (which is necessary for supporting objects in Fortran), and the 
exception handling mechanism. The reflection capability is supported through 
both the skeleton and the run-time library. 

One of the goals while developing Babel was to make function calls made 
through Babel fast. We were able to limit C to C function calls to one extra 
function call and one lookup. Calls between C and Fortran77 required two 
extra function calls and one lookup, and Fortran 77 to Fortran 77 caUs require 
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three extra function calls and one lookup. The extra function calls between 
languages are needed to translate between the different signatures. Babel does 
take advantage of the static and final constructs in SIDL by eliminating a 
function table lookup to functions of those types. 

Description 
Language Mapplngs 

Complkr Detalh 

4 Results from Wrapping hpre  

As a test case, we used Babel to create new interfaces for the hypre semicoursen- 
ing mulitigrid solver (SMG) [4], a linear solver that is part of the hypre precon- 
ditioner library 1.51. nypre is a library of parallel solvers for large, ,parse linear 
systems being developed at Lawrence Livermore National Laboratory's Center 
€or Applied Scientific Computing. The library currently consists of over 30,000 
lines of C code, and it has 94 encapsulated user-interface functions. To test Babel 
we created a new interface (hypre is written in C, with a C interface provided 
by the authors) for both C and Fortran77 using Babel, and ran similar test 
drivers using the two Babel generated interfaces and the original C interface 
already provided by the library. We then compared the results from all three. 

I Stub I I Skeleton i 

Fig. 1. Wrapping hypre 

Wrapping hypre with Babel took three steps. The first step was to write a 
description of the existing interface in SIDL, which was done by two people, 
one who was familiar with SIDL and another who was familiar with the hypre 
library. The second step was to run the Babel compiler with the interface de- 
scription as input to create all of the "glue-code" for each class (see Fig. l). 
Since the signatures for the library functions were different fiom those in the 
virtual function tables, we also had to manually write the calls to the hypre 
functions into the library skeleton generated by the Babel compiler. This was a 
somewhat mundane task, but it required only one lime of code per function, and 
it needed to be done only once, as the Same skeleton code was used for both the 
C and Fortran (as well as for all other language bindings). Manually editing of. 



the skeleton code would not be necessary if the library used naming conventions 
and calling sequences that complied with the Babel specification (e.& prepend 
every function call with an impl-). Once the function calls were manuafiy added, 
the new C interface was complete, and then the Fortran interface was created 
almost instantly by running the compiler once more with different options to  
create the Fortran stub code. The final step was to compile and link the drivers 
with the skeletons, stubs, and the hypre library. 

We rewrote an existing SMG test driver to test the efficacy of the new in- 
terfaces. The driver uses SMG to solve Laplace’s equation on a 3-D rectangular 
domain with a 7-point stencil. First, all calls in the driver to the hypre library 
were replaced with the new C interfaces that Babel created. Then we wrote a 
new Fortran driver that sets up exactly the same problem using the same algo- 
rithm and calls the same hypre functions via the new Fortran interface. Fig. 2 
shows a portion of the hype interface written in SIDL and 3 shows portions of 
both the C and Fortran drivers that call the h y p e  library through Babel. 

package hypre i 
class stencil i 

stencil UeuStencil(in int dim. in int size); 
int SetStencilEleaent(in int index, inout array<int> offset); 

?; 
class grid < 

grid levCrid(in mpi-con corn, in int dimension); 
int SetCridExtents(inout array<int> ilower, inout array<int> iupper); 

?; 
class vector < 

vector UevVector(in mpi-con con, in grid g, in stencil 6 ) ;  

int SatVectorBoxVdlues(iout arraytint> ilower. 
inout nrray<int> inpper, inout array(double> values); 

-_. 
?; 
class matrix C /* matrix nember functions omitted in this figure */ 3; 
c lass  smg-so1v.r i 

int Setup(inout matrix A,  inout vector b, inout Vector XI; 
int Solve(inout matrix A,  inout vector b. inout vector I); 
... 

>; 
?; 

Fig. 2. SIDL for hypre. 

Both new drivers ran with no change in numerical results. We compared the 
efficiency of the new C and Fortran drivers to the original C driver. The drivers 
that used the Babel wrappers solved large problems both sequentially and in 
parallel on 216 processors, with no noticeable effect (less than 1%) on the speed 
of execution. The overhead added by Babel is negligible when compared to the 
overhead of the numerical kernel of the library. 

In all, this took less than an afternoon to wrap and run hypre on both Solaris 
and AIX using both a C and Fortran 77 driver. To put this in perspective, there 
was ah effort by the hypre team to wrap hypre by hand, making it callable from 



C Test Code Fortran 77 Test Code 

hypre-vector b. I; 

hypre-matrix A ;  
hypre-smg-solver solver; 
hypre-stencil 8 ;  

b = hypre-vector-NcuVector(com, grid, 8 ) ;  

x = hypre-vector-NeuVector(corn. grid, 6 ) ;  

A = hypre-matrix-NeuMatrix(com, grid, 6 ) ;  

... 

... 

... 

solver = hypre-sag-solverpevO; 
hypre-sm&solver-SetMaxItr(solver. 10); 

integer b. x 
integer A 
integer solver 
integer s 

b = hypre-vector-NeuVector(com. grid,  s) 

x = hypre-vector-NeuVector(com, grid, s) 

A = hypre-matrix-NeuMatrix(com. grid, s) 

... 

.._ 

... 
solver = hypre-smg_solver-neu() 
h~~ra~srn~?~solve+~SetMaxItr(solver.  10) - - _  .. - 

hypre-smg-solver-Solve(solver, CA. Cb. Cx); hypre-smg-solver-Solve(solver, A ,  b. x) 
hypre-smg-solver-Finalize(nolver); hypre_s~-solver-Finalize(solver) 

Fig. 3. Sample test code. 

Fortran on a Solaris platform, that took over one week for one person to do. 
Even after they finished wrapping it, they had to redo the effort when they 
ported it to another platform. 

5 Lessons Learned and Future Work 

Our experience using Babel to  create new interfaces for hypre shows that  Babel 
is an effective tool to support language interoperability for high-performance, 
parallel scientific computing. while it is not difficult to use for an existing library 
such as hypre, Babel can be easier to use if a library, or component, is designed 
and written from the beginning vith Babel naming conventions in mind. Calls 
to the library, or component, will also be faster, if these conventions are followed, 
since there will be one less function call. Calls through Babel can be streamlined 
even further by declaring methods final or static, where possible. This will 
eliminate a virtual function table lookup. Also, developers who use non-object 
oriented languages can take advantage of the object support that Babel provides. 

In the future we will develop bindings for C++, Java, Fortran 90, and Python 
and implement those bindings in Babel. We will also explore various component 
composition and introspection models for scientific computing, in conjunction 
with the CCA, and develop the appropriate library implementations in Babel 
to support them. 
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Technology 
SAMRAl is an object-oriented 
software framework for struc- 
tured adaptive mesh refinement 
( A M )  research. SAMRAl pro- 
vides computational scientists 
with general and extensible sup- 
port for rapid prototyping and 
development of parallel struc- 
tured AMR applications. The 
primary goal of the SAMRAl effort 
is to facilitate numerical method 
and solution algorithm develop- 
ment for AhU applications that 
require high-performance com- 
puting hardware. 

evelopments in high-perfor- 
mance computing hardware D make it possible to simulate 

large three-dimensional problems that 
model increasingly complex chemical 
and physical processes. However, the 
numerical resolution required to cap- 
ture the phenomena represented by 
mathematical models still makes such 
computations very expensive. In 
many interesting science h d  engineer- 
ing applications, the most important 
feahws of the simulation OCCUT in 
localized regions of the computational 
domain Uniformly fine computa- 
tional meshes that resolve the local 
phenomena may be unnecessarily fine 
outside the regions of interest. As a 
result, such uniform grid simulations 
can be ineffiaent or even prohibitively 
expensive. 
Structured Ah4R provides a system- 

atic way to focus computational 
reso- (CPU time and memory) by 
employing varying degrees of local 
spatial and temporal resolution. Thus, 

needed to support largescale, physi- 
cally and numerically well-mlved, 
Ihree-dimensional simulations. 

Ah4R is an important technology 

Unwewty of California 
/Center for Applied 0's Scientific Computing 1 Lawrence Livermore kid National Laboratory L-'- 

Figure 1. Adaptive mesh refinement concentrates computational effort In areas of interm such as 
near the shock fronts in this hydrodyanmics simulation. 

Emerging AMR Application 
Domains 
Structured AMR has proved to be a 

useful simulation technology for many 
fluid dynamics applications (Figure 1). 
SAh4RAI is beiig developed as a sub- 
stantial generalization of existing Ah4R 
technology. In addition to supporting 
more traditional AMR applications, 
SAh4RAI is designed to explore new 
problem areas and new AMR solution 
algorithms. New applications include, 
but m not limited to, problems mod- 
eled by coupled systems of partial 
differential equations that exhibit com- 
plicated combinations of hyperbolic, 
elliptic, and parabolic behavior (such as 
radiation hydrodynamics, flow and 
transport in porous media, combus- 
tion, and reactive transport), neutmn 
transport, hybrid models that combine 
discrete and continuum numerical 
models,andArbitcaryLagrangian- 
Eulerian (ALE) integration methods. 

The application of structured AMR 
to such problems gives rise to many 
interesting algorithmic, numerical, and 
computer science research questions. 
These issues are related to mathemati- 
cal model approximations in an AMR 

setting, adaptive integration methods, 
load balancing for distributed memory 
parallel computing, and software 
framework design and development. 
SAMRAI cunwtly supports a variety 
of computational science projects. 
Through collaborations with 
researcheIs at DQE laboratories and 
universities, we are investigating the 
application of AMR technology to some 
of the application domains mentioned 
previously. 

The SAMRAI Framework 
Numerical algorithms for AMR 

problems are complex and require a 
substantial amount of software infra- 
s t r u e  However, many software 
components used in AMR codes are 
similar across a broad spectrum of 
applications. These common compo- 
nents can be incorporated into a single 
general-purpose application frame- 
work. SAh4RAl is being developed for 

AMR software support into a flexible, 
extensible, parallel development frame- 
work; and second, to apply structured 
AMR technology to new problem 
domains and to develop alternative 

two purposes: first, to codify existing 

URL: http:/Ewvrruv.llnl.gov/CASC/SAMRAI/ 

http:/Ewvrruv.llnl.gov/CASC/SAMRAI


SAMRAl  

-re 9. The SAMRAl framework consists of a 
cdlectlon of somare components that great& 
shplify the development of structuredAM0 
applbtlons. 

adaptive solution algorithms for more 
traditional applications. 

Since AMR applications involve 
complex, dynamically changing data 
communication patterns, it is particular 
challenging on parallel computers. 
From its inception, SAMRAI was 
designed to facilitate sophisticated 
numerical algorithm development in a 
parallel computing environment. Three 
main software design points SAMRAI 
addresses are first, support for a wide 
range of complex data strudures on an 
adaptively-refined mesh, including 
arbitrary user-defined types; second, 
algorithmic flexibility, extensibility, ar.d 
software reuse; and third, general soft- 
ware support for parallel application 
development. 
SAMRAI facilitates rapid prototyp- 

ing of various application code 
implementation alternatives by k i n g  
developers from low-level data struc- 
ture and algorithm management. An 
application developer views 
SAh4RAI as a collection of software 
packages and classes that may be com- 
bined in complex ways to build an 
application (Figure 2). We use object- 
oriented design techniques so that 
many fundamental SAMRAI compo- 
nents may be enhanced without 
changing the underlying framework 
sowre code or re-compiling the 
library. In particular, software compo- 
nents may be specialized and 
extended through C++ class deriva- 
tion. We are also addressing 

interoperability issues that will allow 
applications built using SAMRAI to 
take advantage of other software 
packages, such as linear and nonlinear 
solver libraries, including PETSc, 
KINSOL, and hypre. 

SAMMI'S framework structure pro- 
vides flexibility to explore a wide range 
of AM7 applications. Its design helps 
to reduce code development, encour- 
ages interoperability in application 
software, and simplifies the learning 
curve for new adaptive computational 
methods. Finally, SAMRAI provides 
robust support for parallehm to insu- 
late communication operations from 
application code without impeding 
performance. 

WRAl Applications and 
Framework Validation 

In collaboration with researchers, 
we are using SAMRAI across a 
diverse range of applications. We 
are collaborating with academic 
researchers to employ SAMRAI in an 
application that couples fluid 
dynamics models (including turbu- 
lence and reactive chemistry) to 
container dynamics models to study 
firespread problems. Another SAM- 
RAI applications code combines 
plasma fluid simulation.with a 
model for laser light propagation. 
Other projects include simulation of 
solar winds in the Earth's magnetos- 
phere, radiation-hydrodynamics 
using ALE integration methods, 
shear band formation in granular 
materials, flow and transport in 
porous media, neutron transport, 
and multi-physics problems that 
combine continuum and discrete 
particle models. 

Each application emphasizes the 
combination of diffenmt numerical 
models and solution techniques in 
the context of structured AMR For 
example, the firespread application 
uses both implicit and explicit inte- 
gration methods for fluid 
calculations that are coupled to 
particle-like methods to model solid 

F 4 r e  3. Embedded boundaty capabllfttes 
enable structured AMR applications to capture 
complex geometry In an efl5clent manner. 

containers. The solar wind problem 
combines magneto-hydrodynamics 
equations with a dipole field model 
of the Earth's ionosphere. 

In addition to producing interest- 
ing computational science research, 
these applications serve as a valida- 
tion of the SAMRAI software 
architecture, as they require substan- 
tial data structure and algorithmic 
flexibility. The applications produce 
a variety of simulation data on an 
adaptive mesh, including particles 
and embedded interfaces (Figure 31, 
as well as various forms of array- 
based data. Also, these complex 
solution algorithms combine sophisti- 
cated numerical methods to treat 
different aspects of each problem. 
Finally, incorporation of linear and 
nonlinear solution software tests 
SAMRAYS ability to interoperate 
with independently developed solver 
libraries. 

For additional informufwn abouf fhe 
SAMRAI project, visit the Web site ut 
h t t p : / / m . I l n l  .gov/CASC/SAMRAI 
or contact: 
Richard Homung, 
(925) 422-5097, hornung@llnl.gov, or 
Scott Kohn, 
(925)422-4022, skohn@llnl.gov. 

Work perfamed under the auspices of the U.S. D O E  by W L  unck conbad No. W-7405-ENG-48. 

http://m.Ilnl
mailto:hornung@llnl.gov
mailto:skohn@llnl.gov


UCRL-JC-131825 
Preprint 

The Use Of Object-Oriented Design Patterns 
In the SAMRAI Structured AMR Framework 

R. D. Hornung 
S. R. Kohn 

This paper was prepared for submittal to 
Society for Industrial & Applied Mathematics 
Workshop on Object- Oriented Methods for 

Interoperable Scientific and Engineering Computing 
Yorktown Heights, NY 

October 21-3/1998 

October 17,1998 

This is a preprint of a paper intended for publication in a journal or proceec 
Since changes may be made before publication, this preprint is made available 
with the understanding that it will not be cited or reproduced without the 
permission of the author. 

7 



DISCLAIMER 

This document was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor the University of California nor any of their 
employees, makes any warranty. express or implied, or assumes any legal liability or responsibility for the 
accuracy, completeness, or usefulness of any information, apparatus. product, or process disclosed. or 
represents that its use would not infringe privately owned rights. Reference herein to any specific 
commercial product. process. or sewice by trade name. trademark, manufactum. or otherwise. does not 
necessarily constitute or imply its endorsement, recommendation. or favoring by the United States 
Government or the University of California. The views and opinions of authors expressed herein do not 
necessarily state or reflect those of the United States Government or the University of California. and shall not 
be used for advertising or product endorsement purposes. 



The Use of Object-Oriented Design Patterns 
in the SAMRAI Structured AMR Framework* 

Richard D. Hornungt Scott R. Kohnt 

Abstract 

We describe the use of object-oriented design parterns in the implementation of a 
flexible structured adaptive mesh refinement software framework called SAMRAI. We 
present five common patterns-Smart Pointers, Singleton, Abstract Factory, Strategy, 
and Chain of Responsibility-that have greatly simplified framework development. 
These design patterns have enabled the decomposition of complex algorithms into 
smaller, more manageable, decoupled components that may be reused across a variety 
of applications. 

1 Introduction 
The design and implementation of quality, high-performance numerical software frameworks 
is difficult. Ekamework designers must address issues of algorithm complexity, evolving 
requirements in a research environment, and software reuse within the targeted application 
domain. Many modern numerical algorithms, such as structured adaptive mesh refinement 
methods [3,4], consist of many complex numerid components involving sophisticated time 
integration methods, various geometry descriptions, time interpolation, spatial refinement 
and coarsening, and linear and nonlinear solvers. These numerical components interact 
in complex ways that must be captured in the design of the software framework. Finally, 
numerical frameworks axe usually developed in tandem with research projects in algorithms 
and applications; thus, the framework software must be designed to evolve as computational 
scientists improve their understanding of application domains and the associated numerical 
met hods. 

In this paper, we address some of these design issues in the context of a parallel 
structured adaptive mesh refinement (SAMR) framework called SAMRAI. Object-oriented 
techniques and design patterns [SI have been valuable tools for the high-level organization of 
the SAMRAI software architecture. They have enabled us to isolate various functional parts 
of complex algorithms into different framework components so that applications can be 
built from smaller algorithmic "building blocks." As a result, we provide a flexible software 
framework that simplifies the management of inherently complex SAMR algorithms and is 
being applied to diverse S A M R  applications. 
This paper is organized as follows. We begin with a brief overview of the SANURAI 

hmework and the basic SAMR methodology. Section 3 describes five different design 
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patterns-Smart Poznters 171, Singlelon, rl bstract Factoq ,  Strategy, and Chom Of Respon- 
sibility [8]-used in the SAMRAI framework. Finally, Section 4 discusses the usefulness of 
design patterns and object-oriented techniques within the SAMRAI framework and for the 
general computational science community. 

2 The SAMRAI Framework 
Structured adaptive mesh refinement has shown great potential as a numerical simulation 
methodology for a variety of applications in computational fluid dynamics [2, 1, 121, laser- 
plasma interactions [SI, radiation transport Ill], porous media [lOJ, and materials [9,13, 141. 
However, SAMR methods are not widely used by the scientific computing community. The 
primary reason for this is that SAMR codes are complex and require a substantial amount 
of software infrastructure to support productive application development. Fortunately, 
many software components are common across diverse application domains and may be 
incorporated into a general-purpose framework that supports a broad range of applications. 

SAMRAI is a C++ object-oriented framework that provides computational scientists 
with general and extensible software support for prototyping and developing parallel 
SAMR applications. The primary goal of the SAMRAI effort is to explore the use of 
SAMR technology in new problem domains and to develop new numerical and algorithmic 
approaches for more traditional SAMR applications. SAMRAI provides an overarching 
software framework that orchestrates the various processes involved in a complex numerical 
simulation. SAMR algorithms can usually be decomposed into smaller, simpler constituent 
parts such as algorithmic components, data structures, and numerical routines. In the 
process of building a new application with SAMRAI, computational scientists select the 
appropriate numerical and algorithm components from the framework and supply only 
those operations that are specific to their application. Thus, the computational scientist 
leverages a large simulation code base and only specializes certain components as needed 
for his application. 

A full description of SAMR algorithms is well beyond the scope of this paper. However, 
we will provide a brief overview of the basic SAMR approach as an aid to understanding 
the algorithmic and software issues in the remainder of this paper. The SAMR approach, 
introduced by Berger, Oliger, and Colella [3,4], represents simulation data using a hierarchy 
of nested levels of spatial and temporal mesh refinement. This hierarchy dynamically adapts 
to follow interesting features in the evolving simulation and focus computer resources in 
these localized portions of the computational domain. 

A SAMR hierarchy co&its of a number of levels. All computational cells at a particular 
level in the hieraphy represent the same mesh resolution. Each level consists of a collection 
of patches, each of which is a logically rectangular collection of computational cells. A 
patch contains data that represent simulation quantities in the region of the simulation 
domain defined by the patch region. The level with the coarsest mesh resolution defines an 
abstract, global integer index space. Then, each successively finer level is a refinement of a 
portion of the next coarser index space. The organization of the computational mesh into a 
hierarchy of levels of patches allows data' communication and computation to be expressed 
as geometrically-simple, Gcient operations. Consequently, the S A M R  methodology is used 
to construct application codes from a set of computational tasks, each of which is defined 
in terms of operations on mesh patches, organized in a. highly structured fashion. 

In the remainder of this paper, we discuss object-oriented techniques used to implement 
two of SAMRAI's design goals. First, SAMRAI must support a wide range of complex data 
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structures on SAMR patches: including arbitrary user-defined types. Second, SAMIZAI 
must provide flexible and extensible algorithm support for a variety of SAMR applications. 
One important design constraint is that SAMRAI must enable new applications develop- 
ment and support new user-defined data types without requiring changes to the underlying 
framework source code or recompilation of the libraries. 

3 Design Patterns in SAMRAI 
Design patterns are specific solutions to common, recurring software engineering problems. 
Each pattern codifies a general solution technique by providing a problem description, the 
solution pattern, and a list of consequences resulting from the application of the pattern. In 
practical terms, design patterns describe the configuration of a small set of objects whose 
cooperative behavior solves a software design problem. There are several useful books that 
describe design patterns [5, 8, 151; our discussion follows that of Gamma et al. [SI most 
closely. 

We have found design patterns to be very useful in solving some important design 
problems during the construction of the SAMRAI software architecture. Some of these 
patterns are covered in detail in the following five sections. We begin each section with 
a discussion of a design problem encountered in the SAMRAI software framework. We 
then describe the design pattern selected to solve that particular design problem and the 
consequences of that decision. 

Section 3.1 describes the Smart Pointer pattern that simplifies the management of 
dynamically allocated memory and provides safe dynamic type casting. The Singleton 
pattern (Section 3.2) defines a single point of contact for objects shared among various 
components. The Abstract Factory creational pattern (Section 3.3) enables SAMRAI 
to support new user-defined patch data types without requiring modifications to the 
firamework. Finally, the Strategy (Section 3.4) and Chain of Responsibility (Section 3.5) 
behavioral patterns are used in SAMRAl to decouple various fiamework components and 
thus obtain greater reuse of fundamental algorithm pieces. 

3.1 Smart Pointers 
In this section, we describe two typical problems in the SAMRAI framework that are 
solved through the use of Smurf Pointer [A techniques: (1) safe dynamic type casting and 
(2) memory management for shared objects. The need for safe dynamic type casting is 
illustrated by the following example. As described in Section 3.3, all SAMRAI patch data 
types share a common base class called PatchData: 

class PatchData : public ... c 
void copy(const PatchData& source) = 0; 
... 

3; 
The concrete data types that are instantiated on SAMRAI patches-such as 
CellData<double> or EmbeddedBoundaryData-inherit the signature for copy () declared 
in PatchData. However, concrete classes often require the type of the copy() argument 
to be the same as the concrete class, not any arbitrary PatchData object. For example, it 
would probably not make sense to copy EmbeddedBoundaryData into CellData<double>. 
Unfortunately, there is no way to enforce this through the C++ type system at compile- 
time. Although templates are often used in similar cases to ensure type safety, they we not 
sufficient for complex applications that must itccess data through abstract base classes. 
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Run-time type safety c;m be achieved through the usc of run-time dyiamic t y p e  
casting. In this case, dynamic type casting o i  the argument source within the copy() 
implementation returns a pointer to the object if the cast is valid and NULL otherwise. 
Although dynamic type-safe casting is part of the C++ standard: it is not yet ?upported by 
all C++ compilers. 

Another common problem solved through Smart Pointers is memory management for 
shared objects. In this case, many framework objects maintain pointers to a shared object 
instance that must be deallocated when all references to it disappear. Since ownership of 
this shared object cannot be uniquely established, the application cannot easily determine 
when to deallocate it. For example, SAMRAI patches typically share a pointer to a 
patch descriptor object. Moreover, patches are Treated and destroyed dynamically dclring 
mesh refinement. The memory allocation problem is solved with reference counting smart 
pointers that track the number of references to an object and then delete the pointed-to 
object when the number of references decrements to zero. 

3.1.1 Pattern Description The Smart Pointer pattern is a common C++ pattern [7]. It 
consists of two parts: a templated Pointer class that manages the object reference counting 
and a collection of classes that support run-time safe type casting. All pointed-to objects 
are required to inherit from a common base class and provide a small number of functions 
to implement the type conversions. 

3.1.2 Consequences The use of'the Smart Pointer pattern within SAMRAI has greatly 
simplified the management of dynamic memory allocation; multiple objects may share 
pointers to the same object and the smart pointers guarantee that there will be no memory 
leaks. The type-safe dynamic casting ensures that type errors will be caught at run-time. 

The primary disadvantage of the Smart Pointer approach is that it introduces a common 
base class for all pointed-to classes. While not a burden when writing new code, it is 
esthetically unappealing to force otherwise unrelated .classes t.0 inherit from a common 
base class, since it introduces extraneous coupling in the software architecture. 

3.2 Singleton Ciasses 
Many classes in the SAMRAI framework may be instantiated only once, with that single 
instance shared by various framework components. For example, a VariableDatabase 
object contains information about the variables used in a computational simulation (e.g., 
pressure, density, or velocity). The database must be accessible to all algorithm components 
to extract information about the variables and their roles in the simulation. Traditionally, 
such shared objects were implemented using global variables; however, global variables do 
not ensure only one instance of a class and they do not allow extension by subclassing. 
Instead, we implement shared objects such as VariableDatabase using the Singleton 
creational pattern as described in Gamma et al. [SI 
3.2.1 Pattern Description The Singleton pattern ensures that a class will have only 
one instance and provides global, well-defined access to that instance. The class may be 
extended through inheritance. Then, clients may use the subclass object without changes 
to their code. 

In S A W ,  the VariableDatabase encapsulates its single instance and maintains 
strict. controls over access to this instance. It declares a getDatabase0 static member 
function that returns a pointer to the single database instance. In addition, the constructor 
and destructor of the class are protected to ensure that only the database and its subclasses 
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FIG. 1. The Abstract Factory pattern manages the allocation of data for the SAMRAIpatch 
As illustrated by the dotted lines, subclasses of PatchData are created by associated 

This diagram follows the OMT (Object Modeling Technique) 
hierarchy. 
subclasses of PatchDataFactory. 
notation (81. 

may create .instances of the database. 

3.2.2 Consequences The Singleton pattern provides a more flexible alternative to the 
Use of global variables. The name space remains cleaner and applications may use extensions 
of a basic singleton object, even at run-time. A singleton can be extended through standard 
class derivation and any client can use the subclass without needing changes in its own code. 

3.3 Abstract Factory 
Recall that one of the primary considerations in the design of SAMRAI was the need to 
support complex user-d&ned data on an S A M R  patch hierarchy. The patches in an SAMR 
application may contain data such as cell-centered arrays of doubles, node-centered arrays 
of integers, or user-defined collections of particles. These patch data types are manipulated 
by the SAMRAI framework, which manages allocation, deallocation, data copying, and 
marshaling and unmarshaling of data for communication between processors. 

We believe that SAMRAI users should not modify the kamework Software or recompile 
the libraries to add new data types, as such practices violate sound software engineering 
principles. Thus, the framework cannot know the concrete class types for user-defined patch 
data, since these classes may be designed and implemented long after the.framework has 
been compiled. In this case, how can the fiamewrk allocate user-dehed data? Clearly, 
SAMRAI cannot execute new for concrete types that do not exist  at compile-time. The 
solution to this problem is the Abstract Factory creational pattern. 

3.3.1 Pattern Description The Abstract Factory pattern defines an approach for 
creating families of related objects without specifying their concrete classes [SI. This 



patter11 does so through two related inlieritancc hlcrarchics. The first h ~ r n r c l l y  is 1 ooted 
in an abstract product class that  declares the interface for all objects to be created by the 
pattern. These product objects are created by factory objects in a second hierarchy. 

Figure 1 illustrates how this pattern is implemented in the SAMRAI framework. 
The SAMRAI P a t c h  is a container class for all patch data types that exist in some 
rectangular region of index space. All patch data types inherit Gom an abstract Pa tchDa ta  
class and define a set of required routines such as copy0 and packstream0 (used for 
interprocessor communication). Each Patch has a smart pointer to a PatchDescriptor 
that contains the factory objects needed to make the concrete patch data. Then, to create 
an instance of a PatchData object, the Patch consults the PatchDescriptor and asks 
the appropriate PatchDataFactory to allocate a PatchData instance. In particular, tht 
allocatepat chData0 function returns the concrete PatchData instance. 

3.3.2 Consequences The Abstract Factory pattern separates concrete object creation 
and declaration by encapsulating the responsibility for creating product objects. Use of 
this pattern enhances software flexibility and extensibility since concrete product classes 
(such as NodeData in Figure 1) never appear in the framework code. Thus, new product 
classes can be added after the framework has been compiled and archived into a library. 

There are two drawbacks to Abstract Factory pattern. First, every new product class 
requires the definition of two new classes-the product class and the factory class. Second, 
some form of dynamic safe type casting is needed to obtain concrete class references. 
For example, although it is sufficient for the Patch container class to manipulate data 
as abstract PatchData objects, user-defined numerical routines will need to extract data 
from the patch and process that data using the concrete class interface. The cast from 
abstract product to concrete product requires some form of run-time type checking such as 
that described in Section 3.1. 

3.4 The Strategy Pattern 
SAMR zipplications involve sophisticated algorithms that can be decomposed into smaller 
constituent parts. These parts include algorithms for sequentially advancing a set of SAMR 
patch levels, integrating single patch levels, dynamically changing the mesh, and numerical 
routines d&ned on individual patches. A primary goal of SAMRAI is to provide a flexible 
algorithmic framework that encapsulates components such as these so that they may be 
reused in different SAMR applications when appropriate. 

Developing a flexible algorithmic framework is difficult. The most important research 
challenge is discovering how complex algorithms may be factored into their constituent 
parts. Then, the specific behavior of each component must be determined and appropriate 
interfaces must be defined between the different pieces. Ideally, each individual algorithmic 
part may be replaced or enhanced without adversely influencing the behavior of the other 
components. If this separation is attained, it is relatively easy to combine existing software 
components to construct a complete SAMR algorithm. While we are still grappling with 
these issues in the development of SAMRAI, we believe that the approach outlined here 
demonstrates substantial progress. 

The Strategy design pattern is the primary object-oriented design technique that we 
use to encapsulate algorithms and define reusable interfaces between software components. 
Next, we illustrate our use of this pattern by describing the decomposition of a standard 
SAMR algorithm into its primary components. 
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FIG. 2. SAMRAI uses Strategy to define a family of time-dependent integration algorithms. 

3.4.1 Pattern Description The intent of the Strategy pattern is to define and 
encapsulate families of algorithmic components to make them interchangeable through 
common interfaces. Consequently, this pattern is well-suited to our concerns. An concise 
example of the basic form of the Strategy pattern is illustrated in Figure 2. 

In SAMRAI, a TimeSteppingAlgorith class controls a sequence of timesteps that 
advances the levels in an SAMR hierarchy. While this class is fairly general, the rou- 
tines that advance data on the individual levels are specific to each application. When a 
TimeSteppingAlgorithm object is created, it is configured with a suitable level integration 
algorithm object. The level integration class may be supplied by the framework; for exam- 
ple, the HyperbolicIntegrator class is provided for systems of hyperbolic conservation 
laws. Otherwise, another integrator class must be implemented (e.g., AnotherIntegrator). 
Each level integrator class is derived from the TimeLevelIntegrator abstract base class 
and must satisfy the interface defined by that class. The TimeSteppingAlgorithm object 
a in ta ins  a pointer to the abstract type. Thus, it knows nothing of the specific, .concrete 
level integration process. 

Figure 3 shows multiple Stmtegy patterns, including a particular instance of the 
pattern in Figure 2, combined to form a complex algorithm from simpler components. 
The configuration represents a common SAMR algorithm for treating hydrodynamics 
applications, such as the Euler equations of gas dynamics, with explicit timestepping [3,4]. 

At the top algorithmic level, the TimeSteppingAlgorithm class controls 
the overall SAMR scheme. It is codgured with HyperbolicIntegrator and 
RichardsonExtrapolation objects, which supply routines to advance the data and 
dynamically adjust the mesh, respectively. Consistent with the Stmtegy pattern, the 
timestepping algorithm knows only the abstract types TimeLevelIntegrator and 
GriddingAlgorithm. 

The Stmtegy pattern is repeated in the design of Richardsodxtrapolation and 
HyperbolicIntegrator. Concrete subclasses of MeshGenerator and LoadBalancer (not 
shown) provide routines that create box regions and load balance the patches on a 
new patch level. The EulerPatchModel cla+x supplies numerical routines for the Eu- 
ler equations on a single patch in the mesh hierarchy. Both HyperbolicIntegrator 
and RichardsonExtrapolation invoke functions in EulerPatchModel (ag., numerical 
flux computation, conservative difference, select cells for refinement, etc.), but they 
are independent of the specific routines. That is, the Hyperbolichtegrator has 
a pointer to HyperbolicPatchModel and RichardsonExtrapolation has a pointer to 
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FIG. 3 .  Multiple instances of the Strategy pattern are combined in SAMRAI tu build a complex 
AMR solution from simpler components. 

RichExtrapPatchModel. The EulerPatchModel class, derived from both of these abstract 
base classes, implements functions declared in both of their i n t e r h .  

3.4.2 Consequences The Stmtegy pattern provides a useful degree of algorithmic 
encapsulation in SAMRAI. Using common interfaces to characterize families of related 
algorithmic components, a system may be configured to perform a wide range of behaviors. 
This type of ”plug-and-play” interoperabiiity .is advantageous for several reasons. First, 
it frees application programmers from unnecessary, redundant code implementation and 
reduces development time. Second, it promotes the exploration of different algorithmic 
choices within a single application. Third, it increases software reuse within the framework, 
which facilitates testing, maintenance, and extensibility of the architecture. 

The encapsulation forced by the Stmtqy pattern is a valuable alternative to large, 
overly-complex classes that can occur through the abuse of inheritance. For instance, the de- 
sign in Figure 2 could have been implemented by inheriting from TimeSteppingAlgorithm 
directly. The result would be several larger, more complicated classes that differ in level 
integration procedures, but have much timestepping code in common. Although decoupling 
the algorithm components slightly increases function call overheads, the cost is negligible 
at the high algorithmic level at which we use the Stmtegy pattern. 

3.5 Chain of Responsibility 
Data motion between S A M R  hierarchy patches requires time interpolation, coarsening, and 
refinement operators that depend on problem geometry, the type of patch data, and the 
centering of patch data  The SAMRAI parallel communication routines are defined in terms 
of abstract operator and geometry base classes to decouple them fiom the details of the 
particular geometry or concrete operators used in an application. The association between 
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a patch data type and its concrete operators is managed through the SAMKAI geometry 
classes, which are responsible for cataloging the operators for a particular patch data type. 

As users define new patch data types for their applications, they must also provide the 
required operators for these types. However, the SAMRAI geometry classes cannot know 
the concrete types of these new operators, since they were defined after the compilation 
of the SAMRAI framework. Thus, the geometry classes require an extensible lookup 
mechanism that allows the definition of new operators for user-defined patch data types. 
This particular design problem is solved by the Chain of Responsibility design pattern. 

3.5.1 Pattern Description The Chain of Responsibility pattern avoids coupling the 
sender of a request to any potential request receiver by giving multiple objects handlers an 
opportunity to handle the request. Our implementation of this pattern follows Gamma [SI. 

To obtain a operator, an algorithm object queries the geometry object for the operators 
associated with a particular patch data type. The geometry object passes the request to 
the chain of handlers it owns. The request is forwarded along the chain until the correct 
operator handler is found. This handler then returns a pointer to the desired operator. 
The correct operator handler is found when the patch data type of the request matches the 
patch data type of the handler, where the type equality is determined using the dynamic 
casting facilities described in Section 3.1. 

3.5.2 Consequences There are several advantages to using the Chain of Responsibility 
pattern for the operator lookup. First, this pattern reduces the coupling between patch 
data types, operators, and the algorithms that use them since these objects have no explicit 
knowledge of each other’s concrete types. The same mechanism may be used for arbitrary 
patch data types and operators without changing any of the algorithm code. Second, the 
system is sufficiently flexible so that new concrete operator handlers (thus, new operators) 
may be added to the chain at runtime. In particular, there is no need to use conditional 
statements or enumerated types that cannot be extended without recompilation. Third, 
the use of the dynamic cast mechanism ensures type safety. That is, an operator cannot 
be associated with a patch data type if the patch data type is not of the type supported 
by the operator handler. 

Therepare some disadvantages to the Chain of Responsibility pattern. .In particular, the 
pattern requires the implementation of an operator class and hander class for each concrete 
operator. The number of classes can be reduced by bundling operators together within 
larger classes and using conditionals to choose the correct behavior. However, the overall 
amount of source code required for this bundled implementation is about the same. In most 
applications, each chain is traversed only once for each variable. Once an operator is found 
and a pointer to its instance is returned, the operator may be called directly through the 
pointer. No future use of the chain is required. We believe that the general flexibility that 
we achieve using the chain mechanism far outweighs these drawbacks for our framework. 

4 Summary and Conclusions 
Object-oriented design patterns have been very useful in the design and development of the 
S A W  structured adaptive mesh refinement software architecture. By using patterns 
such as Abstmt Factory, Struttgj, and Chain of Responsibility, we have simpliied the 
management of complex SAMR algorithms. Consequently, design patterns have enabled us 
meet two of our most important design goals: flexible, extensible algorithm support for a 
wide range of SAMR applications and generic support for arbitrary patch data types. 

When considering the adoption of object-oriented techniques, the scientific computing 
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cornrnullity 1las often focused on implcmentation and performance issues associated with 
“low-level” classes such as vectors, matrices, arrays, and C++ STL containers. While these 
abstractions are useful, we feel that object-oriented design offers the most benefit at  the 
higher leveis of a numerical software architecture. Object-oriented techniques enable tlie 
decomposition of complex algorithms into smaller, more manageable pieces that are suitable 
for a variety of applications. They promote code and algorithm reuse and also facilitate 
testing and management of software framework components. Most importantly, object- 
oriented patterns support more productive application construction by allowing rapid 
exploration of new algorithms that are buiIt from both existing and new components. 
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Absti  act. The need to solve linear systems aiising fiom pioblen~s posed 
on extiemeiy large, unstiuctured giids has sparked great inteiest in pai- 
allelizing algebraic multigiid (AMG) To date, howevei , no parallel AMG 
algorithms exist We introduce a paallel algorithm foi the selection of 
coase-giid points, a ciucial component of AMG, based on modifica- 
tions of certain paiallel independent set algoiithms and the application of 
lieuiistics designed to insuie the quality of the coaxe giids A piototype 
seiial veision of tlie algoiithni is implemented, and tests axe coiiducted 
to deteimine its effect on multigiid convergence, and AMG complexity 

1 Introduction 

Since the intiodurtion of algebiaic multipid (AMG) in the 1980's [4,2,3,5,19, 
16, 18, 171 the method has attracted the attention of scientists needing to solve 
lage piohlems posed on unstiuctmed @ids Recently, there has been a major 
suige of inteiest in the field, due in large pait to the need to solve incieasiiigly 
larger systems, with hundreds of millions 01 billions of unknowns Most of the 
ciiiient reseaich, however, focuses eithei on impioving the standad AMC: algo- 
rithm [9,7], or on dramatic new algebiaic appioaclies [ZO, 61 Little iesearch has 
been done on parallelizing AMG The sizes of the modein pxollems, howevei, 
dictate that laige-scale paiallel processing be einployed 

Methods foi paiallelizirig geonietiic inultigiid methods have been known foi 
mine time [lo], and most of the AMG algoiithni can be parallelized using existing 
technology Indeed, much of the paralleliiation can be accomplished using tools 
ieadily available in packages such as PETsc or ISIS++ But, the heart of the 
AhIG setup phase includes the coaisogrid selection piocess, which is inheiently 
sequential in natuie 

In this note we introduce a paiallel algorithm foi selecting the coaxse-gid 
points The algorithm is based on modifications of paiallel inakpendent set algo- 
iithms Also, we employ heuiistics designed to insure the quality of the coazse 
@ids A prototype seiial code is implemented, and we examine the effect tlie 
algoiithni has on the miiltigxid convergence pioperties 

In Section 2 we outline the basic principles of Ah4G Section 3 describes 
oiir parallelization model and the undexlying philmophy, while the details of the 
palallel algorithm we given in Section 4 R,esults of numeiical expai~uents with 
the selial prototype ale piesented and analyzed in Section 5 In Section 6 we 
make concluding remarks and indicate diiections for futuie iesearch 

. 



2 Algebraic Multigrid 

We begin by outliiling the basic principles of AMG Detailed explanations may 
be fouiid in I171 Consider a problem of the foim A u  = f ,  wheie A is an n x n 
matiix with entries ai, For AMG, a “giid” is simply a set of indices of the 
vaiiables, so the oiiginal giid is denoted by f2 = {1,2, , ~ t }  In any multigrid 
method, tlie central idea is that eiroi e not eliminated by ielaxation is eliminated 
by solving the iesidual equation Ae = r on a coaisei giid, then iiiteipolating 
e and using it to correct the fine-@id appioxiniation The coarse-grid piobleiii 
itself is solved by a recursive application of this method Pioceeding thtough all 
levels, this is known as a multigiid cycle One purpose of AMG is to free the 
solver fiorn dependence on geometry (which may not be easily accessible, if it is 
known at all) Hence, AMG fixes a ielaxation method, and its main task is to 
deteimine a coaisening piocess that appxoximates erroi the ielaxation cannot 
i educe 

Using supeisciipts to indicate level iiunibei, wheie 1 denotes the finest level 
so that Ai = A and R’ = R, the components that AMG needs ale: “giids” 

3 R2 3 , A M ,  inteipolation opeiatois 

ielaxatioii scheme foi each level Once these components are defined, the ierui- 
sively defined multigrid cycle is as follows: 

3 OM; grid operatois Ai ,AL,  
I ,+ , , k  k = 1,2, M - 1, restiiction opeiators I:+’, k = 1,2, Ai - 1, and a 

Algorithm: 1 L 2 V k ( u k , f k )  The (p1,p2)  V-cycle 
If k = M, set uA4 = (A”)-’fA4 
Otherwise: 

Relax pi times on Akuk = fk 
Peifoim coaxse grid coiiection 

Set Uk+l = 0 fk++’ = ~ k + ’ ( f k  - ~ k u k )  
k 

(‘Solve” on level k + 1 with MVk+l(uk+’, fk+’) 
Coriect the solution by uk t uk + Ii+luk+i 

Relax v2 times on A%, = fk 

Fox this to woik efficiently, two piinciples niust be followed 

P1: Errors not eficientdgt reduced by relaxution must be well-uppiozimated 

P2: The course-grid problem mwt  provide a yood appmzirnation to fine- 

by the range of interpolation 

gi id  e m  in the range of interpolation 

AMG satisfies PI by automatically selecting the coaise @id and defining intei- 
polation, based solely on the algebiaic equations of the system P2 is satisfied 
by defining xestxiction and the maim-@id opeiatoi by the Galerkin foimulakioti 
[14]: 

If+’ = and Ak+’ = IL+’AkIk k+ 1 (1) 
Selecting the AMG components is done in a separate piepiocessing step 



AMG Setup Phase: 
1 Set I; = 1 
2 Pal tition flk into disjoint sets Ck and Fk 

(a) Set Ok+' = Ck 
(b) Define inteipolation 

4 If Rk+' is small enough, set M = k + 1 and stop Otherwise, set 
k = k + 1 and go to step 2 

3 Set 1;" = (Ik )T and Ak+' = 1""A"I" k k+l  k + l  

2.1 

Step 2 is the cole of the AMG setup process The goal of the setup phase is to 
choose the set C of coarse-gid points and, for each fine-giid point i E F E R- C, 
a small set Ci c C of inteipolating points Interpolation is then of the foim 

Selecting Coarse Grids and Defining Interpolation 

We do not detail the construction of the inteipolation weights w i j ,  instead iefer- 
ling the ieadei to [17] for details 

An underlying assumption in AMG is that smooth enor is chaiacterized by 
small residuals, that is, Ae M 0,  which is the basis for choosing coarse grids and 
defining inteipolation weights For simplicity of discussion here, assume that A 
is a syrnnietiic positive-definite AI-matiix, with aii > 0,aii 5 0 foi j # i, and 

We say that point i depends on point j if ai, is "laige" in some sense, and 
hence, to satisfy the it11 equation, the value of ui is affected mole by the value 
of uj than by othei variables Specifically, the set of dependencies of i is defined 
hv 

C a i j  2 0 

with a typically set to be 0 25 We also d&ie the set Sr = ( j  i E Sj}, that 
is, the set of points j that depend oii point i, and we say that ST is the set of 
influences of point i 

A basic pieniise of AMG is that relaxation s n i m t b s  the ai01 in the diiection 
of influence Hence, we niay select Ci = Si n C as the set of interpolation points 
foi i, and adheie to the following ciiteiion while choosing C and F: 

P3: For each i E F, each j E Si i s  either in C or Sj n Ci # 0 

That is, if i is a fine point, then the points influencing i must eithei be coaise 
points 01 must theniselves depend on the coarse points used to intapolate ui 

The coal= giid is chosen to satisfy two ciiteria We enfoice P3 in ordex to 
insure good inteipolation However, we wish to keep the size of the coarse-grid 
as small as possible, so we desire that 



P4: C is a m.aximal set with the property  that no C-point influences 
another C-point 

It is not always possible to enfoice both criteria Hence, we enfoice P3 while 
using P4 as a guide iii coaise-point selectioii 

AMG employs a two-pass process, in which the giid is first “colored”, pro- 
viding a tentative C J F  choice Essentially, a point with the laigest numbei of 
influences (“influence count”) is colored as a C point The points depending on 
this C point are coloied as F points Othei points iilfluencing these F points 
ale moie likely to be useful as C points, so theii influence count is increased 
The process is iepeated until all points are eithei C 01 F points Next, a second 
pass is made, in which some F points may be recolored as C points to ensure 
that P3 is satisfied Details of the coarse-Did selection algoiithm may be found 
in 1171, while a recent study of the efficiency and robustness of the algoiithm is 
detailed in [7] 

Like many linear solveis, AMG is divided into two main phases, the s e t y  
phase and the solve phase Within each of these phases aie ceitain tasks that 
must be parallelized to cieate a paiallel AMG algorithm They a e  

- Setup phase: 
0 Selecting the coaise giid points, nk+l 
0 Construction of interpolation and iestriction opeiatois, 
0 Coiistiucting the coaise-grid opeiator A“+’ = 1;+’AkIk+’ k 

0 Relaxation on Akuk = fk 
0 Calculating the iesidual rk t fk - Akuk 
0 Coniputing the restriction f“+’ = I:+’$ 
0 Inkipolating and collecting uk t ut + Ik+luk+i 

1:’’ 

- Solve phase: 

3 Parallelization Model 

In this woik we target massively paiallel distributed memoiy acbitectures, 
though it is expected that the method will prove useful in other settings, as well 
Cuiiently, most of the taiget platfoims suppoit shatcd memoiy within clusteis 
of piocessois (typically of size 4 or 8), although for poitability we do not utilize 
this featuie We assume explicit message passing is used among the ~IOC~SSOLS, 
and implement this with MPI 1151 The equations and data are distiibuted to the 
piocessors using a domain-partitioning niodel This is natuial for many pioblems 
of physics and engineeiing, wheie the physical domain is paititioned by subdo- 
mains The actual assignment to the processois may be done by the application 
code c a l l i  the solver, by the gtidding piogram, 01 by a subsequent call to a 
graph patitionhig package such as Metis [12] The domain-paxtitioning stiategy 
should not he confused with domain decomposition, which refets to a family of 
solution methods 
We use objechiiented softwsle design for paiallel AMG One benefit of tlus 

design is that we can ef€ectively employ kernels fiom other packages, such as 



PET% [l] in seveial places thxoughout oui code Inteinally, we focus on a matfix 
object that genexalizes the featuies of “matiices” in widely-used packages We 
can write AMG-specific Ioutines once, for a variety of matrix data structures, 
while avoiding the iiecessity of reinventing widely available ioutines, such as 
niatr ix-vec toi multiplication 

Most of tlie requixed operations in the solve phase of AMG are standard, as 
ale several of the cole opeiations in the setup phase We list below the staiidaid 
opeiations needed by AMG: 

- Matrix-vector multiplicatzon: used foi iesidual calc idation, for intexpolation, 
aiid xestiiction (both use rectaiigular matrices, 1 estiiction multiplies by the 
transpose) Some packages piovide all of the above, while others may have 
to be augmented, although the coding is stxaightfoiwaid in these cases 

- Basic iteratioe methods used for the smoothing step Jacobi oi scaled Ja- 
cobi aIe most coniiiion foi paallel applications, but any iterative method 
provided in the parallel package could be applied 

- Gather ing/scattering processor boundat y equations used in the consti uction 
of tlie interpolation operatois and in the constiuction of coarse-glid operators 
via the Galex kin niethod Each pxocessoi must access “piocessoi-boundary 
equations“ stoled on neighboiiiig piocessors Because siniilai functionality 
is iequir ed to implement additive Schwaxz methods, parallel packages iinple- 
menting such methods alieady pxovide tools that can be modified to fulfill 
this xequixement 

4 Parallel Selection of Coarse Grids 

Designing a paialld algoiithin fox the selection of thc coarsegrid points is tlie 
most difficult task in parallelizing AMG Classical AMG uses a two-pass algo- 
iithni to implement the heuristics, P3 and P4, that assuie giid quality and . 
contiol giid size In both pass&, the algoxithni is inherently sequential The fixst 
pass can be described as: 

1) Find a point j with maximal measuxe w ( j )  Select j as a C point 
2) Designate neighboxs of i as F points, and update the nieasuxes of 

other neaby points, using heuristics to iusule grid quality 
Repeat steps 1) and 2) until all points ale eithex C ox F points 

This algorithm is cleaily unsuitable for pax alleliaation, as updating of measures 
occurs after each C point is selected The second pass of the classical Ah4G 
algorithm is designed to enfoxce PS’, although we omit the details and refei the 
reader to [17] We can satisfy P3 and eliminate the second pass thiough a simple 
modification of step 2) 

Withel, we may allow foi paralleliini by applying the following onepass 
algoiithm w i n  by perfoiming step 1) globally, selecting a set of C points, D, 
and then perfoim step 2) locally, with each piocessoi woiking on some poition 
of the set D With different criteria for selecting the set D,  and amled with 



vaiious hcuristirs foi updating the neighbois in Z), a fainily of algolithms may 
be developed The overall framewoik is: 

Input the n x n niatrix A" (level k) 
Initialize 

F = @ , C = @  
V i  E (1 n}, 

w(i )  +-initial value 
Loop until IC1 + jFI = R 

Select an independent set of points D 
Q j  E D: 

C = C U j  
Q k in set local to j ,  update w ( k )  
if w(k)  = 0, F = F U I; 

End loop 

4.1 

For the measure w(i), we use ISTI + a(i) ,  the nuinbei of points influenced by 
the point i plus a random nunihei in (0,l) The iandom numbei is used as a 
niechanisin for bieaking ties between points with the same numhei of influences 
The set D is then selected using a rnodificatioii of a palallel maximal independent 
set aIgoiithm developed in [13, 11, 81 

A point j will be placed in the. set D if w ( j )  > w(k)  for all k that either 
infliience 01 depend on j By construction, this set will be independent While our 
iinplementation selects a maximal set of points possessing the iequisite piopeity, 
this is not necessaiy, and may not be optimal An impoitant obsavation is that 
this step can be done entirely in paiallel, piovided each piocessoi has access to 
the w values for points with influences that CIOSS its piocessor boundaiy 

Selection of the set D 

4 2 

Describing the heuiistics for updating w(k) is best done in terms of graph theoiy 
We begin by defining S, the auxiliary influence matrix 

Updating w ( k )  of neighbors 

1 if j E Si, 
0 otherwise sij = 

That is, Si j = 1 only if i depends on j The ith row of S gives the dependencies 
of i while the ith coIumn of S gives the influences of i We can then form the 
directed g a p h  of S, and observe that a diiected edge fiom veitex i to veitex 
j exists only if Sij # 0 Notice that the diiected edges point in the direction 
of dependence To update the w(k) of neighbois, we apply the following pair of 
hemistics 



P5: Values at C points a e  not interpolated, hence, neighbols that in- . 
ffuence a C point aIe less valuable as potential C points themselves 

P6: If k and j both depend on c, a given C point, and j influences k, then 
j is less valuable as a potential C point, since IC can be inteipolated 
fiom c 

The details of how these heuiistics ale iniplemented are: 

V c  E D, 
P5: 
(each j that influences c) 
(deci ement the nieasux e) 
(iemove edge c j  fiom the giaph) 
P6: 
(each j that depends on c), 
(remove edge j c  fiom the giaph) 
(each k that j influences), 
(if k depends on c) ,  

(iemove edge kj fxom the graph) 

V j I S c j  # 0, 
w ( i )  e w(7)  - 1 
Sej t 0 

V i  I S j c  # 0 
Sjc  C- 0 
v k  1 s k j  # 01 

if S k e  # 0 
w ( j )  t w ( j )  - 1 (deciement the measure) 
Skj t - 0  

The heuristics have the effect of lowexing the nieasuxe w(k)  foi a set of neighhois 
of each point in D As these measuies axe loweied, edges of the Saph  of S are 
~emoved t o  indicate that cextain idliienc es have already been taken into account 
Fkequently the step w ( j )  + w ( j )  - 1 causes [w{j)J =Z 0 When this occuxs j is 
flagged as an F point 

Once the hemistics have been applied foi all the points in D, a global com- 
niunication step is iequiied, so that each pxocessor has updated w values foi all 
neighbois of all theii points The entiie piocess is then iepeated C points are 
added by selecting a new set, I), from the vextices that still have edges attached 
in the modified graph of S This process continues until all n points have eit.hex 
been selected as C points 01 F points 

5 Numerical Experiments 

To test its effect on convergence and algoiithmic scalability, we include a seiial 
implementation of the parallel coaisening algoiithm in a standaid sequential 
AMG solver Obviously, this does not test paxallel efficiency, which must wait 
for a full paxallel implementation of the entiie AMG algorithm 

Figuie 1 shows the m i s e  grid selected hy the parallel algoiithm on a stan- 
daid test piohlem, the Qpoint Laplacian operator on a regular @id This test is 
important because the giid selected by the standaid sequential AMC: algoiithm 



Fig 1 Coarse giids for the structuted-giid 9-point Laplacian operator The dark circles 
are the C points Left: Gtid selected by the s tanda~d akJOrlth7Jl Right: Grid selected by 
the parallel algorithm 

Fig. 2 Coarse grids for an unstructured grid The large circles are the C points h t t :  
Grid selected by the standard algorithm Right: Grid selected by  the pomllel algorithm 
Graph conneetidy is  shown on the left, while the full digmph i s  shown on the fight 

is also the optimal @id used in geometric multigrid for this pioblem Examining 
many such test probleins on iegulm giids, we find that the parallel coaisening 
algorithm typically pioduces roase gxids with 10-2094 mole C points than the 
sequential algorithm On unstiuctuied giids 01 complicated domains, this in- 
ciease tends to be 40-50%, as may be seen in the simple exaniple displayed in 
Figuie 2 

The impact of the parallel coaisening algoiithm on ConveIgerice and scal- 
ability is shown in two figures Feuie 3 shows the conveigence factor for the 
Spoint Laplacian opeiatoi on xegulai giids ranging in size fiom a few hundred 
to neady a half million points Several diffeient Lhoices for the smoother and the 
paranieta cy a e  shown In Figuie 4 the same tests aie applied to the 9-point 
Laplacian operator foi anisohopic grids, wheie the aspect iatios of the undei- 
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Fig 3 Convergence factors for parallel AMG fur the 9-point Laplacian 

lying quadiilateral finite elements a e  extiemely high In both figures, we see 
that convergence factors for the @ids chosen by the p a d e l  algoiithm are sig- 
nificantly larger than standard AMG (shown as “AMG” in Figure 3, not shown 
in Figuie 4), although the patallel algorithni still pioduce solutions in a ieason- 
able numbei of itaations Of more conccin is that the convergence factors do 
not scale well with increasing pioblem size We believe that this may be caused 
by choosing too many coarse giid points at once, and that simple algoiithmic 
modifications mentioned below may improve oui iesults 

Figuie 5 shows the grid and opeiator coinpIexities for thc parallel algoiithlu 
applied to the 9-point Laplacian operator Grid complexity is the total numbel 
of grid points, on all grids, divided by the nuniber of points on the oiigiiial giid 
Operator complexity is the total number of non-zeios in all operators A’, A2, 
divided by the nuniber of non-zeios in the original matiix Both the giid and 
operata complexities generated using by the parallel algorithm are essentially 
constant with iiiueasing pioblem size While slightly larger than the coniplexities 
of the sequential grids, they nevertheless appeal to be scalable 

The fiamework desciibed in Section 4 peimits easy modification of the al- 
gorithm For example, one may alter the choice of the set D of C points We 
believe that the conveigence factoi degradation shown in oui results may be due 
to selecting too many Loatse giid points One possibility is to choose the minimal 
numba of points in D ,  that is, one point pei processoi This amounts to running 
the sequential algorithm on each processoi, and there a number of dif€exnt ways 
to handle the inkprocessor boundaries One possibility is to toaisen the pro- 
CZSOI boundary equations fiist, using a parallel MIS algoiithm, and then treat 
each domain independently Another option is to iun the sequential algorithm 
on each processor ignoring the nodes on the boundary, and then patch up the 
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Fig. 4 Convergence rates for parallel AMG for the anisotropic glad problem 

giids on the processoi bouiidaxies 

6 Conclusions 

Modern massively paxallel computing iequires the use of scalable linear solvexs 
such as multigrid Fol unstructured-aid pxoblems, howevel, scalable solvers have 
not been developed Paiallel AMG, when developed, pioniises to be such a solver 
AMG is divided into two main phases, the setup phase aiid the solve phase The 
solve phase can be parallelhd using standaid techniques common to most pxal- 
le1 multigrid codes Howevei, the setup phase coarseiliiig algoxithm is iqheiently 
sequential in natuxe 

We develop a family of algoxithins fox selecting coaise gxids, and piototype 
one member of that family using a sequential code Tests with the prototype 
indicate that the quality of the selected mise @ids are sufticient to maintain 
constant complexity and to piovide couvexgence even foi difficult anisotropic 
pioblems However, convexgence lakes are highei than foi standald AMG, and do 
not scale well with pioblem size We believe that this dcgiadation may be caused 
by choosing too inany coaise g i d  points at once, and that simple algoiithmic 
niodifications may improve oux xesults Exploration of these algorithm variants 
is the subject of our cuiient ieseaith 

. 

References 

1 S BALAY, W GROPP, L C M C ~ N F S ,  AND B SAIITH, Petsc 2 0 user's manual, 
Tech Rep ANL95/11, Aigonne National Laboxatmy, Nov 1995 



. -  I I '  1 

O 5  t 
0 4  I I I I 
0 200 400 600 a0 0 

N(NaNgrld) 

Fig. 5 Opeiator complexity for  parallel AMG on ezample problem 

2 A BRANDT, Algebraic multigrid thwiy The symmetric case, in Pieliminary Pro- 
ceedings for the Inteinational Multigrid Conference, Coppei Mountain, Coloiado, 
Apiil 1983 

3 A BRANDT, Aigebruic multigrid theory: The symmetric case, Appl Math Com- 

4 A BRANDT, S F MCCORhrlCK, AND J W RUGE, Algehaic multigrid (AMG) for  
automatic mdtigr id solutions with application to geodetic computations Report, 
Inst for Computational Studies, Foit Collins, Colo , Octoba 1982 

5 -  , Algebraic multigrid (AMG) for aparse mat& equations, in Spasity and Its 
Applications, D J Evans, ed , Cambridge Univeisity Press, Cambiidge, 1984 

6 M BREZINA, A J CLEARY, R D FALCOUT, V E HFNSON, J E JONES, T A 
MANTEUFFEL, S F MCCORMICK, AND J W RUGE, Algebraic multigrid based 
on element interpolation (AMGe) Submitted to the SIAM Jomnd on Scientific 
Computing special issue on the Fifth Coppei hlountain Conference on Iteiative 
Methods, 1998 

7 A J CLEARY, R D FALCOUT, V E HENSON, J E JONES, T A MANTEUF- 
FEL, s F MCCORhlICK, G N MIRANDA, AND J W RUGE, Robustness and 
scalability of algebraic multigrid Submitted to the SIAM Jouinal on Scientific 
Computing special issue on the Fifth Coppei Mountain Conference on Ite~ative 
Methods, 1998 

8 R I< GJERTSEN, JR , M T JONES, AND P E PLASSMAN, Parallel heuristics for 
improtred, balanced graph COlOfingS, Jouinal of Paallel and Distiibuted Computing, 
37 (1996), pp 171-186 

9 G GOLUBOVICI AND c POPA, Interpolation and d a t e d  coarsening techniques for 
the algebraic multigrid method, in Multipid Methods IV, Pioceedings of the Foul th 
Euopean Multipid Conference, Amstadam, July 6-9, 1993, vol 116 of ISNM, 
Basel, 1994, B i r k h s m ,  pp 201-213 

pllt, 19 (1986), pp 23-56 



10 J E JONES AND S F MCCORMICK, Paiallel multigiid methods, in.-Parallel Nu- 
meiical Algoiithms, D E Keys, A H Sameh, and V Venkatakiishnan, eds l Doi- 
diecht, Netherlands, 1997, Kluwei Academic Publications 

11 M T JONES AND P E PLASSMAN, A parallel graph coloring heutistic, SIAM 
Journal on Scientific Computing, 14 (1993), pp 654-669 

12 G KARYDIS AND V KUhtAR, A coarse-grain parallel multilevel k-way partitioning 
algorithm, in Proceedings of the 8th SIAM Conference 011 Parallel Piocessing foi 
Scientific Computing, 1997 

13 M LUBY, A simple patallel algorithm for the inazimal independent set problem, 
SIAM Jolunal 0x1 Computing, 15 (1986), pp 1036-1053 

14 S F MGCOR~IICK, Multagiid methods for variational problems: general theory for 
the V-cycle, SUM J Numei Anal, 22 (1985), pp 634-643 

15 MPI FORUAI, MPI: A message-passing interface standard, International J Supei- 
computing Applications, 8(3/4) (1994), pp 654-669 

16 J W RUGE AND K STUBEN, Eficient  solution of finite differerrce and finite ele- 
ment equations by ulgebraic multigrid (AMG),  in hlultigrid Methods for Integral 
and Differential Equations, D J Paddon and H Holstein, e& , The Institute of 
Mathematics and its Applications Conference Seiies, Claiendon Piess, Oxford, 
1985, pp 169-212 

17 - Algebraic multigrid (AMG),  in Multipid Methods, S F McCoxmir.k, ed , 
vol 3 of Elontiers in Applied Mathematics, SIAM, Philadelphia, PA, 1987, pp 73- 
130 

18 K STUBEN, Algebraic multigtid ( A M G )  eqeriences and comparisons, Appl 
Math Comput, 13 (1983), pp 419-452 

19 K ST~BEN, U TROTTENBERG, AND K WITSCH, Soflwure development based on 
multigrid techniques, in Pioc IFIP-Confeience on PDE Software, Modules, Intei- 
faces and Systems, B Enquist and T Smedsaas, cds , Sweden, 1983, Sodakiiping 

20 P VAN& J MANDEL, AND M BREZINA, Algebraic multigrid based on smoothed 
aggregation for second and fourth older problems, Computing, 56 (1996), pp 179- 
196 

This mticle was piocessed using the IF&X mauo package with LLNCS style 



SAMRAI 
Unwerslry of Califorma a Lawrence Livermore L National Laboratory 

Structured Adaptive Mesh 
Re finemen t Applications 

Infrastructure 

Technology 
SAMRAl is an object-oriented 
code framework that provides 
computational scientists with 
general and extensible software 
support for rapid prototyping 

j and development of parallel 
structured adaptive mesh 
refinement (AMR) applications. 
The primary goal of the SAMRAI 
effort is to facilitate numerical 
and algorithmic exploration in 
AMR applications that require 
high performance computing 
hardware. 

umerical simulations, 
especially those involving N complex physical models 

and large spatial domains, are very 
expensive. In many applications of 
interest to science and engineering, 
the most important features of the 
physical processes occur in local- 
ized regions of the computational 
domain. Uniformly fine compu ta- 
tional grids with sufficient 
resolution to capture these local 
phenomena may be unnecessarily 
fine outside the regions of interest. 
As a result, such uniform grid simu- 
lations can be inefficient or even 
prohibitively expensive. 

Structured AMR provides a 
systematic way to focus computer 
resources (CPU time and memory) 
in local regions of a computational 
domain by employing varying 
degrees of spatial and temporal res- 
olution. As such, AMR is an 
important technology needed to 
support largescale, physically and 
numerically well-resolved, three- 
dimensional simulations. 

aqueous phase saturation 

adaptive mesh configuration 

Fig. 1. Adaptive mesh refinement concentrates computational effort near the aqueous phase 
front in this polymer flooding sirnufation. 

Emerging AMR Application 
Domains 

Structured AMR has been 
applied successfully to the numeri- 
cal solution of systems of partial 
differential equations associated 
with fluid dynamics applications. 
SAMRAI is being developed to sup- 
port the extension of traditional 
structured AMR methodology to 
new problem areas (see Figs. 1 and 
2). These include, but are not lim- 
ited to, problems modeled by 
tightly coupled systems of hyper- 
bolic and elliptic or parabolic 
partial differential equations (such 
as hydrodynamics coupled with 
radiation diffusion, flow and trans- 
port in porous media, and 
combustion), neutron transport, 
hybrid models that combine vastly 
different numerical methods (e.g., 
discrete a d  continuum), and Arbi- 
trary Lagrangian Eulerian (ALE) 
integration methods. 

The application of AMR to these 
non-traditional problem areas gives 
rise to many interesting algorithmic, 
numerical, and computer science 
research questions. For example, the 
equations of radiation hydrody- 
namics-which simulate the 
transport of radiation and its inter- 
action with matter via radiation 
emission and absorption-couple 
hyperbolic hydrodynamics with 

parabolic radiation-diffusion. 
Developing radiation hydrodynam- 
ics AMR applications requires new 
solvers, new time integration meth- 
ods, and extended data structure 
support. 

In collaboration with scientists at 
LLNL, other DOE laboratories, and 
academia, we are exploring open 
research questions associated with 
the application of AMR to these 
non-traditional problem areas. 

The SAMRAI Framework 
Building AMR applications is 

difficult and requires substantial 
software and algorithmic develop- 
ment. Experience has shown that 
AMR applications require substan- 
tially more complicated 
programming and longer develop- 
ment time than codes employing 
simpler uniform computational 
grids. AMR can be particularly chal- 
lenging on parallel computers, since 
the programmer is responsible for 
managing and orchestrating com- 
plicated communication patterns 
among the processors of the 
machine. The SAMRAI framework 
facilitates the rapid prototyping of 
various design alternatives by free- 
ing scientists from low-level data 
structure and algorithm manage- 
ment, and other implementation 
details. 

UCRL-m-128634 UW. httphww.llnl.gov/CASC/SAMRAU 



SAMRAI 

Integrator Patch Integrator 

Fig. 2. AMR and front tracking techniques 
have been used to study the f m t i o n  of 
shear bands in granular materials. 

The SAMRAI framework must be 
applicable to a broad range of 
structured AMR applications; 
therefore, the design of the software 
architecture reflects an emphasis on 
generality and extensibility. Object- 
oriented design techniques have 
been applied throughout so that 
data structures and algorithms can 
be specialized and extended 
through derivation. In particular, 
SAMRAI's algorithmic framework 
can be adapted for a particular AMR 
application by derivation from 
SAMRAI's abstract classes and 
defining application-specific 
operations (see Fig. 3). Also, 
problemdependent data types are 
incorporated easily by exploiting 
SAMRAI's flexible data structure 
abstractions. 

In summary, SAMRAI reduces 
code duplication, encourages 
interoperability of application 
software, and simplifies the learning 
curve for new computational 
methods. SAMRAI's object-oriented 
architecture provides the flexibility 
to address a wide range of AMR 
applications. The advantages of this 
approach include reduced code 
development time and broader, 
more in-depth research into 
numerical methods for AMR 
applications. 

SAMRAI Applications and 
Framework Validation 

In collaboration with scientists at 
LLNL and academia, we are using 
SAMRAI to develop applications in 
the areas of computational fluid 
dynamics, shear band formation in 
granular flow, flow and transport in 
porous media, and multi-physics 
problems. In addition to producing 
interesting scientific research, these 
applications serve as a validation of 
the SAMRAI software architecture 
since they requilr ,ubstantial data 
structure and algorithmic flexibility. 

One particularly interesting 
application is multi-phase reactive 
flow and transport in porous media. 
The model equations contain general 
mass balance for the chemical species, 
general non-isothermal energy 
balance, and a wide variety of 
chemical reactions. The nonlinear 
coupling of equations in this system 
requires highly sophisticated linear 
and nonlinear solution techniques. 
The disparate length and time scales 
over which the chemical and physical 
mechanisms operate, along with the 
transient nature of the important 
phenomena, suggest that some form 
of AMR is necessary to treat the 
problem successfully. Developing 

appropriate adaptive solution 
algorithms for this problem ared IS 

challenging test lor the SAMRAI 
algorithmic framework. Complicated 
domain geometn; including 
subsurface fractures and faults, and 
the need to represent different sets of 
primary variables in different regions 
of the physical domain (i.e., different 
sets of phases, species, and reactions) 
will motivate future development of 
SAMRAI framework. 

Other applications presently tar- 
geted for SAMRAI development 
include radiation hydrodynamics 
simulations, for which hydrody- 
namics equations of hyperbolic 
character are coupled to parabolic 
equations modeling radiation diffu- 
sion, and high explosives 
simulations in which various 
processes (chemical, thermal, hydro- 
dynamic, etc.) interact at different 
length and time scales. 

For additional information about the 
SAtvlRAI project, contact Xabier 
Garaizar (510-423-IS2 1, 
garaizat@llnl.gov), 
Richard Hornung (510-422-5097, 
hornung@llnl.gov), or 
Scott Kohn (510422422, 
skohn@llnl.gov). 

--. 

A 1 

Fg.  3. The W R A l  software framework urpports a variety of AM! application domains through a 
careful objkct-oknted design. 

Work performed under the auspices of the U.S. DOE by UNL under contract No. W-7405-ENG-48 
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SOFTWARE ABSTRACTIONS AND COMPUTATIONAL 
ISSUES IN PARALLEL STRUCTURED ADAPTIVE 

MESH METHODS FOR ELECTRONIC STRUCTURE 
CALCULATIONS* 

SCOTT KO”’, JOHN WEARE*, ELIZABETH ONGf AND SCOTT BADENT 

Abstract. We have applied structured adaptive mesh refinement techniques to 
the solution of the LDA equations for electronic etructure calculations. Local spatial 
refinement concentrates memory resources and numerical effort where it is most needed, 
near the atomic centers and in regions of rapidly varying charge density. The structured 
grid representation enables us to  employ efficient iterative solver techniques such as 
conjugate gradient with FAC multign’d preconditioning. We have parallelized our solver 
using an object-oriented adaptive mesh refinement framework. 

Key wards. Structured Adaptive Mesh M n e m e n t ,  Electronic Structure Calcula- 
tions, LDA, Parallel Framework, Object Oriented Design. 

1. Introduction. Electronic structure calculations attempt to accu- 
rately model the chemical properties of important materials through com- 
puter simulation. These computational methods complement traditional 
”wet” laboratory experiments. They help scientists to understand and 
predict the chemistry and structure of complex compounds. Simulations 
can provide insight into chemical behavior and material structure that is 
often unavailable from experiments; such insiiht can be used to guide the 
design of new classes of materiais with desired properties. 

Computations at the quantum mechanical level require the solution 
to some approximation of Schrijdinger’s equation. The direct solution of 
schriidinger’s equation is currently computationally intractable except for 
the smallest of molecules, since problem size scales exponentially with the 
number of electrons in the system. One common first-principles approoci- 
mation-and the one we use here-is the Local Density Appmximation 
(LDA) of Kohn and Sham [19]. 

Over the past thirty years, computational scientists have developed 
various approacha to solving the LDA equations. The most common and 
successful techniques in use today include Fast Fourier Tt-ansform (FFT) 
methods that expand the LDA equations using a planewave basis set [23] 

This work has been supported by the NSF (ASG9503997, ASG9520372, and 

3-1835). the UCSD School of Engineering, the Saa Diego Supercomputer Center, and 
by UNL. under DOE contract W-7405-Eng-48. 

t Center for Applied Scientific Computing (CASC), Lawrence Livermore National 
Laboratory (LLNL), Livenawe, CA. * Department of Chemistry and Biochemistry, University of California at San Diego 
(UCSD), La Jolla, C A  

f Department of Mathematics, UCSD, currently viaiting CASC. 
9 Department of Computer Science, UCSD. 

CCR-94038bL), AFOSR (F49620-94-1-0286), ONR (N00014-93-1-0152 a d  N00014-91- 

1 
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and LCAO (Local Combination of Atomic Orbitals) methods that use a 
Gaussian basis set [2]. Other computational techniques include finite dif- 
ference methods on uniform grids [9,6], wavelets [10,25], finite elements 
with grefinement (but not spatial refinement) [27), and adaptive coordi- 
nate methods [13,14] that locally deform a logically rectangular mesh. 

We are primarily interested in studying aperiodic systems that exhibit 
multiple length scales and therefore require local spatial refinement [8]. 
Examples of such systems include metal-carbon clusters or molecules with 
loosely bound, diffuse electrons. Ideally, our basis set should adapt to 
local changes in the electronic charge density, such as near atomic centers. 
Although LCAO methods support a form of local refinement, they do not 
scale well with increasing system size and can be inefficient when coupled 
to molecular dynamics. Planewave methods do not readily support local 
adaptivity since Fourier basis functions cover all space; consequently, local 
changes are propagated throughout the entire computational domain. The 
adaptive coordinate method has been somewhat successful in supporting 
spatial adaptivity; however, it is limited in the amount of local refinement 
since large mesh deformations can result in numerical instabilities. 

To address the limitations of current simulation techniques, we have 
developed a prototype LDA code based on structured adaptive mesh re- 
finement techniques using a finite element basis set. Adaptive methods 
nonuniformly place computational effort and memory in those portions of 
the problem domain with the highest error. Using our adaptive approach, 
we have studied systems with very short length scales that would have been 
difficult or infeasible with a uniform grid method. 

In this paper, we describe some of the computational and numeri- 
cal issues surrounding structured adaptive mesh d e m e n t  methods for 
electronic structure calculations. In particular, the software infrastructure 
needed to support these applications can become quite complex, especially 
on parallel computers. We also present computational results for .some 
simple diatomic systems. Although our adaptive implementation is not yet 
competitive with the more mature planewave methods, we have identified 
changes that wil l  improve the accuracy and competitiveness of the adaptive 
approach. 

This paper is organized as follows. sedion 2 introduces the LDA equa- 
tions, and Section 3 describes the numerical methods employed in solving 
the LDA equations on a structured adaptive grid hierarchy. Section 4 p m  
vides an oveMew of the software framework and pardelization techniques. 
Section 5 evaluates our approach for a few diatomic molecules with known 
properties. F d y ,  Section 6 swnmarizes this work and highlights new 
research directions. 

.’ 

2. The LDA Equations. In the Local Density Approximation, the 
electronic wavefunctions am given by the solution of the nonlinear Kohn- 



Parallel AMR for Materials 

Sham eigenvalue equations 

3 

where the symmetric, indefinite LDA Hamiltonian 7f is 

(2.2) %! = (q + vezt -k VHb) -k &c(p) 

Atomic units are assumed throughout this paper. The electronic charge 
density is p ( z )  = Il+,(z)11*, and N is the number of occupied electron 
orbitals describing the system. The electronic charge density can be inter- 
preted as giving the spatial distribution of the total electron charge. The 
eigenvectors (or wavefunctions) t,b, are orthonormal and ci is an eigenvalue. 
In general, we require the lowest N eigenvalues and associated eigenvectors. 
For a typical system of interest, N is a few tens to a few hundreds, and 
the number of basis functions used to describe each +i is on the order of a 
quarter million. 

The first term in the Hamiltonian operator represents the kinetic en- 
ergy of a wavefundion. & describes the interactions between an electron 
and the nuclear ions. The Hartree potential VH models electron-electron 
repulsion and is the solution to the freespace or infinite domain Poisson 
problem 

(2-3) v2vH(%) = -4np(z), vH(z) = 0 as llzll 00- 

V,, is the electron exchange-correlation functional and depends only on 
the local charge density. In our implementation, we use the correlation 
paramtterization obtained by Vosko, W&, and Nusair [26]. Both VH and 
V,, are functions of the electron density, which, in turn, depends on the 
eigenfunctions; thus, the Kohn-Sham eigenvalue problem must be solved 
self-consistently. 

The length scale difficulties in the LDA equations a+ie in the accurate 
representation of the external potential term &-t, given by 

(2.4) 

where the sum is over the atom in the system, and atom a has nuclear 
charge 2, and position Xa. We have solved these "all4ectron" problems 
with the singularity in &t using our adaptive code but find that inner 
core electrons, which play l i t t le i f  any-role in chemical bonding, create 
stifbess and conditioning problems for the discrete eigenvalue equations. 

The core electron f singuhities can be removed without much loss of 
accuracy by replacing the Coulomb attraction of the atomic centers using 
separable pseudopotentials [lS,l6]. For each epecies of atom a, we define a 
collection of pseudopotentials Vp and corresponding pseudowavefunctions 
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up that solve the singleatom LDA equations for the valence electrons alone. 
The number of pseudopotentials in the expansion roughly depends on the 
type of bonding behavior associated with the atom; typically, three or four 
pseudopotentials are sufficient to approximate each atom. The Vctt term 
in the Hamiltonian then becomes 

V,.,, is the local ionic pseudopotential and is typically chosen as the pseu- 
dopotential V,. with the largest quantum number 1. 

The application of pseudopotentials significantly softens Kzt; however, 
depending on the types of atoms in the molecule, Vat may still be too stiff 
for uniform grid methods. Pseudopotentials may be softened, but softening 
can introduce arti6cial physics. Our adaptive approach has been motivated 
by the need to accurately describe atoms such as oxygen or transition 
metals with stif€ pseudopotentials. 

Note that we have presented the LDA equations assuming a restricted 
spin formulation; that is, all upspin electrons are paired with down-spin 
electrons. In many molecules, however, spins are not paired and the Local 
Spin Density (LSD) equations must be used instead. The LSD equations 
are similar to the restricted spin equations given above except that the 
exchange-correlation functional V,, is now a function of two densities, 
and p l ,  corresponding to the two types of electrons. 

3. Computational Approach. We seek to accurately model 
molecules containing atoms with steep pseudopotential representations, 
such as oxygen, florine, or transition metals (see Section 5). To do so 
requires some form of local spatial refinement about the atomic center to 
capture the rapidly varying pseudopotentials. 

Structured adaptive mesh refinement methods solve partial differential 
equations using a hierarchy of nested, locally structured grids. All grids 
at the same level of the hierarchy have the same mesh spacing, but each 
successive level has h@er spatial resolution than the ones preceding it, 
providing a more accurate representation of the solution (see Figure 3.1). 
Structured adaptive mesh techniques were originaUy developed for compu- 
tational fluid dynamics [4,3]. 

We have implemented an LDA application using the techniques of 
structured adaptive mesh refinement methods. Although the data represen- 
tations are similar, our eigenvalue problem has very different mathematical 
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FIG. 3.1. Thne kaeb of a structund adaptive mesh hiemrchy. The eight dark circles 
rrpnrent ttgim of high error, such a8 atomic centers in (I materials design applicotion. 
The mesh spacing of mch levd is hdf of (he pnviow coarser level. 

properties than computational fluid dynamics and therefore requires differ- 
ent discretizations and solver algorithms. The following Sections cover our 
discretization approach and numerical algorithms in detail. 

3.1. Finite Element Discretization. We discretize the Kohn-Sham 
equations (Eq. 2.1) using the finite element method, which for our applica- 
tion has a variety of advantages over competing discretization techniques. 
Finite elements readily admit local adaptivity. Finite element basis func- 
tions are very localized in space, interacting only with their immediate 
neighbors, and therefore do not sufTer from the scaling problems of LCAO 
methods that use Gaussian basis sets. Finally, the finite element approach 
provides a consistent framework for defining operators across coarse-fine 
grid interfaces in adaptive grid hierarchies, as opposed to finite difference 
or finite volume discretizations that can result in nonsymmetric operators 
with complex Koh-Sham eigenvalues. 

The finite element approach expands a function f(z) in a basii of M 
functions {c#j(z)} with coefficient weights aj 

M 

f (4  = aj+jw 
j-1 

All spatially varying quantities in the LDA equations-including the wave- 
functions $it the charge density p, and the potentials VH, and Vze- 
are represented by their discrete expansion coefficients as indicated above. 
The Kohn-Sham equations are discretized using a Ritz formulation, result- 
ing in the discrete nonlinear eigenvalue problem 

where the unlcaowns are the &cients in the expansion of $i. Note that 
we have shown only one wavefunction tj; and one eigenvalue q to simplify 
the notation; the full Kohn-Sham equations involve a set of N t,bi coupled 
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through the charge density p- Our current code uses a 3d trilinear basis 
element 4, and appraximates the rightmost two integrals in the above equa- 
tion using the mid-point integration rule. The Hartree equation (Eq. 2.3) 
and the pseudopotential equations (Eqs. 2.5 through 2.7) are disaetized in 
a similar manner. 

Numerical computations on structured adaptive meshes consist of local 
array-based calculations on refinement patches and %-up" computations 
on the boundaries of the patches. Since computations are over structured 
domains, there is no need to explicitly create and store a sparse matrix. 
Instead, all operations are performed matrix-fiee. For example, the code 
to compute the discrete Laplacian operator on the interior of a grid patch 
uses the standard second order finite element stencil; however, the form 
of the stencil on coarsefine grid interfaces becomes more complex. The 
following Section describes how to manage the computation at interfaces 
between coarse and fine grids. 

3.2. Grid Interfaces. Our composite grid hierarchy uses node- 
centered refinement, as this is the natural centering for a second order 
linear finite element discretization. One difficulty with node-centered re- 
finement on adaptive grids is that not all grid values are true degrees of 
freedom; rather, some grid points are "slaved" to the values of other nodes 
in the hierarchy- Here we refer to these grid points as "slave nodes." 

As shown in Figure 3.2, there are two types of slave nodes. In the 
first case, the slave node adjoins a coarse grid cell. To maintain continuity 
across grid interfaces, the value of the slave node must match the value at 
the edge of the coafse grid cell. For linear elements, the fine grid slave node 
is linearly interpolated from the two adjacent grid points. The second type 
of slave node exists wherever two fine grid cells overlap. In this case, the 
same degree of freedom is represented on two different refinement patches. 
One of the replicated values must be designated as the "real" value (the 
black point in the Figure) and the other as the "slave" (the grey point). 
To daerentiate between slave and free nodes, we impose an ordering on alI 
grid patches at one level of the refinement hierarchy. Degrees of freedom 
on lower numbered patches are designated real nodes and all overlapping 
nodes on higher numbered grids are marked as slave nodes. The numer- 
ical algorithm must ensure that slave nodes remain consistent with their 
corresponding degrees of freedom. 

Recall that the calculation of an operator (e.g, the Laplacian) on the 
interior of a grid patch uses the standard uniform grid stencil; however, 
something special must be done on intehces between coarse and fine grids. 
To compute the operator at coarse grid points, it is Suffident to inject nodal 
d u e s  from the h e  grid into the aam grid and then apply the uniform 
stencil. The computation on the h e  grid interface is more complicated, 
especially in three dimensions. There are many interface cases to consider 
(see Figure 3.3 for two examples), and it would be tedious to catalog the 
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FIG. 3.2. Slave nodw are mesh points that do not nprwmt true d q n x s  of fncdom; 
rather, they a n  “slaved” to the values of other nodes. The values of the fine grid slave 
nodes on the left an determined by thefinifc clement W functions on the mafje grid. 
For lincat ekmcnb, slave node values are linearly interpolated fnnn neighboring mesh 
points. On the right, one dcgne of fnedom i s  reprrsentcd on two diffemnt fine patches. 
In this case, the nodes on.the black pot& on, chosen as the true d e g w  of fwdorn and 
the grey nodes a n  “slaved” to  the black nodes. 

appropriate stencils for these various cases. 
Instead, we exploit the variational nature of the finite element formu- 

lation to compute the operator on the exterior of fine grid patches. The 
algorithm is as follows. 

1. 

2. 

3. 

4. 

Whenever a new refinement level is created in the hierarchy, the 
boundary points of each new fine grid patch are tagged as to the 
refinement status of the cells adjacent to it. For example, the 
center node in Figure 3.3a would be tagged to indicate that the 
cells to the northwest and southwest are coarse cells. Liewise, the 
center node in Figure 3.3b would have northwest, southwest, and 
southeast tagged. 
To compute the operator on the boundaries of the fine patch, first 
add a ghost cell boundary layer two cells wide to each patch. Fill 
the ghost cell region with interpolated coarse grid data. Then copy 
into the ghost cells data from adjacent fine grid cells, overwriting 
coarse! grid data where there is overlap. 
Apply the uniform grid stencil to the interior of the patch along 
with the one ghost cell lam surrounding it. 
Firady, iterate over all the points on the boundary of the fine grid 
patch. Update the operator value by adding in the appropriately 
weighted values from all surrounding nodes that are not true de- 
grees of freedom on the fine grid. The weights are determined from 
the finite element basis functions (see Figure 3.3). 

Using this approach, there is no need to catalog all the various types of 
stencils at the interfaces. Instead, a relatively simple procedure can be 
used to compute stencil values directly. The only additional bookkeeping 
is a flag for each point on the boundary indicating the type of refinement 
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FIG. 3.3. To compte the composite grid opemior at gtid interfaces, we first gnno thefine 
grid by two ghost all8 and then apply thc uniform grid stencil on the expanded domain. 
We thm f i  the values on the boundnries of the origin01 patch wing weighted sums 
of neighboring volues. Shomn hen a n  the wcighb for the center d e  in the Pigun; 
the weights an determined by the numerkal uduu of the bilinear finite element ot the 
neighboring nodes. 

for the cells surrounding it. 

3.3. Eigenvalue Solver. The Kohn-Sham equations (Eq. 2.1 
and 2.2) pose a nonlinear eigenvalue problem. Standard eigenvalue solvers 
such as Lanczos [12] are not appropriate, since the Hamiltonian may change 
during the solution procedure due to the nonlinear coupling through the 
electronic charge density. Using a naive dgorithm, such as steepest de- 
scent, would require extremely small Seep sizes (to guarantee convergence) 
dictated by the smallest length scales in the system, resulting in numer- 
ous iterations and UnacceptabIy long solution times. Therefore, we use an 
eig.mvalue solver technique developed by Longsine and McCormick called 
SiuItaneous Rayleigh Quotient Minimization with subspace diagonaliza- 
tion 1201. 

The basic idea behind this approach is to take iterative steps that 
minhize the Rayleigh Quotient 

where 31 is the Hamiltonian (Eq. 2.2) of the Koh-Sham equations. The 
algorithm begins by f’reezbg the nonlinear terms in the Hamiitonian. It 
then cycles through the wavefunctions in turn. For each wavefunction ++, 
it takes a few iterations of the form $?” c $i + ad, where a minimizes 
the Rayleigh Quotient for that wavefunction, 

a RQWi + ad), 

assuming ad other wavefunctions are fixed. Under the assumption that the 
Hamiltonian operator is approximately hear about the location $f, the 
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method can compute the step size Q &ciently without a nonlinear search. 
The step directions d are generated via a CG-like process. After working 
through all wavefunctions, the solver performs a subspace diagonalization 
that accelerates the overall convergence of the method. 

Our Rayleigh Quotient solver is essentially a band-by-band conjugate 
gradient solver, similar to  other methods used in the materials science com- 
munity. Unfortunately, these methods suffer from ill-conditioning problems 
with additional levels of refinement. We are actively pursuing a multilevel 
preconditioning technique to reduce the dependence on the number of re- 
finement levels and therefore speed convergence. We are considering either 
a multigrid preconditioner [7] or a multilevel nodal basis preconditioner [5].  
Experiments by Sung, Ong, and Weare [24] for planewave methods show 
the effectiveness of multilevel preconditioners for the eigenvalue equations. 

3.4. Hartree Equations. Recall from Section 2 that the LDA 
Hartree potential VH is the solution to a f iespace Poisson equation 

(3.1) v*vjl(z) = - h p ( Z ) ,  v~(z) = 0 aS //%11 -b 00. 

VH is a function of the electron charge density p, which depends in turn 
on the wavefunctions $i. Thus, VH must be recalculated many times dur- 
ing the eigenvalue solution procedure. There are two parts to computing 
V': (1) obtaining the Dirichlet boundary conditions on a k i t e  computa- 
tional domain, and (2) solving the resulting boundary value problem on a 
nonuniform grid hierarchy. 

3.4.1. Ekee-Space Boundary Conditions. Fast numerical meth- 
ods such as multigrid require a finite computational domain 51 with bound- 
ary conditions g(z) on Hl: 

(3.2) V2vH(z) = -4np(z), VH(z) = g(z) on m. 
Therefore, we must find a fast and accurate scheme for computing the 
boundary values on that would arise from freespace boundary condi- 
tions on an infinite domain. We would prefer a method that scales as O(N) 
since our multigrid solver scales linearly with the number of unknowns. 

We can evaluate the potential on the boundaries of the computational 
domain through a direct numerical integration of the Green's function 

(3.3) 

HOWWTT, this approach  scale^ aa o ( N ~ ) .  TO redu~e the computatiod 
cost to O(N), we have developed a method that emplays a multipole- 
like approximation due to Anderson {l]. Instead of evaluating the Green's 
integral for each of the O ( N 3 )  boundary points in 652, we only evaluate 
it at a small, constant number of points located on a sphere that encloses 



10 

5 a 

4 

Kohn 

%converge- -- 
--h.ur) 

FIG. 3.4. Preconditioning becomes essential with i n m i n g  Id refinement; These 
p p h u  compare the convergence of (a) an nonpnconditioned anjugate &imt method 
with (b)  a mufiign’d-pmnditwnui conjugate qmdimt solver ~1 the number of levels of 
adaptive rcfincmeni is varied. The n u m b  of itmtiona u appron’mately pmportwnal 
to the time per grid point. 

the boundary of the computational domain. Using the potentials at these 
locations, we then approximate the true boundary values using Anderson’s 
multipole expansion formula. With little loss in accuracy, this approach 
reduces the overall computational cost &om O(N5)  to O(N). The current 
method employs only 72 evaluation points but provides accuracy througb 
the first eight multipole moments. 

Our approximation is justified when the boundaries of the compu- 
tational domain are “well-separated” from the support of the electronic 
charge density p. In practice, the boundaries are expanded so that each 
dimension of the computational domain is approximately twice the size of 
the support of the charge density. Uniformly spaced grids would therefore 
require eight times more storage. However, because we employ nonuni- 
form grid refinements, we can represent this “expanded” area using a very 
coaraeIy spaced grid with little additional memory storage overhead. 

3.4.2. FAC Multigrid Solver. One of the difE4ties of solving the 
Hartree equations on a composite grid hierarchy is that the condition num- 
ber of the discrete Kohn-Sham equations is dependent on the number of 
levels of refinement. As shown in Figure 3.4 iterative methods such as 
nonpreconditioned conjugate gradient require twice as many iterations to 
converge with each new level of adaptive d e m e n t  (assuming a mesh r e  
finement factor of two). Qpical adaptive mesh computations such as the 
ones presented in %on 5 need up to six levels of adaptive refinement, 
resulting in perhaps sixteen times more iterations for a naive solver. Thus, 
practical and efficient implementations of the adaptive method require so- 
phisticated numerical algorithms and scalable preconditioners. 

Adaptive codes represent PDEs on a hierarchy of grids at m n t  
length d e s ;  thus, it would seem appropriate to develop a multigrid-like 
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solver that could exploit this multiscale information and speed convergence. 
The multigrid method is a highly &cient and practical solver for many 
elliptic partial differential equations. Mdtigrid is optimal in the sense that 
it converges in a constant number of iterations independent of the size of 
the linear system of equations. 

We have implemented a multigrid preconditioner to accelerate the com- 
putation of the Hartree potential (2.3). We use a variant of multigrid for 
structured adaptive mesh hierarchies called FAC (Fast Adaptive Compos- 
ite) [21]. The advantage of FAC oyer competing adaptive multigrid meth- 
ods is that it provides a consistent framework for applying the composite 
grid operator at interfaces between fine and c o m e  grids. 

Figure 3.4b illustrates the performance of our Hartree solver with the 
FAC preconditioner. (Although we could use FAC by itself without CG, 
the conjugate gradient wrapper provides some extra robustness to the it- 
erative solver.) Preconditioning significantly reduces the time to solution, 
especially for adaptive mesh hierarchies with many refinement levels. For 
example, for an adaptive mesh with five levels of refinement, the FAC solver 
reduces the Hartree residual by more than twenty orders of magnitude in 
the same time that the standard conjugate gradient method reduces it by 
only two orders of magnitude. 

4. Software Framework and Parallelism. Structured adaptive 
mesh applications are difficult to implement on parallel architectures be- 
cause they rely on dynamic, complicated data structures with irregular 
communication patterm. On message passing platforms, the programmer 
must explicitly manage data distribution across the processor memories and 
orchestrate interprocessor communication. Such implementation difficul- 
ties soon become unmanageable and can obscure the mathematics behind 
the algorithms. 

To simplify the implementation of our application, we have developed 
an object-oriented adaptive mesh software infrastructure in C t c  that pro- 
vides high-level support for structured adaptive mesh applications. The 
main components of our framework are illustrated in Figure 4.1. MPI I221 
is a basic message passing coordination and communication substrate. We 
have used KeLP [ll] to parallelize work at one level of the mesh hierarchy. 
KeLP provides powerful mechanisms that manage data decomposition and 
interprocessor communication for irregular block-structured applications 
running on parallel architectures. KeLP adds very little execution-time 
overhead t o  MPI but can signi6cantly reduce the bookkeeping complecity 
for dynamic block-structured codes. On top of KeLP, we have built func- 
tionality to mpport collections of levels arranged in an adaptive mesh hi- 
eraxchy. Finally, the LDA application layer de6nes problem-specific classes 
such as molecule descriptions and energy function&. 

4.1. Parallelbation Approach. Typkally, parallelism in structured 
adaptive mesh applications lies acros~ patches at a particular level of the 
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Adaptive Mesh 

. [ KeLP ) 

JMPI) 

Application specific classes (LDA energy 
functionals, numerid sdvers, molecule 
descriptions, preconditioners, etc) 

Generic support for colledions of levels 
arranged in an adaptive mesh hierarchy 

KeLP provides parallel coordination 
and communication across one level 
of the hierarchy 

Basic message passing substrate 

FIG. 4.1. Our LDA application suppori fi-umework mnsists of three layers of C++ 
&uses built on top of the MPI message passing system. 

grid hierarchy. For example, the FAC multigrid method (see Section 3.4.2) 
cycles through levels sequentially but can compute in parallel across the 
refinement patches at each level. Thus, a natural data decomposition as- 
signs each patch to a single processor. This is KeLP's data decomposition 
model. 

Parallel loops over patches are executed as follows. First, the frame- 
work uses KeLP's communication schedule building mechanisms to describe 
the data motion that must take place to satisfy data dependencies. These 
descriptions of data motion can be quite complex. For example, the proper 
management of thedave nodes shown in Figure 3.2b implies that the slave 
values must not be included in data dependence computations since they 
do not represent actual degrees of freedom. If these slave nodes were com- 
municated, their d u e s  might overwrite valid data. Next, this description 
is executed, forcing communication between processors via MPI's message 
passingm- ' . The actual communication of data is managed by 
KeLP and is invisible to the programmer. Finally, now that data dependen- 
cies between patches have been satisfied, the patches have been decoupled 
and computation may proceed in parallel. 

For our LDA application, the workload associated with each refine- 
ment region is directly proportional to the size of the region. Our simple 
but ef€ective load balancing algorithm calculates the approximate average 
workload to be assigned to each processor and then recursively divides each 
patch until it is equal to or s d e r  than this average workhad size. This 
guarantees that larger patch= wil l  be d y  divided across processors. 
However, we do not allow patches to get too small; although small patches 
may reduce load imbalance, they introduce additional interprocessor corn- 
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FIG. 4.2. Pomlkl p f o n n a n a  timings on the Cmy T3D for one iterution of the pncon- 
d i t i d  conjugate gmdient Hartree solver mith an PAC p m n d i t i o n e r .  The hiemmhy 
mnn'sts of four levels, each with a p p d m a t d y  M3 gnd points. The probtem could not 
be run on one node due io memocy urnstruinfa. 

munication. 
After the patches have been subdivided, they are assigned "prefer- 

ences" to processors based on the amount of overlap between the fine grid 
patch and the patches on the next coarser level. The patches are then 
sorted by decreasing size and bin-packed to processors. If possible, patches 
are assigned to their preferred processors; otherwise, they are assigned to 
any undersubscribed processor. More details concerning the load balancing 
and processor assignment algorithms can be found elsewhere [17,18]. 

4.2. Parallel Perlormance. In this Section, we present parallel per- 
formance results for the Hartree solver in the LDA equations. Recall from 
section 3.4.2 that this entails solving Poisson's equation on an adaptive 
grid hierarchy using conjugate gradient along with an FAC multigrid pre- 
conditioner. We did not gather parallel performance results for the entire 
LDA application since we have not yet studied sufficiently large molecular 
systems to justify parallel computation. In fact, the LDA solver should 
scale better than the Hartree solver alone, since much of the other work in 
the LDA solver, such as orthonormaliiation and the computation of V,,, 
requires little communication. 

Figure 4.2 shows the patallel performance of our Hartree solver test 
case on the Cray T3D. The application was compiled with full optimiza- 
tion. The hierarchy consists of a base level and three levels of &ern& 
with approximately 64' unknowns per level. The numbers are reported for 
one iteration of the CG solver, which includes several applications of the 
composite grid operator, two FAC preconditioning cycles, and a number 
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RG. 4.3. A mapshot of the PCG-FAC Harim computation on eight pmcessws of the 
Cmy TSD. Portions OJ the timclsne without a frrled 602 repnscnt numerical mmputo- 
tion. This picturn was genemtcd wing Upshot, a pamlld program visualization tool. 

of inner product evaluations. The times are divided into four categories: 
overall execution time, time lost due to load imbalance, intralevel com- 
munication among grids on the same level of refinement, and interlevel 
communication between hierarchy levels. For this small problem size, s d -  
ability was limited to about sixteen processors, mostly due to the increasing 
costs of intralevel communication for the fixed problem size. 

The relative cost of intralevel communication is shown graphically in 
Figure 4.3. This image is a snapshot of the Hartree computation on eight 
processors of the T3D. Time increases from left to right, and portions of 
the timeline without a filled box represent numerical computation. The 
leftmost portion of the timeline is the computation of the composite grid 
residual in FAC; note the interlevel communication to  compute values at 
axuse-fine grid interfaces. The rightmost portion shows one multigrid V- 
cycle. Here communication is obviously dominating computation at the 
coarser levels of the multigrid hierarchy. 

5. Computational Results for Diatomic Molecules. To validate 
the adaptive mesh refinement approach, we have applied our adaptive tech- 
niques to some simple diatomic problems whose LDA solutions are known. 
Figure 5.1 illustrates LDA results and Morse energy curve fits for B e ,  Li2, 
BeF, and F2. 

All computations were performed using unfihred Hamann pseudopo- 
tentials [15] with between 200 x 103 (for Be) and 370 x 103 (for Fz) grid 
points per wavefunction. Molecules were embedded into a computational 
domain measuring approximately 22 a-u. by !E au. by 44 8.u. with a coarse 
grid spacing of 0.75 au. The mesh spacing of the finest grid used to re- 
solve Li was about 0.1 a.u.; the mesh spacing for F was four times smaller. 
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FIG. 5.2. Hamann pseudopotential descriptions for Be p,sc at left) and F PtF 4t 
right). Note the difference in verticol a&. 

The rehement structures followed the atoms as they moved; otherwise, 
the atomic centers-where the most refinement is needed-would not have 
been resolved on the hest grid levels. 

The number of refinement levels and mesh spacing were determined ad 
hoc by looking at the solution of the corresponding single-atom problems 
and comparing those Solutions to the known LDA atomic energies. Clearly, 
this approach has limitations; for example, it cannot detect the formation 
of charge localization due to bonding between atoms. The design of a good 
automatic error estimator for the LDA equations is still an open research 
problem. 

The B e  and Liz systems are easily calculated using the planewave a p  
proach, and our results match the planewave solutions. BeF is an example 
of a material with two very disparate length scales: the Be pseudopotential 
is very soft and delocalized whereas the F pseudopotential is very stiff and 
10,calized about the nucleus (see Figure 5.2). Computations with an 4- 
tered Hamann fluorine pseudopotential would require grids of size 12SS or 
larger for the planewave method as compared to an equivalent of about 703 
for the adaptive method. 

The oscillations in the solution about the Morse fit for BeF and Fz are 
due to a,ccuracy l i t a t i o n s  in our current implementation of the adaptive 
method. We are currently using only second order finite elements, and our 
mid-point integration scheme does not preserve the variational nature of the 
finite element formalism. Obviously, these oscillations must be eliminated 
before it is possible to accurately calculate forces, which require derivatives 
of the energy profile with respect to position. 

The O(h2) convergence of our current finite element discretization 
means that we must use numerous mesh points to obtain the millihartree 
or better accuracy desired for materials calculations. Figure 5.3 illustrates 
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nquiru apprvzimately half 05 many paint .  (40 us. 75 in coch dimension) as a r e -  
owl  d e r  O(h2) stencil for the same rnillihartne occumcy. In three dimensions, this 
npnsents an eight-fold reduction in muh &e. 

the slow convergence in energy for the second order method as compared 
to the higher order methods. These results were calculated for B e  on 
a uniform computational grid with various orders of finite difference dis- 
cretization~. (We used finite differences here since the grid is uniform and 
high order finite difference stencils are straightforward to derive and imple- 
ment.) For millihartree accuracy, the second order method requires eight 
times more points (in 3d) than a sixth order method. Equivalently, for the 
same number of grid points, a sixth order method can provide 0.01 milli- 
hartree accuracy 89 compared to only millihrvtree accuracy for the second 
order method. 

We are planning to develop an adaptive method that employs higher 
order elements to  improve the accuracy of the method and reduce mem- 
ory requirements. We plan to use either fourth or sixth order orthogonal 
elements [2q. Higher order methods should have the additional benefit of 
reducing the number of levels of refinemat and thus improving the condi- 
tion number of our discretized problems. 

6. Summary and Future Reseatch Directions. We have imple- 
mented an adaptive mesh refinement real-space code that solves the LDA 
equations for materials design. Our approach is unique in that it supports 
local spatial refinement of the computational domain. Unfortunately, our 
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computational results for simple diatomics indicate that our current code 
is not yet sufliciently accurate to address the classes of problems we wish 
to study, such a3 clusters containing transition metals. 

The primary limitation of our current code is the accuracy of the second 
order finite element discretization. We plan to use high order orthogonal 
elements [27'J; however, such elements introduce a number of interesting 
research questions. For example, it is unclear how to define the smoother, 
interpolation, and restriction operations within a geometric multigrid solver 
for the Hartree equations. 

Another open research area is the design of an automatic error de- 
tector for guiding adaptive rehement. In this work, we used an ad hoc 
method based on the single-atom LDA solutions. However, this approach 
is clearly limited since it cannot detect the charge localization that re- 
sults from molecular bonds. Given a variational formulation, we know that 
adding more basis functions will always decrease the energy of the solu- 
tion, but it is not obvious that we can determine a priori where to place 
the refinement patches and how much to refine given an overall energy error 
tolerance. 

Although we consider the results presented here promising, it is clear 
that further work remains before adaptive real space solvers can be consid- 
ered competitive with planewave methods. 
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Parallel Adaptive Mesh Refinement 
for Electronic Structure Calculations* 

Scott Kohnt John Wearet Elizabeth Ongf Scott Badenq 

Abstract 

We have applied structured adaptive mesh refinement techniques to the solution 
of the LDA equations for electronic structure calculations. Local spatial refinement 
concentrates memory resources and numerical effort where it is most needed, near 
the atomic centers and in regions of rapidly varying charge density. The structured 
grid representation enables us to employ &uent iterative solver techniques such as 
conjugate gradients with multigrid preconditioning. We have pardelized our solver 
using an object-oriented adaptive mesh refinement framework. 

1 Introduction 
Computational materials design seeks to accurately model the chemical properties of 
important materials through computer simulation. Such simulations help scientists to 
understand the chemistry of complex compounds and also guide the design of new materials. 
One common firstiprinciples approach used for electronic structure calculations is the Local 
Density Approximation (LDA) of Kohn and Sham (141. 

Over the past thirty years, computational scientists have developed various approaches 
to solving the LDA equations. The most common and successful techniques in use today 
include Fast Fourier 'Ilansform (FIT) methods that expand the LDA equations using 
a planewave basis set [i7] and LCAO (Local Combination of Atomic Orbitals) methods 
that use a Gaussian basii set [l]. Other computational techniques include finite dserence 
methods on uniform grids [S, 41, wavelets [7], finite elements with prefinement (but not 
spatial refinement) [19], and adaptive coordinate methods [9, IO]. 

We are primarily interested in studying systems that exhibit multiple length scales 
and therefore require local spatial refinement (51. Ideally, our basis set should adapt to 
local changes in the dectronic &age density, such as near atomic centers. Although 
LCAO methods support a form of local refinement, they do not scale d with increasing 
system size. Planewave methods'do not readily support local adaptivity (although we are 
currently investigating techniques to implement Fast Fourier Tiandorms over structured 
adaptive mesh hierarchies). The adaptive coordinate method has been somewhak successful 
in supporting spatial adaptivity; however, it is limited in the amount of local refinement 
since large mesh defonnstions c8n d t  in numerical hstabilities. 
- 
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We haw developed a prototype LDA code based on structured adaptive mesh refhment 
tehuiquts using a Gpik dement basis set- Adaptive methods n t m m i i b d y  place cornput& 
tiond &cut and memory in those portions of the problem domain with &e highest mor;  
thus, adaptivc codes chn target syvtem that art: diftlcult or hfixsi3le with other a p p w .  

In this paper, m describe some ofthe compntational and numerid isoves surrounding 
structured adaptive mc3Rh refkmmt methods for clectnrnic structure al&&ns. We akd 
p m t  corcpututional results for shp4  diatomic s y ~ t e m ~ .  Although our adaptive 
implcmentatian is not yet competitive with the more mature pknewave mothoh, we have 
jdcntSed changes that will improve the accuracy a d  competitiveness of the sdaptivc 
a p p r h .  
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Grid Hierarchy Level 0 Level 1 Level 2 

FiG.  1. Thne levels of a structured adaptive mesh hierarchy. The eight dark circles represent 
regions of high error, such os atomic centers in a matm'olr design application. The mesh spacing 
of each level i s  half of ihe previous coarser level. 

3.1 Finite Element Discretization 
We discrethe the Kohn-Sham equations (1) using the finite element method, which has 
certain advantages over competing discretization techniques. Finite elements r d y  admit 
local adaptivity. Finite element basis functions are very localized in space, interacting only 
with their immediate neighbors, and therefore do not suffer from the scaling problems of 
LCAO methods that use Gaussian basis sets. Finally, the finite element approach provides a 
consistent framework for defining operators across coarsefine grid interfaces in adaptive grid 
hierarchies, as opposed to finite difference discretkations that can result in nonsymmetric 
operators with complex Kohn-Sham eigendues. 

The finite element approach expands the wavefunctions t,b in a basis of M functions (&} 
hf 

+(z) = JtiM.1 
i=l 

and the Kohn-Sham equations are discretized using a Ritz formulation, resulting in the 
discrete nonlinear eigendue problem 

Mote that we hve shown only one wavefunction JI to shpWy the notation; the full Kohn- 
Sham equations invoIve a set of N 9 coupled through the charge density and V. Our current 
code uses a 3d tril inea~ basis element and approximates the rightmost two integrals in 
the above equation using the mid-point integration rule. 

Numerical computations on istructured sdsptive meshes consist of local array-based 
calculations on refinement patches and "fix-up" computations on the boundaries of the 
patches. Since computations are over structured doxnains, there is no need to explicitly 
create and store a sparse matrix. Instead, all operations are performed matrix-free. For 
example, the code to compute the Laplacian over a grid hierarchy consists of a standard 
27-point stencil kernel along with code to correct values at grid intertaceS. In our paxticular 
application, the time spent on boundary computath~ is less than about 10% of the time 
spent on patch interiors. 

3.2 Code InGrastructure and Parallelhation 
Structured adaptive mesh applications are difficult to implement on parallel a,rchitectures 
because they rely on dynamic, complicated data structures with i rreghr communication 
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patterns. To simplify the development of o*w applcatioa, we lave developed aa object- 
oriented adaptive mesh s o b  iniktnrcturu: in C++ that provides high-lcvd support for 
structured adaptive mesh applications 1131. 

‘Qpidly, parallelism in structured adaptivc mesh applications lies (~CTOSG patches 
at a pwticular level of tbe grid hiaarchy. For cxmhple, tbs I?-4C indtigrid rpethod 

(ece Section 3.3.1) cycle through levels sequentidly but computes in pardel BCTOSG the 
rehemat patches at each level. We hme used the KeT2 frameworl; 181 to paralleke work 
at one l e d  of the mesh hierarchy. KeLP  provide^ €dgh-le\.tl medunisms that manage dak 
decomposition and interpoasor,commmkation Ear hegular blodr-stmctured applications 
dxlgonpsrallelarchitectuns- 



called FAC (Fast Adaptive Composite) [lS]. The advantage of FAC over competing adaptive 
multigrid methods is that it provides a consistent framework for defining the composite grid 
operator at interfaces between fine and coarse grids. 

Figure 2b iUustrates the performance of o m  Hartree solver with the FAC preconditioner. 
(Although we could use FAC by itself without CG, the conjugate gradient wrapper provides 
some extra stabiity to the iterative solver.) Preconditioning significantly reduces the time 
to solution, especially for adaptive mesh hierarchies with many Ievels of refinement. For 
example, for an adaptive mesh with six levels, the FAC solver reduces the Hartree residual 
by more than twenty orders of magnitude in the same time that the standard conjugate 
gradient method reduces it by only two orders of magnitude. 

3.3.2 RayIeigh Quotient Minimization The Same types of condition number scaling 
described in the previous Section for the Hartree equation (3) also apply to the Kohn- 
Sham eigenvalue problem (1). A naive iterative method such as steepest descent would 
require too many iterations to converge for the adaptive approach. Therefore, we use an 
eigenvalue solver technique developed by Longsine and McCormick called Simultaneous 
Rayleigh Quotient Minimization with Subspace Diagonalization [15]. 

The basic idea behind this approach is to take iterative steps that minimize the Rayleigh 
Quotient: 

where 32 is the Hamiltonian (2) of the Kohn-Sham equations. The algorithm begins by 
freezing the nonlinear tenns in the Hamiltonian. It then cycles through the wavefunctions in 
turn. For each wavefunction $iv it takes a small number of steps of the form $Fw t $i+ad, 
where Q minimizes the Rayleigh Quotient for that wavehnction, 

min RQ($i + ad), 
0 

assuming all other wavefunctions are fixed. Under the assumption that the Hamiltonian 
operator is approximately linear about the location $i, the method can compute the step 
size a efficieatly without a nonlinear search. The step .diredtions d are generated via a CG- 
like process. After working through all mavefunctions, the solver performs a subspace 
diagonalization, which accelerates the convergence for the wavefunctions with outlying 
eigenvalues. 

4 Computational Results for Diatomic Molecules 
To validate the adaptive mesh refinement approach, we have applied our adaptive techniques 
to some simple diatomic problem-whose LDA solutions are known. Figure 3 illustrates LDA 
results and Mime fits for Be, Liz, BeF, and F2. All camputations were performed using 
unfiltered H~unnnn pseudopotentials Ill] with between 200 x 103 (for %) and 370 x 103 
(for Fz) grid points per wavefunction. 

The & and Liz systems are easily calculated Using the planewave approach, and our 
results match the planewave solutions. BeF is 811 example of a material with two very 
disparate length scales: the Be pseudopotentid is very soft and delocalized whereas the 
F pseudopotentid is very stif€ and localized about the nucleus. Computations with an 
unfiltered Hamann fluorine pseudopotential would require grids of size la3 or larger for 
the planewave method as .compared to an equivalent of about 70s far the adaptive method. 

The oscillations in the solution about' the Morse fit for BeF and F2 are due to accuracy 
limitations in our current implementation of the adaptive method. We are currently using 
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only second mda finite elunents, and our mid-point iategratfnn schemq does not pre5ervc 
the variatid nsture of the !hi* demd fbrzdism. Obviously, &cse oscillatfons must 
be elinhated bdixe it is possible to aocuratey dculate bots, which rcqth derivatives 
of the energy pro& with respect to positioa. In the fbllowing Section, we discuss future 
development &cats that wi l l imp~~~thesccrr racy dour adaptive code.' 



7 
Accuracy for Various Stencil Types 

(082 on M o r m  Gnd) 
lo* , I 

FIG. 4. Convergence in total LDA energy as a function of stencil order and mesh spacing for 
a B e  molecule. These results suggest thot a Jizth order O(h6) stencil n q u w  appwzimotely half os 
many points (40 us. 75 in each dimension) as a second order O(h2) stencil for the same millihartm 
accuracy. In thnc dimensions, this represents an eight-fold reduction in mesh sue. 

. 
, 

5.1 Higher Accuracy 
Our current adaptive solver uses 3d trilinear elements that are O(h*) accurate; these types of 
elements are commonly used in the finite elements applications community. Unfortunately, 
this low order means that we must use numerous mesh points to obtain the millihartree or 
better accuracy desired for materials calculations. Figure 4 illustrates the slow convergence 
in energy for the second order method as compared to the higher order methods. These 
results were calculated for Be2 on a uniform computational grid using various orders of 
finite difference stencils. For millihartree accuracy, the second order method requires eight 
times more points (in 3d) than a sixth order method. Equivalently, for the same number 
of grid points, a sixth order method can provide 0.01 mdlbrtr ee accuracy as compared to 
only millihartree a c c u ~ ~ c y  for the second order method. 

We are currently developing an adaptive method that employs higher order elements 
to improve the accuracy of the method and reduce memory requirements. We plan to use 
either fourth or sixth order orthogonal elements [19]. Higher order methods should have 
the additional benefit of reducing the number of levels of refinement and thus improving 
the condition number of our numerical problems. 

Another potential approach-employs nonuniform Fast Fourier M o r m s  over the 
adaptive grid hierarchy. By exploiting the locally uniform grid spacing of a structured 
hierarchy, we have been able to implement a fast O(N log N )  transform for ld hierarchies. 
We are currently developing a full 3d transform. Although this work is very preliminary, a 
nonuniform FFT may offer the best of both worlds spectral accuracy for reciprocal space 
computations and local spatial refinement for real space computations. 

. .  

5.2 Eigenvalue Solver Preconditioning 
The computational results in Section 3.3.1 i h&a te  how a good preoonditioning method 
can significantly reduce the iteration count and thus time to solution. Although we have 
been s u c 4  in developing good preqonditjoe techniques for the Hsrkee calculation, 
we have not as yet developed an &dent preconditioner for our eigenvalue solver. 
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Our hykigh Quotient solver is more efficient t k  a steepest descent approach, but 
it still d e s  from scaling p r o b h  with additional refinement levels. W e  are actiyeiy 
pursuing a m u l t d d  preconditioning technique to reduce tbe Tlpmber of iterations n&& 
for CODVfQgCPOA. We are d d e r i n g  eithcr a multigrid preC0sditione.r or a multilevel M 
basis preconditionex [3]. Expknmts by Sung, Ong, and W e  [18] for.p2ar1ewave methods 
show the &iiiiveacss of m u l t i l d  precouditioners fcr the eigenvalue cquations. 


