U.S. Department of Energy

T Lawrence
Livermore
National
Laboratory

="

UCRL-ID-140219

Enabling Computational
Technologies for Terascale
Scientific Simulations

S.F. Ashby

August 24, 2000

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U. S. Department of Energy by the University of
California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.
This report has been reproduced directly from the best available copy.

Available electronically at http://www.doe.gov/bridge

Available for a processing fee to U.S. Department of Energy
and its contractors in paper from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831-0062
Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-mail: reports @adonis.osti.gov

Available for the sale to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-mail: orders @ntis.fedworld.gov
Online ordering: http://www.ntis.gov/ordering.htm

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library
http://www lInl.gov/tid/Library.html

http://www.doe.gov/bridge
mailto:re-eports@adonis.osti.gov
httP://www
http://www.llnl.gov/tid/Library.html

l:
T

1

!

:

Adaptive mesh refinement dynamically focuses computational effort in the areas
of interest, such as near the shock fronts in this hydrodynamics simulation.

Enabling Computational Technologies
for Terascale Scientific Simulations

A comprehensive final report for LDRD 97-ERD-114

Steven F. Ashby

Executive Summary of the Comprehensive Report

We develop scalable algorithms and object-oriented code frameworks for terascale
scientific simulations on massively parallel processors (MPPs). Our research in
multigrid-based linear solvers and adaptive mesh refinement enables Laboratory
programs to use MPPs to explore important physical phenomena. For example, our
research aids stockpile stewardship by making practical detailed 3D simulations of
radiation transport.

The need to solve large linear systems arises in many applications, including radiation
transport, structural dynamics, combustion, and flow in porous media. . hese systems
result from discretizations of partial differential equations on computational meshes. Our
first research objective is to develop multigrid preconditioned iterative methods for such
problems and to demonstrate their scalability on MPPs.

Scalability describes how total computational work grows with problem size; it measures
how effectively additional resources can help solve increasingly larger problems. Many
factors contribute to scalability: computer architecture, paralle] implementation, and
choice of algorithm. Scalable algorithms have been shown to decrease simulation times
by several orders of magnitude.

Multigrid is an example of a scalable linear solver. It uses a relaxation method such as
Gauss-Seidel to damp high-frequency error, leaving only low-frequency (smooth) error—
which can be efficiently solved for on a coarser (smaller) grid. Recursively applying this
to each subsequent coarse-grid system creates a multigrid V-cycle, so named because one
first descends a hierarchy of successively coarser grids, solves a small problem, and then
ascends the hierarchy of grids. Interpolation and prolongation are used to traverse the
hierarchy. If these operations are defined properly, the algorithm’s computational costs
grow linearly with problem size.)

We explore geometric and algebraic multigrid techniques. Geometric multigrid is
typically used in problems on structured meshes. Such an algorithm, based on Shaffer's
semi-coarsening method, sped up the linear algebra in an ASCI code by a factor of 27,
reducing overall simulation time 10-fold for a 2D test problem (128,000 unknowns).
Algorithmic scalability was shown in 3D test problems on the ASCI Blue Pacific and Red
MPPs. In particular, using Red we solved a problem with 134 million unknowns in 24
seconds on 2048 processors. We investigate algebraic multigrid methods for problems
defined on unstructured meshes. We have parallelized Ruge's method and will run
scalability experiments in FY99.

Our second research objective is to develop an object-oriented code framework for
structured adaptive mesh refinement (AMR) applications. AMR allows efficient use of
computing resources (CPU time and memory) by focusing numerical effort locally within
the computational domain with varying degrees of spatial and temporal resolution. This
makes practical simulations—especially those involving complex physics and large

spatial domains—that would be too expensive on a uniform mesh. Our framework,
SAMRALI, provides extensible software support for rapid development of parallel AMR
applications.

We completed the basic framework in FY98, including grid hierarchy management,
adaptivity control, and visualization support. This parallel 3D framework is being used to
develop several simulation codes, most notably one for studying laser—plasma
interactions. SAMRAL is also used by the Utah ASCI Alliance Center of Excellence for
its fire safety simulation code. In FY99, we will implement numerical methods and will
work with application teams to run large-scale simulations on ASCI platforms.

Publications (A number of publications are attached in reverse chronological order.)

Ashby, S.F., et al., “A Numerical Simulation of Groundwater Flow and Contaminant
Transport on the Cray T3D and C90 Supercomputers,” Int’l J. Supercomp. Apps. and H-P
Comp., in press February 1999. Also available as Lawrence Livermore National
Laboratory technical report UCRL-JC-118635.

Brezina, M., A.J. Cleary, R.D. Falgout, V.E. Henson, J.E. Jones, T.A. Manteuffel, S.F.
McCormick, and J.W. Ruge, “Algebraic Multigrid Based on Element Interpolation
(AMGe)," SIAM J. Sci. Comp., in press October 1998. Also available as Lawrence
Livermore National Laboratory technical report UCRL-JC-131752.

Brooks, E., and K.A. Warren, “A Study of Performance on SMP and Distributed Memory
Architectures Using a Shared Memory Programming Model,” Supercomputing 97. Also
available as Lawrence Livermore National Laboratory technical report UCRL-JC-
127449.

Cleary, A.J., R.D. Falgout, V.E. Henson, J.E. Jones, T.A. Manteuffel, S.F. McCormick,
G.N. Miranda, and J.W. Ruge, "Robustness and Scalability of Algebraic Multigrid,"
SIAM J. Sci. Comp. special issue on 5" Copper Mountain Conf. on Iterative Methods, 21
(5/2000), pp. 1886—1908. Also available as Lawrence Livermore National Laboratory
technical report UCRL-JC-130718.

Cleary, A.J., R.D. Falgout, V.E. Henson, J.E. Jones, "Coarse-Grid Selection for Parallel
Algebraic Multigrid, " Proc. 5™ I'ntl Sym. on Solving Irregularly Structured Problems in
Parallel, 1457(1998), Lecture Notes in Computer Science, (Springer-Verlag: New York)
pp. 104-115. Lawrence Berkeley National Laboratory, Berkeley, CA, August 9-11,
1998. Also available as Lawrence Livermore National Laboratory technical report
UCRL-JC-130893.

Falgout, R., “Scalable Linear Solvers,” Supercomputing 97. Also available as Lawrence
Livermore National Laboratory technical report UCRL-TB-128636. 97-ERD-114.

Falgout, R.D., AMGe: A Theory for a New Generation AMG for Finite Element
Discretizations, Lawrence Livermore National Laboratory technical report UCRL-MI-

130240 and LDRD 97-ERD-114.

Henson, Van Emden, and and Panayot Vassilevski, Element-free AMGe: General
Algorithms for Computing the Interpolation Weights in AMG, SIAM Journal of Scientific
Computing, in press. Also avalilable as LLNL Technical Report UCRL-JC-139098

Hornung, R., and S. Kohn, Future Directions for AMR in ASCI and Other LLNL
Simulation Projects, Lawrence Livermore National Laboratory technical report UCRL-
ID-128332. 97-ERD-114.

Jones, J. and P. Vassilevski, "AMGe Based on Element Agglomeration, " SIAM J. Sci.
Comp., in press August 1999. Also available as Lawrence Livermore National r.aboratory
technical report UCRL-JC-135441.

Kohn, S., J. Weare, E. Ong, S. Baden, “Hierarchical Basis Preconditioners in Three
Dimensions,” SIAM J. Sci. Comp., 18, pp. 479-98, Also available as Lawrence Livermore
National Laboratory technical report UCRL-JC-122279 and LDRD 97-ERD-114.

Kohn, S., J. Weare, E. Ong, S. Baden, “Software Abstractions and Computational Issues
in Parallel Structured Adaptive Mesh Methods for Electronic Structure Calculations,”
Proc. W’shop Structured AMR Grid Methods, Minneapolis, MN, March 12-13, 1998.
Also available as Lawrence Livermore National Laboratory technical report UCRL-JC-
127598.

Kohn, S., J. Weare, E. Ong, S. Baden, “Parallel Adaptive Mesh Refinement for
Electronic Structure Calculations,” Proc. 8" SIAM Conf. Parallel Processing for Sci.
Comp., Minneapolis, MN, March 12-13, 1998. Also available as Lawrence Livermore
National Laboratory technical report UCRL-JC-126043.

Kohn, S., R. Hornung, X. Garaizar, “SAMRAL: Structured Adaptive Mesh Refinement
Applications Infrastructure,” Supercomputing 97. Also available as Lawrence Livermore
National Laboratory technical report UCRL-TB-128634.

Kohn, S., R. Hornung, “SAMRAL: Structured Adaptive Mesh Refinement Applications
Infrastructure,” Supercomputing 98. Also available as Lawrence Livermore National
Laboratory technical report UCRL-TB-128634 Rev 1.

Kohn, S., A. Cleary, S. Smith, B. Smolinski, Language Interoperability Mechanisms for
High-Performance Scientific Applications, Lawrence Livermore National Laboratory
technical report UCRL-JC-131823.

Tompson, A.F.B,, et al., “Analysis of Subsurface Contaminant Migration and
Remediation using High Performance Computing,” Advances in Water Resources, 22
(3/98), pp. 201-221, Also available as Lawrence Livermore National Laboratory
technical report UCRL-JC-124650.

ALGEBRAIC MULTIGRID BASED ON
ELEMENT INTERPOLATION (AMGe)

M. BREZINA®, A. J. CLEARY', R. D. FALGOUT', V. E. HENSONT, J. E.‘JO‘\'ES*.
T. A. MANTEUFFEL*, S. F. MCCORMICK*, anp J. W. RUGE~

Abstract. We introduce AMGe, an algebraic multigrid method for solving the discrete
equations that arise in Ritz-type finite element methods for partial differential equations.
Assuming access to the element stiffness matrices, AMGe is based on the use of two local
measures derived from global measures hat appear in existing multigrid theory. These new
measures are used to determine local representations of algebraically “smooth”™ error compo-
nents. These representations provide the basis for constructing effective interpolation and,
hence, the coarsening process for AMG. Here, we focus on the interpolation process; choice
of the coarse “grids” based on these measures is the subject of current research. We develop a
theoretical foundation for AMGe and present numerical results that demonstrate the efficacy
of the method.

1. Introduction. Computer simulations play an increasingly important role in scien-
tific investigations. Indeed, as experimentation becomes more expensive, impracticable, or
even proscribed, scientists are turning more and more to numerical simulation. Modern
packages are extremely complex, with many physics components: hydrodynamics, radiation,
transport, structures, thermal, chemistry, and electromagnetic, among many others. Also,
the problems are frequently posed in multi-material regimes, with contact surfaces, inter-
penetrability constraints, and intricate geometries complicating matters. As a result, codes
are being developed to solve complex multi-physics problems on highly resolved, unstruc-
tured grids. Such large grid simulations often require massively parallel computing as well
as scalable numerical algorithms such as multigrid (see e.g., [1]).

Algebraic Multigrid (AMG) [5, 3, 4, 6, 19, 16, 18, 17] is a method for solving matrix
equations that is based on multigrid concepts. It examines the matrix entries to determine
a sequence of smaller matrix problems that serve as coarse-level equations. AMG also deter-
mines associated interlevel transfer operators (restriction and prolongation), then solves the
original matrix equation in a multigrid-like process based on these automatically-constructed
components. AMG has been shown to be well-suited for solving unstructured grid problems,
and to work well over a wide variety of applications (see,e.g., [9]). It has been applied suc-
cessfully to M-matrix problems where the so-called strength of connection is easily measured
(this measure is used to determine which variables are strongly representative of the errors
left by relaxation, so that they can be used to construct the coarse levels). It also applies

* Applied Math Department, Campus Box 526, University of Colorado at Boulder, Boulder, CO 80309-
0526. email:{mbrezina, tmanteuf, stevem}@colorado.edu. This work was sponsored in part by the National
Science Foundation under grant number DMS-9706866 and the Department of Energy under grant number
DE-FG03-93ER25165.

t Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, P.O. Box 808, L-561,
Livermore, CA 94551. email:{cleary,rfalgout,vhenson,jjones}@linl.gov

1

mailto:stevem}@colorado.edu
mailto:email:{cleary,rfalgout,vhensonjjones}@Ilnl.gov

AMGe 9
well to scalar problems that depart substantiallv from M-matrix discretizations. However,
for problems where strength of connection is not easily measured. AMG is not effective with-
out certain problem-specific modifications or careful parameter tuning. For such cases, there
is no systematic AMG approach that has proven effective in any kind of general context.
There are still other problems (e.g., thin-body elasticity on unstructured grids) for which
AMG and other iterative methods in general have failed to achieve full optimality. The goal
of our research is to develop a more robust AMG method for solving these difficult problems.

This paper introduces an algebraic multigrid method for solving partial differential equa-
tions discretized by Ritz finite element methods. As a departure from standard AMG, where
only the operator matrix is required, this approach assumes access to element stiffness ma-
trices. We thus refer to it as AMGe (the acronym AMG henceforth refers to the standard
scheme). This new approach is based on the use of either of two measures (derived from
global measures used in existing theory) to determine algebraically “smooth” error and to
construct effective interpolation. AMGe uses a minimization principle based on the element
interpolation scheme first introduced in [15]. Other multigrid methods, using minimization
principles for constructing energetically stable inter-grid transfer operators. have recently
appeared in [22, 23, 11]. While the focus here is on the interpolation process. we also briefly
describe our current research that is aimed at using these measures to improve the coarse-grid
selection process. Although the key ideas behind AMG are summarized in the next section
for clarity, we assume that the reader is familiar with AMG methods and terminology. For
more detail, see [17]. For recent results and for understanding the following in context, see

[9].

In the next section, we introduce some notation and review the AMG algorithm. In
particular, we discuss the notion of strength of dependence and its role in defining the basic
AMG components. In section 3, we define a heuristic based on two global measures and
establish a corresponding two-level convergence result. We “localize” these measures in
section 4, and describe how they can be used to compute the interpolation operator for
AMGe. We also discuss the relationship between the local and global measures in subsection
4.3. Section 5 contains numerical results supporting the theory and demonstrating the
efficacy of the approach. In section 6, we discuss preliminary approaches for selecting coarse
grids based on these local measures. Concluding remarks are made in section 7.

2. Preliminaries. We begin this section by describing notation. Capital Roman letters
(A, B, P, R) denote matrices and bold lower case Roman and Greek letters denote vectors
(u,v,€). The ith component of the vector q is denoted by ¢;. Other lower case letters denote
scalars, while capital caligraphic letters denote sets and spaces (C, F,S), with the singular
exception that A is used to denote finite element stiffness matrices. We define the A-inner
product by (-, -}, := (4, -), where (-, -) is the standard Euclidean inner product, and the
A-norm (also called the energy norm) by |||, == (:, - ;/2.

Assume that we are given an n X n symmetric positive definite matrix 4 expressed as
the sum of a given set of finite element stiffness matrices,

(2.1) A=) A,

a€T

AMGe 3

where 7T is the set of finite elements used to discretize the problem and each A, is symmetric
positive semi-definite. \We do not assume access 1o a spatial grid or the ability 1o create new
finite element stiffness matrices.

We seek the solution u € IR" to the linear system

(2.2) Au =T,

for a given f €IR". Standard iterative schemes, like Gauss-Seidel and Krylov space methods,
tend to converge slowly for large-scale problems of this type that arise from partial differential
equations. The difficulty is that smooth error components are typically attenuated very
slowly by these simple processes, because they are based on local properties (i.e., local
connections in A). Multigrid methods attempt .v correct this limitation by representing the
smooth errors on increasingly coarser, and, therefore, more global levels.

To describe how system (2.2) could be solved by a multilevel method, let P be an n x n,
interpolation or prolongation matrix, with n, < n. We call PT the restriction matrix. The
two-grid method for solving (2.2) is defined as follows:

(2.3a) Relax v; times on Au = f.
(2.3b) Correct u + u+ P(PTAP) 'PT(f — Au).
(2.3¢) Relax v, times on Au = f.

Note the use of PT AP in correction step (2.3b). This so-called Galerkin coarse-grid operator,
together with the use of PT as the restriction operator amount to a wvariational form of
multigrid. When A is symmetric, it can be shown the correction step minimizes the energy
norm of fine-grid error over all possible corrections from the range of P.

To solve (2.2) in practice, one would use a multilevel method that recursively applies
algorithm (2.3) to solve the linear system involving P7 AP in correction step (2.3b).

Examining (2.3) reveals that relaxation and coarse-grid correction must be chosen to
complement each other; that is, error not reduced by one must be reduced by the other. In
this paper, we fix the choice of relaxation, then determine interpolation. The relaxation we
choose is a simple pointwise method, like Richardson, damped Jacobi, or Gauss-Seidel, that
satisfies the following heuristic:

H1: Error in the direction of an eigenvector associated with a large eigenvalue is
rapidly reduced by relazation, while error in the direction of an eigenvector
associated with a small eigenvalue is reduced by a factor that may approach
1 as the eigenvalue approaches 0.

Error that is not rapidly reduced by relaxation is called algebraically smooth. The actual
character of algebraically smooth error depends on the operator and the type of relaxation,
but it loosely means that the residual is small when compared to the error itself (we will
be more precise about this shortly). This does not mean that the error is smooth in any
geometric sense. Thus, error at a point may be very different from the errors at neighboring
points, yet it might be difficult to reduce the error by relaxation. Such is the case for
anisotropic problems, where algebraically smooth error that point Gauss-Seidel relaxation
cannot effectively reduce can be geometrically oscillatory in the direction of small coefficients

ANGe 4

of the PDE. In anv case the interpolation matrix. P, must be defined so that algebraically
smooth error is effectively eliminated in step (2.3b) and the coarse-grid equations. which
involve PT AP, are amenable to solution by a two-level method.

2.1. AMG. To define the multigrid components in AMG, we use the following heuristic
based on special properties of M-matrices:

H2: Smooth error varies slowest in the direction of strong dependence.

Here, we say that unknown ¢ strongly depends on unknown j if

(2.4) —a;j > Grilgx{—ai,k}, for some fixed 6 € (0,1).

Thus, strong dependence is characterized by matrix coefficients that are large in the sense
of (2.4). A typical choice for parameter 6 is 0.25.

Although AMG was developed with M-matrices in mind, in practice it is not limited
to this class of problems. However, the method does rely on H2, and our sense of strong
dependence may not be suitable for many important classes of problems.

One simple problem with which AMG has difficulty is the Poisson equation on a rectan-
gular grid, discretized with bilinear quadrilateral elements, where the fine-grid elements are
stretched to a 10 : 1 aspect ratio. This yields the coefficient stencil

-1 -39 -1
(2.5) 1.9 8 19
-1 -39 -1

In (2.5), it is not readily apparent from the size of the off-diagonal entries that the direction
of strongest dependence is vertical. Since H2 is used to define all of the AMG components,
and it requires a clear understanding of strong dependence, AMG can exhibit degrading per-
formance (see Table 5.1). For this simple case, slow convergence of AMG can be ameliorated
by simply tuning its parameters (e.g., setting § = 0.5) or by more el4borate algorithinic
“fixes” (e.g., iterative weight interpolation [9] or geometric/algebraic interpolation methods
(10, 8, 7]). Another approach is to replace H2 by a heuristic that leads to a more robust
AMG algorithm. Exploring this possibility, as we begin to do in the next section, is the
primary aim of this paper.

3. Global Measures and Convergence Bounds. This paper takes a slightly dif-
ferent approach, using a heuristic based not on M-matrices but on the eigenvectors of A.
In a two-grid scheme, coarse-grid correction will completely eliminate error in Range (P),
the range of the interpolation operator P. To complement the action of relaxation, which
satisfies H1, the interpolation matrix must satisfy the following heuristic.

H3: Interpolation must be able to approzimate an eigenvector with error bound
proportional to the size of the associated eigenvalue.

To make H3 more rigorous, define Q : IR — IR" to be a convenient projection onto
Range (P), that is,

(3.1) Q=PR,

_\\I(n’)

.. L.) - : e
for some restriction operator R :IR™ — IR"™ such that RP = I.. the identity on IR™. The
specific form for Q (and. hence. R) will not become important until section 4. For any

vector e € Range (P), we have (e = e. Thus, J — @ can be used to measure the defect of
interpolation. With this in mind. we now define two measures of how well H3 1s satisfied:

(I - Qle, I-Qe)

(3.2) M (Q,e) = (Ae. o) ;
(A(I = Qle. (I - Q)e)
(3.3) M>(Q,e) TAe, 1¢) .

The measure M, was used in the early multigrid theory [14, 12, 13] to establish optimal
convergence of the V-cycle algorithm under full regulari‘y assumptions on the associated
partial differential equation. The measure M; was introduced in [4] and used more recently
to establish convergence, independent of the coarse-grid size, of a two-level method for linear
elasticity [21]. It is also an essential ingredient of the regularity-free multilevel theory found
in [2]. We develop the relevant two-grid theory here for both measures so that we can tailor
the results to our needs.

It has not been our practice to use diagonal conditioning of A in conventional AMG.
Such a scaling generally changes the nature of smooth errors. Since current schemes at
some point rely on a premise of how smooth error behaves (e.g., that it is locally constant),
then diagonal scaling can make it more difficult for AMG to handle. However, no such
premise of smoothness is made anywhere in AMGe. Thus, in the remainder of this paper,
we are free to assume for convenience that matrix A has been scaled so that its diagonal
is the identity. For a general symmetric positive-definite matrix with diagonal D # I, this
can be assured by replacing A with D~/24D~Y2. Note that this transformation must be
considered in the representation of A as a sum of local stiffness matrices, but this is just a
straightforward rescaling of the variables. This scaling does, however, bear on the practicality
of our results because we analyze AMG based on Richardson iteration, which is not generally
a good smoother for matrices that have widely varying diagonal entries. For such matrices,
a damped Jacobi method with proper under-relaxation should be used, but then measures
M, and M, must be changed accordingly (e.g., for M; in (3.2), D would appear in the
numerator’s inner product).

This theory assumes that either M; or M, be bounded uniformly in e € R"\{0}. To
see how this assumption relates to H3, suppose that e is an eigenvector of A corresponding
to a small eigenvalue. Then, for M; or M, to be bounded, since the denominators of the two
measures are small, the numerators must also be small. Thus, ¢} must accurately interpolate
eigenvectors belonging to small eigenvalues. On the other hand, if e is an eigenvector of A
corresponding to a large eigenvalue, then the denominators of the two measures are large, so
the numerators may be large. Thus, @) need not accurately interpolate eigenvectors belonging
to large eigenvalues.

We now prove convergence results based on M; or M, for the two-level algorithm (2.3).

LEMMA 3.1. Let Q be any projection onto Range (P). Assume that either of the fol-
lowing two approzimation properties are satisfied for some constant K :

(3.4) M (Q,e) < K Ve eR"\{0},

AMGe 6

(3.5) My(Q.e) <K Ve elR™{0}.
If e # 0 4s A-orthogonal to Range (7). then
L_ Al
3. — < < || A]] .
(5:9) < gy <

Proof. The upper bound in (3.6) follows easily from the definition of the matrix norm.
To prove the lower bound, note that Range (@) = Range (P). Hence, if e is A-orthogonal to
Range (P), then

(3.7) (de, Qv) =0 Vv elR"™
First, assume that (3.4) holds. From (3.7) and the Cauchy-Schwartz inequality, we have

(Ae, €) (Ae, (I —Q)e)
< lAe|l I — Q)ell
< ||Ae|l(4e,) KM/,

The lower bound in (3.6) now follows by dividing through by (Ae, e) K'/? and squaring the
result.
Now, assume that (3.5) holds. From (3.7) and the Cauchy-Schwartz inequality, we have

(Ae, e) < (Ae, e)+ (AQe, Qe)

(Ae, e) — (Ae, Qe) — (AQe, e) + (AQe, Qe)

= (A(I-Q)e, (I - Q)e)

|| Aell* K.

The lower bound in (3.6) now follows by dividing through by (Ae, e) K. |
Define the A-orthogonal projection onto the Range (P): '

(3.8) §:=P(PTAP)'PTA.

Il

IA

The error propagation matrix for the coarse-grid correction step (2.3b) is /—S. A Richardson
iteration with relaxation parameter s = w/ ||A]|, w € (0, 2), has the error propagation matrix
G = I — sA. If we choose (v1,12) = (0,1) in (2.3), then the associated error propagation
matrix for this simple two-grid scheme is G(J — S). The following theorem analyzes its
convergence by bounding its error propagation matrix in the A-norm. Convergence results
for other values of (11,1) then follow naturally [13].

Analogous multilevel results can be found in [14, 12, 13] for approximation property (3.5),
and in {2, 20] for (3.4) under the additional assumption of energetic stability of interpolation,
which requires that "P(PTP)‘IPT"A is bounded uniformly on all levels.

THEOREM 3.2. Assume that either approzimation property (3.4) or (8.5) is satisfied
for some constant K. Then

w(2—w)>1/2.

69 6t -9l < (1- 228

AMGe T

Proof. First note that (3.6) implies ' > 1/ | 4] = »(2 — <)/ AL so that (3.9) makes
sense. We have
(AGe, Ge) = (Ae, e) —2s{de, Ae) + s <-4ze. Ae>
w(2 — w)

< (Ae, e) — (Ae, Ae).
Ve e =
Replacing e with (I — S)e and applying the result in Lemma 3.1 yields
w(2—w
IGU - S)elly < (A = S)e, (1 = S)e) = “=d s = el

|

(1222 el
|

Notice that the bound on the convergence factor approaches 1 as K becomes large.
Conversely, smaller K vields a smaller bound on the convergence factor. Our aim is to
determine P so that, for some appropriate Q, either (3.4) or (3.5) is satisfied for a reasonably
small K.

We also remark that the above results can be generalized to apply when (2.2) is a
consistent svstem with symmetric positive semi-definite matrix A. Measures M; and M,
must be restricted to e ¢ Null(A). A finite bound K in (3.4) or (3.5) then implies that
interpolation is exact for e € Null(A), which in turn implies that the correction step involves
a consistent system. A zero initial guess and relaxation using a polynomial method like
Richardson iteration ensures that the approximate solution remains orthogonal to Null(A).

4. Interpolation Using Local Measures. The quantities AM; and M, are global
measures of the quality of interpolation. Our intent is to use these measures to determine
an effective strategy for constructing interpolation in AMG, but it is not practical to do
this globally. In this section, we discuss an approach for localizing these measures for linear
systems (2.2) that arise from finite element discretizations.

Recall that A is given as the sum of finite element stiffness matrices: A = Y o7 Aq.
While we do not assume access to an underlying spatial grid (see (2.1)), we can construct
an artificial grid based on the graph associated with A, with vertices G := {1,2,...,n} and
edges € := {(i,7) : ai;; #0 fori # j}. Grid point (vertex) 7 € G is associated with unknown
U;.

We first define the point set of an element,

(4.1) Ma:={j : €] Aag; #0},

where €; is the canonical basis vector associated with unknown j. Next, define the neigh-
borhood of grid point 7 as the set of elements and set of points

(4.2) T = {aeT: el Aqg; # 0},

(4.3) Ni = Uaer;, Ma,

(4.4)

Fi1G. 4.1. Local neighborhoods.

respectively (see Figure 4.1). Define the local matrices on neighborhood 2 by

(4.5) A=) A,
a€T;

We also assume that a coarse grid has been selected, that is, the points in G have
been partitioned into coarse-grid points C and fine-grid points F such that CUJF = G and
CNF = 0. We now seek the n x n. interpolation matrix P, where n. = |C|, that interpolates
from the coarse-grid points C to the entire grid G.

Two conflicting goals drive the construction of P. The first is to minimize the bound
on measure M; or My, while the second is to preserve the sparsity of the coarse-grid system
involving PTAP. Focusing on the second goal first, we assume that the coarse-grid points
interpolate to themselves exactly, that is, P restricted to C is the identity, while fine-grid
points interpolate only from coarse-grid points in their neighborhood, that is, from C; :=
N;NnC.

To make the constructior more clear, suppose that the rows and columns of A have been
arranged so that the fine-grid points come first, followed by the coarse-grid points. We may
then write A in block form as follows:

_ | Asr Age
o Al
In this context, the interpolation matrix has the block form
_ | Pre
o po[5]

Alternatively, we may define the projection

(48) Q=[0 f}f;],

which implies the choice of R = [0, I.] as the restriction in (3.1).
In what follows, we develop a strategy for constructing the rows of Py, that is, the rows
of @ corresponding to each point 2 € F, which we denote

(4.9) o = 7Q.

AMGe 9
Restricting interpolation to a neighborhood of coarse-grid points is equivalent to choosing
(4.10) q € Z,:={velR" : v, =0for j ¢€C}.
We now localize measures M; and A, by defining

(e:T(1 = Qle, el (I - Qe)

(4.11) Mi(Q,e) = (A, o) ’
. <A,€1€1F([- Q)ea 515?(1 - Q)e>
(4.12) Mix(Q,e) = (Aze, Ase) ’

for any e ¢ Null(4;). Notice for ¢ € C that M;; = M;5 = 0, while for : ¢ F the above
measures only depend on the i¢th row of (2, which is to be chosen in Z;. To emphasize this
dependence, when the meaning is clear we write

<(€i —a)’e, (e - Qi)Te>
(Aje, €) ’

<(€i —ai)’e, (ei - Qi)Te>
(Aje, Ase) ’

(413) Av{iﬁl(q;,e)

(414) Mi,g(q;,e) =

for q; € Z; and e ¢ Null(4;). (Recall that A has unit diagonal.)

Heuristic H3, as applied to these local measures, now relates interpolation accuracy to
local eigenvectors of A;. This makes it practical to use M;, and M;> to compute interpo-
lation. Since we wish to make these local measures small, interpolation is defined so that
the q; in (4.9) is the argmin (that is, the argument that attains the minimum) of one of the
following min-max problems:

(4.15) K;, = ;ineigi egg}ﬁ%{m) M; p(qi, €),
for p =1 or 2. Note that if there exists a q; € Z; that yields K;, < oo, then q; satisfies the
constraint

(e: —qi))Te =0 Ve € Null(4,).
Thus, the min-max problem (4.15) can be restated as the constrained min-max problem:

4. = mi . (q: 3 —q:)Te = N ‘
(4.16) K;, :{inel‘rzliuﬁ%ai)M”p(q”e)’ subject to (g, —qi)"e=0 Ve € Null(4;),

for p =1 or 2. The next two subsections focus on the solution of these min-max problems.
In Section 4.3, we relate the local measures to the global measures.

4.1. Computing Interpolation by Fitting Eigenvectors. One way to compute the
q; in (4.15) or (4.16) is to “fit” the eigenvectors of A;, as quantified in the following theorem.
THEOREM 4.1. Suppose we have computed the eigen-decomposition

(4.17) AVi=Vih;,, VIVi=1.

AMGe 10

The columns of Vi are the orthonormalized eigenvectors of A,. and the diagonal entries of
A, are the corresponding cigenvalues. Assume that this cigen-decomposition s ordered to

distingutsh between zero and positive cigenvalues:

. . . 0 O
(1.9 = Tl a0]
Then min-maz problem (4.16) is equivalent to the following constrained least-squares problem:

2
| . subject to Vi (e; —aq;) =0,

(4.19) min H PPV (e - i)

forp=1or2.
Proof. Note that the null-space constraint in (4.16) is equivalent to that in (4.19).
Assume first that q; satisfies (4.16) with p = 1. Since e L Null(4;), we can write e =

V,+AZ + ’w, which yields

M, = mi
R

= ‘516111' ||Al+/ Vi (e - q,)

Assume now that q; satisfies (4.16) with p = 2. Writing e = V;; Aj}'w, we then have

T —1.|1?
Mir(q€) =) ”(Ei - q;) Vi+Ai+W"
Jflel? elgfx?i%(fx) 2%, ¢) = glelgs e ||w||2

= m1n "AH}V;_F(E; Qz)l

Computing the interpolation weights q; using (4.19) requires eigen-decomposition (4.17),
which is not the most efficient method. We introduce a simpler approach in the next sub-
section. However, we include this notion of fitting eigenvectors because it is useful for
understanding the basic principles involved in selecting interpolation.

4.2. A More Practical Algorithm for Computing Interpolation. This subsec-
tion describes a practical algorithm for determining when (4.15) or (4.16) has a (unique)
solution for 7 € F, and for computing) when a solution does exist. One important conse-
quence of this characterization is that, whenever the solution with the current interpolatory
set does not exist, we can add points to C; until a solution does exist.

Assume first that grid point ¢ € F has a neighborhood, as depicted in Figure 4.1,
consisting of n; points in set A;, with ny fine-grid points and n, coarse-grid points in C;.
Next, order the unknowns and equations of matrix A; so that unknown 1 is first, followed by
the other fine-grid points, with the coarse-grid points last. The neighborhood matrix and
its square can then be written as

AD 4D)
A= [A(l) A(l) and A] =

2 40
AD) A%
A(” AD

AMGe 11
respectively, and €; becomes €;.
In the remainder of this subsection. we drop the subscript ¢ whenever the meaning is
clear. Set Z; restricted to the neighborhood becomes

Z:={ecR"™ : ¢;=0Vj ¢ Ci}.

We can then interpret (4.16) with p = 1 or 2 as the problem of determining a vector q € Z
that minimizes maxXegnun(a,) Mip(q,), subject to the constraint

(e1—q)Te=0 Vec Null(4;) = Null(47).
That is, we require
(4.20) €1 — q € Range (4;) = Range (Af) :

Qur first concern is the existence of such a vector q. For this, we let €, € R" denote
the first canonical basis vector of length ny.

LEMMA 4.2. There ezists q € Z such that £, — q € Range (A7) if and only if
€, € Range (A}’})) ,

withp =1 or 2.
Proof. Assume that €, € Range (A(fpf)) so that

él = A}(-I})Sl
for some &, € R™. Then

(p) (» 5\
APS = I:A(fpj; e] (61):61*(1 € Range (47),

and q € Z.
Conversely, suppose there exists q € Z such that €, — q € Range (A?), that is, there
exists 4 such that

e; —q=AlS.
This, in turn, implies that
&= [AY), AP)| 6 < Range ([4Y), AT)]).
The proof will be completed by demonstrating that

Range ([4%), AP]) = Range (4%).

:\:\IC}(‘ 12

This is certainly true if 4(f’}) is nonsingular. Assume otherwise. and let 6 be a nonzero vector

in Null(;l(fl}’). Then
() 4 5 5
i ap Lo) Lo

Since A? is symmetric positive semi-definite, 0 is an extreme value of (A’e, e), which implies
that the vector (8, 0)7 is an eigenvector of A? with eigenvalue 0. In other words, (8, 0)T
Null(A?), which implies that

Null(A%)) = Null(A®)),
which, in turn, implies that
T
Range (Agr’})) = Range ((Ag’}))) = Range (Aff‘;)) ,
and the lemma is proved. [
Rewriting (4.20), we want § € IR™ such that

—q=A?$

for some q € Z. By the proof of Lemma 4.2, the set of all such ¢ is
— n . (r)
y® = {seR™ : [AY), AD]5=2}.

If Y is empty, then the constraint in (4.16) cannot be satisfied and K;, = co. In this case,
more points must be added to C; for (4.16) to have a solution. If Y) is not empty, then
any & € Y® can be written as § = 8" + -y, where 4" is a particular element of Y® and
v € Null([A(fpf) , A%)]) From the proof of Lemma 4.2, we may choose 8* = (8, 0)7, where

A}’})& = &,. We now show that
_ q* — Afa*
yields the unique solution to (4.15) or (4.16).

THEOREM 4.3. If €; & Range (Aj(?})), then K;p, = co. If & = A§!})81, then the unique
solution of (4.15) is given by

0
4.21 * = -
(4.21) q (—AS}’JI)GZ’

and K;, =< €,,8, >, forp=1 or?2.
_ Proof. The first statement follows from Lemma 4.2. To prove the second, let §* =
(61, 0)T. Using the substitution

—q=AP§

ANGe 13

with § € Y™ then (4.15) can be written as

(e —a)’e, (e1—q)e)

M ax = - v
VR T (e o gy A0 %)
(4.22) = min (AP(8" +). (6" +)).

Yenun([A7), A

Any solution of (4.22) is characterized by v* € Null([A(f‘?, A}'Z)]) such that

(4.23) (A28 +~7), v) =0 Ve Nul(j4a%®), AP));
that is,

A(p)
(4.24) AP(8" + ") € Range ([Ag) }) .

But v* = 0 satisfies (4.23) by construction of 8", which proves that (4.21) solves (4.15).
To prove uniqueness, suppose there are two such solutions to (4.23), say, 8" and 3".
Then

(»)
A, W

S - B = { A

for some w €IR™ . Since both 6* and B* are in YY), we have w € Null(A}’})). From Lemma
4.2, we have Null(A¥)) = Null(A%)), which implies that A?(8* — 8*) = 0 and that q" is
unique.

Finally, substituting 6" into (4.22) yields

Ki,p = (Afé*, 6*) = <é1, 31> 3

which completes the proof. o [|
A practical algorithm for determining @) is as follows:
For p =1, set
1) _ v _
AY) =4y, AD = A
For p = 2, set

Asrz} = A?f -+ Achcf, Ang) = AcfAff + AccAcf-

Perform a QR factorization on A?’f) using Householder reflections and column pivoting to
detect rank deficiency. If

A‘(fpf)sl = é]

. 0
1=\ -428,

and K;, = <é1, 31>; otherwise, set K;, = co.

has a solution, then set

AMGe 14

4.3. Local-Global Measure. This subsection shows that if A/, or 1/, 5 is bounded
for every i € F. then the global measure M, is also bounded.
THEOREM 4.4. Let p = 1 or 2 and assumne that the local approzvimation property

(4.25) M, (Q,e) < K, VecR"

holds for some K;, and all i € F. Then global approzimation property (8.4) is also satisfied
with
(4.26) K=max Y Ki|A4l"™".

€T e ManF

Proof. We have
(T =@, (1= Q)e) = 3 (el (1= Qe, el (I - Qe)

1€EF

S Z Kisp <A?ea e)
iEF

< Y Kip 1417~ (Ase, e)
IEF

= > (A.e,) > K, AP

acT tEMaNF

< K (Aae, €)

a€T

= K (Ae, e).
i

Straightforward application of the above techniques can be used to bound M, in terms
of M;,. However, the resulting bounds on M, can be much larger than the maximum value
of M;,. While this may not be sharp, it is simple to construct an example where M, is
much larger than the largest M;» and, hence, much larger than ;. In this case, using M,
to estimate convergence could lead to the erroneous conclusion that the resulting two-level
method is slow to converge.

The local measure bounds, Kj,, can be used as a diagnostic tool: Theorem 4.4 shows
that they contribute to the bound K, used to establish convergence in Theorem 3.2. While
neither measure provides a sharp bound when the algorithm exhibits a small convergence
factor, they can provide a warning: if K;, is large for some ¢, it may be profitable to
reexamine the choice of the coarse grid, perhaps adding more grid points to C. This will be
discussed in greater detail in section 6.

As an alternative to increasing the size of C, we could respond to large values of K,
locally by increasing the size of the neighborhood. Define the set ,-(k) of kth removed
neighbors recursively by letting N;(l) := N and

¢
(4.27) NED = U ol
Then interpolation could be allowed from the set C; := J\/i(k) N C, which are the coarse-grid

points connected to point ¢ by a path of length & in the graph of A. While this would yield
more accurate interpolation, the complexity of PTAP would certainly increase.

AN Ge 15

5. Numerical Results. In this section the element interpolation methods are applied
to two ilustrative examples: a Poisson equation discretized on stretched quadrilaterals and
a plane-stress cantilever bean. \We compare our numerical results to the bounds predicted
by our theory, and demonstrate the improved robustness of the new methods over AMG.

The only difference here between AMGe and AMG is that we use the element interpo-
lation method in AMGe to construct the interpolation operators. Thus, the coarse grids are
selected in the same way that they are in AMG. We are currently exploring the possibility
of using the AN Ge measures to determine coarsening. Some comments in this direction are
included in the next section.

To conform to the theory, for the AMGe tests the linear systems are scaled so that
the diagonal is t»2 identity. That is, we actually solve At = f, where A = D1/24D~1/2,
@ = DY2u, and f = D~Y2f. Our initial experiments use V(0,1) cycles based on damped
Jacobi with a relaxation parameter of 1/2. In the examples below || 4| is between 2.5 and
3.0 so that 4 < s < 2. For AMG, we use the original unscaled matrix A.

A =7 = Al
From equation (3.9) in Theorem 3.2 we have a bound on the convergence factor:

4[4l

(5.1) p<1- Ik
where K is the bound on either M; or M,. As we will see, the bound is rather pessimistic.
If we replace K from (4.26) by K, = max; K;,, then we have a more realistic but still
pessimistic estimate for the convergence factor. These factors are included in the numerical
results below.

Three different definitions are considered for interpolation: AMG, local measure 1
(AMGel), and local measure 2 (AMGe2).

In the multilevel algorithm, we construct “coarse element stiffness matrices” A, as
follows:

(5.2) - Aca = PTALP.

To reduce computational complexity and storage costs, we combine coarse elements that
operate on the same points by summing them. That is, we define

(5.3) Mea={j : el Acoe; # 0}

and, when M., = M, we combine A., and A.p to form a single coarse element stiffness
matrix.

5.1. Stretched Quadrilateral. Consider the stretched quadrilateral problem intro-
duced in Section 2, which consists of a Poisson equation on a rectangular grid discretized
with n; X n, bilinear quadrilateral elements. The fine-grid elements have a 10 : 1 aspect ratio,
yielding the stencil in (2.5). The boundary conditions are Dirichlet, which are eliminated
from the matrix during discretization.

In all cases, we use the AMG coarsening algorithm with parameter § = 0.25. This
produces a semi-coarsened grid for the first coarsening. The resulting interpolation operators

ANMGe 16

(at interior points) for this grid have the following stencils:

[0.084 0.332 0.084
(5.4) Pave = *

| 0.084 0.332 0.084 |
[0.007 0.486 0.007 |

(5.5) Pamvger = * :
| 0.007 0.486 0.007 |

[0.003 0.494 0.003 |

(5.6) Pamcer = * :
| 0.003 0.494 0.003 |

The stencils at boundaries are similar. Note that interpolation for all of the algorithms
involves corner points, but the associated weights for AMGel and AMGe2 are much smaller
than for AMG. The large element aspect ratio effectively decouples each vertical line of grid
points from the other vertical lines. In geometric multigrid, this situation is treated by semi-
coarsening, that is, by choosing coarse-grid points along each vertical line. Interpolation is
then performed only in the y direction. The typical interpolation weights used in geometric
semi-coarsening do not involve corner points, so smaller weights intuitively make more sense
here.

The experimental results are presented in Table 5.1. Two grid sizes, 64 x 64 and 128 x
128, are used. For each grid we show the convergence factors resulting from application
of AMG, AMGel, and AMGe2. Factors are shown for both two-level and multilevel cases.
For the two-level case, we show the bound on the convergence factor corresponding to using
(4.26) in Theorem 3.2 for M;. This is computed using ||A]| = 2.97 and K; = 2.68. As
expected, the bound is pessimistic. We also show the convergence factor (labeled “estimate”)
that would result from substituting K; = max; K;; = 1.34 and K, = max; K;, = 2.0 for
(4.26) in Theorem 3.2. This provides a more realistic, but still pessimistic, value for the
convergence factor. This behavior is typical of most multigrid theory, where results often
exceed theoretical expectations.

The key observation to be made from the data in Table 5.1 is that both AMGel and
AMGe2 produce substantial improvement over AMG for stretched quadrilaterals. As noted
in section 2, there are “fixes” available in AMG (such as iterative weight definition or a
judicious choice of the threshold 6, or perhaps the geometric/algebraic interpolation methods
of [10, 8, 7]) that improve the performance of AMG. For example, if we apply iterative weight
definition to either the 64 x 64 or 128 x 128 stretched quadrilateral problem, we obtain
convergence factors of 0.28 for both two-level and multilevel cycling. Similarly, if we use
AMG with a threshold of # = 0.5 we obtain convergence factors of 0.28 (two-level) or 0.29
(multilevel) on both problem sizes. Such techniques, however, tend to be somewhat ad hoc,
and are not based on theoretical considerations. As such, we cannot determine in advance
whether such treatments will be useful for a given problem. By contrast, we expect AMGel
and AMGe2 to perform well in more general problems involving high aspect ratios, so they
should find wide applicability for problems based on unstructured grids having thin domains

ANMGe]7

| Two-Level Multilevel
Size. . ANMG | ANMGel [ANIGe2 [ANG [AMGel [ANGe2
S 6dx 61 | 0.82 0.27 0.27 0.84 0.32 0.27

128 x 128 || 0.82 0.28 0.28 0.84 0.31 (.28
Bound 0.97 0.90

Estimate 0.81 0.87 - - -
TABLE 5.1
Computed convergence factors, bound predicted by theory, and ‘improvement’ of observed over predicted
for stretched quadrilateral problem.

Or regions.

5.2. Plane-Stress Cantilever Beam. Consider the 2D linear elasticity equations

1—v 1+v

Ugr + Tuyy + _Z—Uzy = fla
1—v 1+v

’Uyy + —2~Ux1; + T’U’Iy - f27

where u and v are displacements in the x and y directions, respectively. We take v = 0.3
for the tests. The problem, depicted in Figure 5.1, has free boundaries, except on the left
where u = v = 0. We discretize with bilinear finite elements on a uniform rectangular mesh
with spacing h in both directions (square elements). To make a fair comparison between the
different methods, we use the geometric coarsening strategy of doubling the element size in
both directions until there is only one element in the y direction, then doubling the element
size in the z direction only. For the multilevel results, we coarsen until A, = 2h,. The
so-called “unknown approach” [17] was used to define interpolation for AMG.

/]

e
pd

FiG. 5.1. Plane-stress cantilever beam problem.

Experimental results from the plane-stress cantilever beam problem are shown in Table
5.2. Several different thicknesses are used for the beam, ranging from a square cross section,
d =1, to a very thin beam, d = 1/64. AMG is ineffective on this problem, both as a two-
level and as a multilevel algorithm. Indeed, the theoretical bounds and estimates suggest
extremely slow convergence for AMGel and AMGe2, and do not indicate that AMG will
converge at all. In fact, however, both AMGel and AMGe2 achieve substantial improvement,
especially for the two-level algorithm, where they greatly exceed the predictions. The bound

ANMGe 18

Two-Level Multilevel
d ANG : AMGel | AMGe?2 | Te Wt | AMG | AMGel | ANMGe2 | Tt W,
1 0.97 0.49 0.48 0.37 0.98 0.65 0.85 0.87

1/4 0.97 0.48 0.47 0.80 0.98 0.68 0.90 0.98
1/8 0.98 0.47 045 0.87 0.99 0.64 0.87 0.94
1/16 0.97 0.49 0.45 1.00 0.99 0.58 0.77 0.97
1/32 0.97 0.45 0.50 0.97 0.98 0.51 0.56 0.96
1/64 0.94 0.39 0.28 0.98 0.98 0.39 0.28 0.98
Bound 1.00 0.97 - - - - - -

Estimate - 0.87 0.97 - - - - -
TABLE 5.2

Computed convergence factors, bound predicted by theory, and "improvement’ of observed over predicted

for plane-stress, h = 1/64.

is based on {|A|| = 2.50 and K = 12.25, while the predictions are based on max; K;; = 2.84
and max; K, = 8.31.

Two observations are significant: the two-level performance of AMGel and AMGe2 is
generally independent of the beam thickness until d = h;, where even greater improvement
occurs; and the multilevel performance of AMGel and AMGe2 improves steadily as the
beam becomes thinner. We also include columns indicating the best values obtained with
the “fixes,” of iterative weight definition and choice of §. The best combination (determined
empirically) uses iterative weight definition and 6 = 0.5. Unlike the previous example, here
these methods do not result in improvements similar to those produced by the AMGel and
AMGe2 methods. We note that the results of [8, 7] apply to a somewhat different elasticity
problem than the thin beam considered here, and are not comparable to the experiments we
report.

While this paper concentrates on the effect of the new interpolation method, it should be
kept in mind that there are other techniques that may be applied to enhance performance of
the algorithm. For instance, all multilevel experiments shown here were attained using Jacobi
relaxation and a (0,1) V-cycle. The relaxation method and its parameters can be chosen
differently. For example, the multilevel AMGel case with d = 1/4 shows a convergence
factor of 0.65 in Table 5.2. A Jacobi (1,1) V-cycle improves this factor to 0.58, while a
(1,1) F-cycle (see [14]) attains a convergence factor of 0.31. Nearly identical results, 0.65 for
V(0,1), 0.56 for V(1,1), and 0.33 for F(1,1), are obtained if the Jacobi relaxation is replaced
by nodal Gauss-Seidel symmetric C'F' relaxation, which sweeps over the C points followed
by the F' points on the downward leg of the V-cycle, and over the F' points followed by the
C points on the upward leg. Another possibility is the use of a single multigrid V(1,1) cycle
as a preconditioner for a conjugate gradient iteration. Applied to the plane-stress problem
using the nodal relaxation described above, this yields convergence factors ranging from 0.16
to 0.26 per CG iteration.

For both sets of experiments, the AMGe interpolation achieves significant improvement
over conventional AMG performance. We believe that further improvement is possible by
using more sophisticated coarse-grid selection. We observe that local measures M;; and

AMGe 19

M, carrv a great deal of information about the nature of the underlving problem and its
discretization. and we should be able to exploit this information to determine more effective
coarse grids. The following section hints at some possible directions of this ongoing research.

6. Coarse-Grid Selection. The focus of this paper is on defining interpolation using
local measures M;; in (4.11) and M, in (4.12). The numerical tests in the previous section
examine a version of AMGe that differs from AMG only in its construction of the inter-
polation operators. But, we would also like to use these measures to guide the coarse-grid
selection process. Defining a practical procedure for doing this, however, is not straight-
forward and is the subject of current research. The purpose of this section 1s to present
one very simple approach that fits into the current AMG coarsening procedure. The only
modification to conventional AMG that this approach makes is to use local measures M, ;
or M; , to redefine the AMG notion of strength of dependence.

We proceed by first defining a strength matriz, S, with the same nonzero structure as
A. Denote the (i,) entry of S by s; ;. We say that point ¢ strongly depends on point j if

(6.1) Sij > 91213;({31-,,:}, for some fixed 6 € (0,1).

The matrix S may be defined in any number of ways. The simplest approach we consider
here is to define

(62) Sij = "——‘—)'

for each § € N;, where M,-(j) denotes either M;; or M;, restricted to the case C; = {j}.
This approach can be interpreted as a way of measuring the “importance” of each potential
interpolation point j € N; individually as if j were the only point in C;. This approach fits
easily into the current AMG coarse-grid selection process.

Because of its focus on individual points, we do not expect this simple scheme to support
effective coarsening in all cases. However, we do see improvement over standard AMG in
some important cases, as the stretched quadrilateral problem in Section 5.1 illustrates. For
this case, the strength matrix based on M;; is

0.19 5.09 0.19
(6.3) S=1020 % 020
0.19 5.09 0.19

This shows that the direction of strongest coupling is vertical, as it should be.

This approach can break down for more complicated systems. For example, in 2D
elasticity on unstructured grids, local stiffness matrix A; has three null space eigenvectors.
It is generally not possxble to fit all three vectors with interpolation from a single j € N,
and the result is that M; 0) = o for all j € N;. This difficulty is due to the limitation of
this approach to the examination of only two points at a time, asking the question “How
well can the value u; be interpolated if j is the only interpolation point?” A possibly more
effective approach is to examine M; or M, for several (or even all) subsets of N;, with the

ANGe 20)

aim of determining which set of neighbors can best be nsed to interpolate u,. The measures
should, of course. be accompanied with cost estimates to control complexity of the coarsening
process. We could then assign those points with the best measure as F pownts. while assigning
the sets that achieve the best measures as C points.

7. Conclusions. For any multigrid method to work, errors that remain after relaxation
must be well approximated by the range of interpolation. Since algebraic multigrid does
not rely on geometric information, its fundamental challenge is to construct coarse grids
and interpolation operators that approximate these errors. The core of this challenge is to
determine errors that cannot be effectively reduced by local processing.

Two local measures were introduced here, to quantify how well the coarsening processes
determine algebraically smooth error, and used to construct new interpolation operators.
Experimental data for two representative test problems confirm that these operators lead to
improved AMG convergence rates for these cases.

Current research focuses on using these measures also to assess the ability of coarse-grid
points to represent the necessary error components, that is, to determine which points are
best suited to be on the coarse grid. Combined with the improved interpolation operator,
this may lead to very efficient AMG algorithms for a much wider range of problems than is
currently available.

REFERENCES

[1] C. BALDWIN, P. N. BROWN, R. D. FALGOUT, J. JONES, AND F. GRAZIANI, lterative linear solvers
in a 2d radiation-hydrodynamics code: methods and performance. Submitted to Journal of Compu-
tational Physics, 1998.

[2] J. H. BRAMBLE, J. E. PAsCIAK, J. WANG, AND J. XU, Convergence estimates for multigrid algorithms
without regularity assumptions, Math. Comp., 57 (1991), pp. 23-45.

[3] A. BRANDT, Algebraic multigrid theory: The symmetric case, in Preliminary Proceedings for the
International Multigrid Conference, Copper Mountain, Colorado, April 1983. .

[4] A. BRANDT, Algebraic multigrid theory: The symmetric case, Appl. Math. Comput., 19 (1986), pp. 23—
56.

(5] A. BRANDT, S. F. McCORMICK, AND J. W. RUGE, Algebraic multigrid (AMG) for automatic multi-
grid solutions with application to geodetic computations. Report, Inst. for Computational Studies,
Fort Collins, Colo., October 1982.

[6] , Algebraic multigrid (AMG) for sparse matriz equations, in Sparsity and Its Applications, D. J.
Evans, ed., Cambridge University Press, Cambridge, 1984.

[7] Q. CHANG, Y. S. WONG, AND H. Fu, On the algebraic multigrid method, J. of Comp. Phys., 125
(1996), pp. 279-292.
(8] Q. CHANG, Y. S. WoONG, AND Z. L1, New interpolation formulas using geometric assumptions in the
algebraic multigrid method, Appl. Math. and Comp., 50 (1992), pp. 223-254.
[9] A. J. CLEARY, R. D. FaLGouT, V. E. HENsON, J. E. JonNgs, T. A. MANTEUFFEL, S. F. Mc-
CorMiCK, G. N. MIRANDA, AND J. W. RUGE, Robustness and scalability of algebraic multigrid.
To appear in SIAM Journal on Scientific Computing special issue on the Fifth Copper Mountain
Conference on Iterative Methods, 1998.
[10] W. Z. HUANG, Convergence of algebriac multigrid methods for symmetric positive definite matrices
with weak diagonal dominance, Appl. Math. and Comp., 46 (1991), pp. 145-164.

(11] J. MANDEL, M. BREZINA, AND P. VANEK, Energy optimization of algebraic multigrid bases. Submit-

ted.

AMGe 21

[12] S. F. McCoRMICK, Multigrid methods for variational problems: further results. SIAN J. Numer. Anal..
21 (1984). pp. 255-263.

[13] ——, Multigrid methods for variational problems: general theory for the V-cycle. SIAND J. Numer.
Anal., 22 (1985), pp. 634-643.

[14] S. F. McCorMmICcK axDp J. W. RUGE, Multigrid methods for variational problems. SIAN J. Numer.
Anal., 19 (1982), pp. 924-929.

[15] J. RUGE, Element interpolation for algebraic multigrid (AMG). Presentation at the 4th Copper Moun-
tain Conference on Multigrid Methods, Copper Mountain, CO, 1989.

[16] J. W. Ruce AND K. STUBEN, Efficient solution of finite difference and finite element equations
by algebraic multigrid (AMG), in Multigrid Methods for Integral and Differential Equations, D. J.
Paddon and H. Holstein, eds., The Institute of Mathematics and its Applications Conference Series,
Clarendon Press, Oxford, 1985, pp. 169-212.

[17] ——, Algebraic multigrid (AMG), in Multigrid Methods, S. F. McCormick, ed., vol. 3 of Frontiers in
Applied Mathematics, STAM, Philadelphia, £A, 1987, pp. 73-130.

[18] K. STUBEN, Algebraic multigrid (AMG): ezperiences and comparisons, Appl. Math. Comput., 13
(1983), pp. 419-452.

[19] K. STUBEN, U. TROTTENBERG, AND K. WITSCH, Software development based on multigrid techniques,
in Proc. IFIP-Conference on PDE Software, Modules, Interfaces and Systems, B. Enquist and
T. Smedsaas, eds., Sweden, 1983, Soderkdping.

[20] P. VANEK, M. BREZINA, AND J. MANDEL, Convergence analysis of algebraic multigrid based on
smoothed aggregation. Submitted.

{21] P. VANEK, M. BREZINA, AND R. TEZAUR, Two-grid method for linear elasticity on unstructured
meshes, SIAM J. Sci. Comput., (1998). To appear.

[22] W. L. WaN, An energy-minimizing interpolation for multigrid methods, tech. rep., Department of
Mathematics, UCLA, April 1997. UCLA CAM Report 97-18.

[23] W. L. WaN, T. F. CHAN, AND B. SMITH, An energy-minimizing interpolation for robust multigrid
methods, tech. rep., Department of Mathematics, UCLA, February 1998. UCLA CAM Report 98-6.

ELEMENT-FREE AMGEe: GENERAL ALGORITHMS FOR
COMPUTING INTERPOLATION WEIGHTS IN AMG

VAN EMDEN HENSON AND PANAYOT S. VASSILEVSKI

ABSTRACT. We propose a new general algorithm for constructing interpolation
weights in algebraic multigrid (AMG). It exploits a proper extension mapping out-
side a neighborhood about a fine degree of freedom (dof) to be interpolated. The
extension mapping provides boundary values (based on the coarse dofs used to per-
form the interpolation) at the boundary of the neighborhood. The interpolation
value is then obtained by matrix dependent harmonic extension of the boundary
values into the interior of the neighborhood.

We describe the method, present examples of useful extension operators, pro-
vide a two-grid analysis on model problems, and, by way of numerical experiments,
demonstrate the successful application of the method to discretized elliptic prob-
lems.

1. INTRODUCTION

The classical algebraic multigrid (AMG) algorithm [2, 3, 9] was developed for op-
erators represented by symmetric, positive-definite, M-matrices. While the algorithm
works well for many real-world problems [10, 6, 11}, there are situations in which
it does not perform particularly well. One reason for this is that in some instances
the classical definition of interpolation does not adequately interpolate the smooth
modes of the error. More specifically, standard AMG interpolation makes certain as-
sumptions about the nature of the smooth error which may not be valid for operators
that are not M-matrices. A more sophisticated characterization of smooth error is
required to develop an adequate interpolation formula.

To provide a better characterization of smooth error, a method known as AMGe,
for element-based algebraic multigrid, was developed recently [4] for finite-element
discretizations. AMGe provides an accurate interpolation formula by using the in-
dividual element stiffness matrices to construct a neighborhood matrix for each fine
degree of freedom (dof). The sum of the individual stiffness matrices for all the el-
ements containing the point at which the dof is defined, the neighborhood matrix
acts as a local “Neumann”-type version of the original operator. According to AMGe
theory, once the local matrix is developed and coarse-grid points are chosen, solving

Date: January 4, 2000-beginning; Today is June 16, 2000.

1991 Mathematics Subject Classification. 65F10, 65N20, 65N30.

Key words and phrases. algebraic multigrid, interpolation weights, sparse matrices, finite ele-
ments, unstructured meshes.

Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, 7000 East
Avenue, Mail stop 560, Livermore, CA 94550, email:{vhenson,panayot}@Illnl.gov. This work was
performed under the auspices of the U. S. Department of Energy by University of California Lawrence
Livermore National Laboratory under contract W-7405-Eng-48.

1

mailto:email:{vhenson,panayot}@llnl.gov

2 VAN EMDEN HENSON AND PANAYOT 5. VASSILEVSKI

a simple minimization problem vields the optimal interpolation operator for cach dof.
It is shown in [4] that the method indeed produces superior interpolation and leads
to improved convergence rates on several tvpes of problems. including both scalar
problems and systems of PDEs, such as elasticity problems.

An obvious drawback to AMGe. naturally, is that it requires that the element
stiffness matrices be available. While this is often the case, their storage can be
expensive. Further, AMGe requires that coarse level elements be constructed and
their individual stiffness matrices be available. Determining the coarse elements is a
difficult and laborious task.

In this paper we examine the construction of the interpolation operator in both
classical AMG and AMGe, and present them within a common framework. Our pur-
pose is to extend and generalize the classical interpolation. originally motivated for
M-matrices, to develop a rule applicable in more general settings. Accordingly, we
then propose a new method for determining the interpolation weights that attempts
to capture the benefits of AMGe interpolation without requiring access to the indi-
vidual element stiffness matrices. This method is applicable to finite difference, finite
element, or finite volume discretizations, and we concentrate on the symmetric posi-
tive definite case. Essentially, it seeks to determine, for each fine dof, a neighborhood
matrix that can be utilized in the same manner that the local assembled stiffness
matrix is used in AMGe. We do this by defining a neighborhood for the fine dof and
examining the rows of the original matrix that correspond to the points in that neigh-
borhood. A set of exterior dofs is defined, and a mapping developed that extends
functions on the neighborhood to the exterior dofs. This essentially imposes a set of
boundary conditions on the neighborhood. Here we propose a unified way of building
these boundary conditions. One may view them as an extension (extrapolation) of a
vector defined on the neighborhood to its immediate exterior. This extension can be
performed using constant vectors or any other vectors that may be of interest (such
as the rigid body motions in elasticity problems). The extension can be built for each
dof in the exterior based on the matrix sparsity pattern.

By incorporating the action of the extension operator into the local connections
of the neighborhood, a modified local matrix is created. This matrix is then used
in a manner similar to that employed in AMGe, that is, by solving a minimization
problem, to create the interpolation operator. The construction of the extension
operator and the respective minimization procedure to build the interpolation weights
we consider as our main contribution. We give examples of several extension operators
and show how they relate to both classical AMG and other, more recently proposed
algorithms. A two-grid model analysis of the properties of the resulting interpolation
mappings is provided as well. In particular, we prove that they exhibit approximately
“harmonic” property as well as “partition of unity” property, desirable in standard
two-grid analyses of the AMG methods.

Numerical results are presented demonstrating the method. We include both scalar
problems and systems of PDEs in the form of elasticity problems. Finally, we draw
some conclusions and comment of the direction that continued research will take.

ELEMENT-FRELE ANGIE 3

Some notational convention: to denote a vector we will use boldface, e.g.. v.w, ...
The 7th component of v will be denoted 1n different contexts as v(7). v(7) or v;. In
the latter two cases v (i.e.. not in boldface) will have a meaning of a “grid” function.

2. A FRAMEWORK FOR AMG INTERPOLATION

Assume that the problem Ax = f is to be solved, where A is a sparse, symmetric,
positive-definite matrix. AMG is a multigrid method in which no geometric grid
information is used (and often isn’t available or doesn’t even exist). Accordingly,
all of the components of a multigrid algorithm, the hierarchy of grids, interpolation
and restriction operators. and the coarse-grid versions of the original operator, must
be constructed using only the information contained in the entries of A. For any
multigrid algorithm, several basic components are required. In the case of AMG,
they can be described as follows:

e A fine grid is required. For AMG, this is generally a set D comprising the degrees
of freedom of the original problem.

e A coarse grid D, is necessary. This set of dofs is typically a subset of D. Gen-
erally, a hierarchy of coarse grids D D Dy D Dy D ... D Dy is present.

e An interpolation (prolongation) operator is necessary to map vector functions
defined on the coarse grid D, to the fine grid D, P : D. — D. Such an
operator is required mapping functions on each grid to the next finer grid. Unlike
many conventional (geometric) multigrid algorithms, in AMG the interpolation
operators are rarely the same for different levels.

e A restriction operator R : D — D,, mapping fine-grid functions to the coarse
grid, is needed. For AMG the restriction is frequently defined by R = P?, and
we will use that definition here.

e A coarse-grid version of the original operator A is needed for each coarse level.
For AMG the coarse operators are generally defined by the Galerkin relation
A.= PTAP.

_ e A smoothing iteration is used on each level (except the coarsest grid). It is typical
to use a point-relaxation method such as GauB-Seidel or Jacobi relaxation.

There are many ways in which to select the coarse-grid dofs in AMG [9, 11, §].
Commonly, the coarse set D, is a maximally independent subset of D, but this is not
required. We will not discuss the question of coarse-grid selection further, except to
note that each fine-grid dof 7 is connected to its nearest neighbors (e.g.,) by way
of having a nonzero coeflicient a;;, and that the value of a prolonged function at 7 is
typically an interpolation of the values of its nearest neighbors that are coarse-grid
dofs. For the remainder of this paper, we shall simply assume that a coarse grid has
been selected and that the coarse neighbors are known for any fine dof.

With this description of the basic components of AMG, we can describe a simple
framework for computing the entries of the interpolation operator. Let : € D be a
fine-grid dof whose value is to be interpolated. We first define a subset Q(z) C D to
be the neighborhood of i. For now we place no particular restrictions on what dofs
can be in Q(z). For example, the set €2(7) could consist of z and all of its nearest
neighbors, or 7 and its nearest coarse neighbors, or 1, its neighbors, and all of their

! VAN EMDEN HENSON AND PANAYOT S, VASSILEVSKI

neighbors. Indeed, within the framework we describe here, the exact character of the
interpolation operator will depend largely on what sort of neighborhood is defined.
Since the value at 7 will be interpolated from coarse points in the neighborhood. it 1s
useful to denote the set of coarse dofs in the neighborhood to be .(z).

To construct the interpolation for i. we examine the entries of the operator A4 in
the following way. We begin, without loss of generality, by permuting the rows and
columns of A and partitioning it so the the first set of rows and columns corresponds
to 7 and the fine dofs in the neighborhood, that is, to §(7)\Q2.(). The next set of
rows and columns corresponds to the coarse neighbors §2.(7), while the final set of
rows and columns corresponds to the rest of the grid D\(¢). Hence the partitioning
of A, along with the identity of the rows corresponding to the partitions, appears as

Agp Ape + N} Q)\Q(2)
A= * %k) } Q1)
* * % } D\Q(3).

For our purposes we are only concerned with two blocks of the partitioned matrix.
The block Ay gives the connections among ¢ and the fine-grid neighbors while the
block Ay, links ¢ and the fine neighbors to the coarse neighbors.

3. INTERPOLATION IN AMG

For classical AMG [9], the interpolation is computed in the following fashion. The
neighborhood (z) is defined to be the dof 7 and all dofs connected to it (all j for which
a;; # 0). The fine-to-fine block, Ay; is then replaced with a modified version, A it
This block is modified in two ways. First, we modify the row corresponding to the dof
i (which we will hereafter refer to as the ¢th row, regardless of the actual numerical
ordering) by adding to the diagonal element a;; any off-diagonal entries a;; for dofs
J that are weakly connected to ¢, and then setting a;; = 0. By weakly connected we
mean that the magnitude of a;; is smaller than some pre-defined threshold. A common
choice is that if the magnitude of a;; is less than @ times the largest magnitude of all
off-diagonal entries in the ith row then j is considered to be weakly connected to i.
The second modification to Ay is that for each row j corresponding to a dof strongly
connected to i, the diagonal element a;; is replaced by

Qjj — — Z Q)
ke (i)

after which the off diagonal entries of the jth row are set to zero. Once the modified
block Ay is computed, the entries of the ith row of the interpolation matrix P are
determined by taking the entries of the ith row of the matrix

1-1
4. INTERPOLATION IN AMGE

For AMGe a similar description of the interpolation is easily given. In this setting,
the neighborhood §2(2) is defined naturally as the union of all finite elements having 7
as a vertex (Figure 1). In the figure, the set €(z) consists of all vertices in the shaded

ELEMENT-FREE AMGE 5

FIGURE 1. The neighborhood of the fine dof i (large open circle).

region, including 7 (the open circle in the center). The shaded regicn consists of the
six triangular finite elements having ¢ as a vertex. Members of §.(7) are indicated by
the square vertices. Since AMGe gives us access to the individual element stiffness
matrices, we may create a neighborhood matrix Aq;) simply by summing together
all the individual element stiffness matrices of the elements in the neighborhood. In
AMGe the interpolation operator for the dof i is determined by solving a constrained
min-max problem, that is, by finding interpolation coefficients that minimize a certain
measure from finite element theory. The solution to the min-max problem can be
computed in several ways. one of which fits into the framework we are developing
here. We partition the neighborhood matrix into the rows and columns associated
with the fine dofs in the neighborhood and the rows and columns associated with the
coarse dofs, as

* % } Q.(3).

Again, our only interest is in the rows of the neighborhood matrix corresponding to
the fine dofs, including ¢. With this partitioning, it turns out that one way to solve
the min-max problem is to take, as the coefficients for the interpolation operator for
1, the entries of the ¢th row of the matrix
- (477 Are) -

It is useful to note that, unlike the classical AMG case, there is no need to modify
the matrix Ay prior to computing the interpolation coefficients. Essentially, this
is because the element stiffness matrices automatically carry with them the correct
handling of strong and weak connections, so that the neighborhood matrix already
has the correct relationships built into it.

For many problems the AMGe method produces a superior interpolation, and re-
sults in good convergence rates [4]. In the remainder of this paper our goal is to
accomplish a similar superior interpolation without the knowledge (and hence, ex-
pense) of the individual stiffness matrices.

Aagy = (Ay Afc> } (0) \2(6)

5. INTERPOLATION FOR ELEMENT-FREE AMGE

The process we propose for building the interpolation operator is very similar to
the processes described for AMG and AMGe. Once again, we will proceed by defining

G VAN EMDEN HENSON AND PANAYOT S. VASSILEVSKI

b4

¥ X

FIGURE 2. The extended neighborhood Q(v), including the fine dofs
to be interpolated (solid circles), the coarse interpolatory set 2.(v)
(squares), and the extension dofs (open cir~-les marked X).

a neighborhood of the fine dofs and an associated neighborhood matrix. Let 3 be
a set of fine dofs whose values we wish to interpolate. We define Q(v) to be the
neighborhood of ¢, which includes the coarse dofs that will be used to interpolate the
dofs in . The set of coarse dofs in the neighborhood we denote .(v).

Now, however, we define a third set of dofs

Qr(¥) = {7€UY) | aij # 0 for some 7 € Q(P)\Q(¥)} .

That is, () can be viewed as the interior of the set () = Q(v) U Qx(¢). Figure
2 gives an example of such a neighborhood.

We begin the construction of a neighborhood matrix by examining the rows of the
matrix A that correspond to the fine dofs in 1; that is, we will be concerned with the
following partitioning of A:

Asp Age Az 0\ } Q¥) \Qc(¥)
A * * * % } Q(v)
* * * % } Qx(v)
x x % } everything else on grid.

5.1. Local (neighborhood) quadratic form. Our task next is to define a matrix
associated with 1 that yields a local version of the operator A, performing the same
function as does the neighborhood matrix in AMGe. To do this we first build an
extension mapping (matrix) E(1) that maps a vector defined on Q(z) to Q(v)

) (V) = | v

Vx
using the relation
Vy = Exf('l,b)Vf -+ Exc('lﬁ)vc.

That is, the extension operator looks like

1 0
E= (0 I) .
Exi(¥) Exc(v)

ELEMENT-FREE AMGE 7

For now we will not be specific about the exact nature of the extension operator.
Rather. we will describe how it mayv be used to develop an interpolation formula,
after which we shall discuss desirable properties of the operator.

We construct a neighborhood matrix from the first block of rows of the partitioned
matrix

I 0
(Aff’AfC) = (Asp> Ase, Arx) 0 1
Ex;(¥) Exc(¢)
so that
Ajp= Ay + ApxBxp () and Ao = A+ ApxExe().
v Vs
For any vector [vf], consider its extension v = | v, |, where vy is given by
4
Vx

Vy = Exf('(ﬁ)Vf + Exc(tﬁ)vc. Let

R —A?} (AfCVC + Afxvx)
V= Ve
Vx
be the so—called harmonic extension of V| 1,0,y into (1) \ (). That is, one

extends v, restricted to the “boundary” Q.(¥) U Qx (%), into the “interior” (1) \
Qe(th).

We use the v, that minimizes the difference v — ¥ in energy norm in the interpo-
lation procedure. Since
vy = (V)s
v—V= 0 ,

0

its energy norm is computable and equals

lvi—(Vslla = (vp— (V){)TAH(VI - (9)y)
= (vy+App (Areve + Apava))T App(vy + Aff (Ageve + Agava)).

Since Ay is positive definite, this implies that if we solve the equation

0 =Apve+ (Apeve+ Asav)
= (:flff + A.C:‘-’Exf)vf + (Afc + AfXEXc)Vc
= Agpvy + Ageve,

the minimization of {|vy—(¥);||4 is attained with zero minimum by v; = —fol.;f feVe-
We can actually show (see Remark 7.1 and Lemma 7.1) that in the model finite
element case considered in Section 7 the minimization procedure is equivalent to a

quadratic functional minimization involving Neumann assembled matrices, as in the
AMGe method (cf., [4]).

N VAN EMDEN HENSON AND PANAYOT S, VASSILEVSKI

It is natural to ask whether /Kff is invertible. If Fy; = 0, there is no difficulty,
since then :lff = Ass. In general. if Eay is sufficiently small in norm App + Ay By
will be invertble.

6. EXAMPLES OF EXTENSION OPERATORS

We describe here three extension operators F that can be used to construct the
interpolation operator in the element-free approach. These are by no means all the
useful extensions that we could concoct; they form, however, a simple set of exam-
ples that will allow us to demonstrate the efficacy of the method and its underlying
philosophy.

The first we call the Ly-extension because it is a simple averaging method. Given
v defined on (i), we wish to extenu it to vy, defined on Qx (). Suppose that iy is
an exterior dof, that is, a point from (%) whose value we wish to determine from
the values of the dofs in Q(z). Let S = {7 € Q(¢) : ai, ; # 0}; that is, S comprises
those dofs in Q(z) to which the point ¢y is connected. It seems natural to consider
using a simple average over these dofs as the extension at iy. Thus, the extension
formula, for the dof iy, is given by

. 1 .
valiz) = ==)_v(i)-
> lie
j€S
A somewhat more sophisticated extension we call the A-eztension because it is a
simple operator-induced method. The A-extension operator for the dof iy is given

by the formula

Valin) = e 3 (aseslv(i)
> airil jes
j€s
It may be seen that in this case the extension to the exterior is a simple weighted
average of the values of the neighborhood dofs to which the exterior point is connected.
The weights in the average are given by the absolute values of the matrix coefficients.

The two methods just described share the property that they are computed point-
by-point. That is, the extension formulas for the dofs in Qy(y) are determined
independently. A second feature shared by the methods is that if the neighborhood
vector v is constant, then the extended values are also constant, and have the same
value as the entries of the neighborhood vector. This feature is clearly desirable for
many elliptic PDEs, where the constant vector is in the null space or near-null space
of the operator A.

The third example we describe is based on the minimization of a quadratic func-
tional. Again, let v be a vector defined on €(z) that we wish to extend to Qx(v).
We construct the extension to be that operator which produces vy that minimizes
the functional @(vyx), where

Q)= Y laiesl (vie —v5)%.

ix €Qx(¥)
JEQ()

ELEMENT-FREE AMGE 9

It is evident that. like the previous extension operators, if v is constant on €(7)
then the dofs in Q4(«*) will also have the same constant value. Unlike the previous
extension operators, which are determined one dof at a time, this is a “simultaneous”
extension, computing formulas for extending to all of the exterior dofs together. As
such, it is necessarily more expensive to compute. We also note that this extension,
and the interpolation it generates, is equivalent to the method recently proposed in

[1].

A final example is given by minimizing the following “cut-off” quadratic functional:
(HV)TAﬁ(w) (6v) +— min

subject to vy, v, fixed. Here

0 O0x | }Qx(¥)

is a diagonal matrix. A good choice is, a diagonal matrix formed from the vector

b = ~(Awe)™ rr, v |) |

9:[1 0] } Q)

Here we used the blocks of A corresponding to its Qx(¥) rows.
It is easily seen that the extension mapping is actually defined as

Vy = EXch +EXfo
= =03 (Axx) ™ [Axy, Axd [:;f } .

Note that this extension mapping is also a simultaneous extension operator and an
averaging one; i.e., if v, = (1) and vy = (1)y, then vy = (1) .

6.1. Classical AMG as an extension method. The interpolation method of the
classical AMG algorithm popularized by Ruge and Stiiben [9] may be viewed as an
extension method. Here the neighborhood is just the dof to be interpolated together
with the dofs that will be used to compute the interpolated value. That is, Q(i) =
{i}UQ.(3). The extended neighborhood then includes all fine dofs that are connected
to 1,
Qx(¥) = {7 ¢9Q0) : ai; #0}.

An A-extension is defined in the following manner. For each ix € Qx(¢), set v;, = v;

if ix is weakly connected to 7 (Recall that in classical AMG, as developed for M-
matrices, the dof ¢ is said to be strongly connected to the dof j if

—Qij > 01212.3((—&,']9)

where 6 is a user-specified parameter, and weakly-connected otherwise). If iy is
strongly connected to ¢ the extension is defined by

1

[e e— Qip V5
Z Gixj jeQ.(v)

J€Q(Y)

10 VAN EMDEN HENSON AND PANAYOT S, VASSILEVSKI

NW N NE
B |
w E
LI
swW S SE

FIGURE 3. The neighborhood of the fine dof i (large solid circle) for the
stretched quadrilateral element problem. The problem is semicoarsened,
squares denote the coarse neighbors .(t) while the open circles are the
exterior points Qx ().

A simple example should suffice to illustrate these extension methods. Suppose the
problem —U,; — Uy, = f(z,y) is discretized using a regular Cartesian grid of points
making up the vertices of quadrilateral elements. Suppose further that the elements
had dimension k, x h, where hy > h,. As hy/h, — 0 the operator stencil tends
toward

~1 —4 -1
2 8 2
~1 -4 -1

Since there is effectively no coupling between a given point and its neighbors to the
east or west, the appropriate choice is to semicoarsen, selecting every other line of
points with constant y-coordinate to be coarse points. Using the same logic, the
natural interpolation is to have each fine dof interpolated only using the values to the
north and south of it, each with equal weighting of 1/2. Consider the interpolation
of one point, ¢, shown in the center of its neighborhood in Figure 3. For either the
L- or A-extensions, we might select Q(¢) = iU Q.(¢) where, in this instance, Q.(i) =
{N,S,SW,NW,SE,NE}. Then Qx(¢) = {W,E}. We see then that Ay = [8],
Aje=[-4 -4 -1 -1 -1 —1}],and Ajpy =[2 2]. For the A-extension it is
easy to compute the extension operators

1 (1144 1 (2
EX’-“E(ll 44) and E"f"E(z)

from which

~ 104 ~ 1
Aff:(ﬁ> and Ap=g(-11 -11 -1 -1 -1 -1)

which yields a interpolation operator
1
P,=—(11 11 1 1 1 1).
4= g5 ()

We see that the values to the north and south are used in the interpolation with
weights 11/26 =~ 0.423 and that the four points diagonally adjacent to i all are
weighted 1/26 = 0.038. The ideal weights, of course, are 0.5 and 0, respectively, so

ELEMENT-FREE AMGE 11

the interpolation weights computed by the A-extension method, while quite good, are
not perfect.

A similar calculation for the weights using the Lio-extension vields the interpolation
operator

1
= — (1 33 :
P, 44(616 3 3)

Here the dofs to the north and south are weighted 16/44 ~ 0.364 while the diagonally
adjacent dofs are weighted by 3/44 =~ 0.068. For this problem, then, the A-extension
is significantly better than the L,-extension.

By contrast. it is a straightforward calculation to show that classical AMG produces
the interpolation operator

1
PAMG_12(4 41111),
where the north and south dofs are weighted by 4/12 ~ 0.333 and the diagonally
adjacent dofs are weighted by 1/12 =~ 0.083; these weights are farther from the ideal
than the weights produced by either the A- or Ly-extension.
Finally consider the extension operator based on minimizing the “cut—off” qua-
dratic functional. The additional matrix blocks involved read:

(8 0
AXX - 0 8)
2
AXf = 9]

4 -1 -1 -4 -4 0 0
¥ 7]l-1 -1 0 0 -4 -4

The vector 0, = —Az%[Ax; Axd] [((i))f J = (1)x. This is seen as follows

Axj()y =2(1)x, Axc(1)e = —10(1)x,
and hence
Axs(1)5 + Axc(1)e = —8(1)x,
which implies
_ 1
Or = —Axr(Axs (1) + Axc(1)c) = ~3 [-8(1)x] = (1)«

That is, the diagonal matrix € is the identity and hence the extension matrices then
read:

Exy =-AyyAxs =-

1
4
EXc = —A;];t‘AXC = % [

1 VAN EMDEN HENSON AND PANAYOT S, VASSILEVSKI

The modified matrices jff and ‘/4_/‘(3 take the form:

- 1
Aff :Aff+Af,yEXf :8*[2, 2]%1: }

1
R 114400
Afc :Afc+AfXEXc :[—47—4’_1’_1’h1’_1]+[2’ 2]% 1100 4 4
= [—41 -4, -1, -1,-1, _1] + [%’ %’ 11,1, 1]

_[_1 _7
=[-1,-%,0,0,0,0].
That is, the interpolation coefficients are the “perfect” ones:

11
-, =,0,0,0,0].
[2327a’01]

7. TWO—-GRID ANALYSIS FOR A MODEL FINITE ELEMENT PROBLEM

Before providing numerical results, we present an analysis of the quality of the
“element-free AMGe” interpolation. That is, we prove an “approximate” harmonic
property of the interpolation mapping and show that it provides a partition of unity.
Specifically, we assume that the problem is a standard finite element discretization of
a second order elliptic problem

a(u, v) E/a(:r)Vu-Vv dz =(f, v) veV,

where V is a finite element space of piecewise linear functions over quasiuniform tri-
angular elements that cover a given 2—d polygonal domain. For simplicity, we assume
that homogeneous Neumann boundary conditions are imposed and that (f, 1) =0
(to insure solvability).

Let us denote, for any element e,
alz)t

(7.1) ole) = Sup max = il

In the following, we assume (only for simplicity) that the neighborhood Q(i) =
Q(1)UQx () for any fine dof ¢ is formed by union of triangles that share dof 7 as a com-
mon vertex. Thus we will use 7 instead of 1 denoting the neighborhoods (2(3), Qx (i),
and Q.(7)) and the extension mappings. In particular, we denote E; = [Exf, Ex.|
where for brevity Exy = Ex(i) and Ex. = Ex.(i). A closer look at the analysis to
follow, however, shows that it applies as well to more general (i.e., larger) neighbor-
hoods.

In what follows, for any subdomain (union of triangles) G, we let ag(.,.) denote
the bilinear form a restricted to G. The corresponding subdomain matrix (assem-
bled from the individual element matrices A.) will be denoted by AY. We omit the
superscript N when there is no confusion between AY and Ag, the submatrix of
the original matrix A (corresponding to G). Note that in the latter case Ag cor-
responds to a matrix with homogeneous Dirichlet boundary conditions imposed on
9(G U {elements neighboring G}).

ELEMENT-FREE AMGE 13

For this discussion we assuine that F;, the local extension mapping used to build the
interpolation coefficients. is based on averaging. although no specific rule is assumed.
We do, however. assume that £ = E(7) has the particular form

I 0] ¥3)
0 I | JL(@)
0 Ex. | }Qx(0)

That is, Ex; =0 and E; = [0, Ex.].
Remark 7.1. The general case of E; = [Exy, Ex.| can be reduced to the particular

case above by using the modified extension mapping El— = [0, EX(:] where
By. = Bxy (~A7} Ase) + Bxe.

To see this, recall that ;1\” =Aj+AsxExy and A\fc = Ajc+ AfxExc, and note that
the modified eztension mapping extends a constant vector defined on Q.(i) to be the
same constant on Qx (1), that is,

Exc(l)c Efo Afc(l) + E;vc(].)c
= Ex(1)f a Exc(1)c

=(1)x-

Here we have used the fact that since (for the second order elliptic problem) Azs(1) s+
Afx()x -+ Afc() =0 then Aff(].)f + Af;t’ (EXf(l)f + EXc(l)c) + Afc() =0. That
is, Aff(l)f + AfC()e =0, implying that (1); = —A”Afc(l)

We still must show that the modified extension mapping E, leads to the same in-
terpolation as does E;, i.e., that

—A;} (AfXEXc + Afc) =—A7 lAfC
For this we observe that
A7} AxBxe+ A1) = = A7} Az (Bxy(~ A7} A7) + Bxe) + Ag
= — A7} |ArxExe+ Age — ApxExs A7} A se)
= — A7} |4, A,XEx,A‘;}XfC]
— 4} A,f - A,XEXC] A1 Ay

=—Ap (Aff) AffAfC
= — A1 Ay

Consider the minimization problem

v 17 v
f f
(7.2) find vy such that Ve A?{(,) ve | =_inf ag,(w, w).
E-: E: e e
iU U wxy=E;w

14 VAN EMDEN HENSON AND PANAYOT S, VASSILEVSKI

Thus we seek vy, the value of w on £2(2) \ c(2), which minimizes the quadratic form
agypy (w, w) when the values of w are fixed at the coarse points and are “slave” at the
exterior points (€2y(z)): that is. they are extrapolated from the interior Q(¢) and the
coarse points §2.(¢) by E;w.

Lemma 7.1. The solution to the minimization problem (7.2) produces the same in-
terpolation coefficients element-free AMGe, namely, those given by —A;} (AjxExc +
Ajc). That is, the minimizer is given by wy = vy = —A;} (AfxExc + Agc)ve.

Proof. Consider the Neumann matrix

We use the superscript “N” for the blocks which differ from the corresponding blocks
of Ag;), the principal submatrix of the original matrix A corresponding to the sub-
domain Q(i). Note that the “N” blocks are not accessible (available) and not used
in our algorithm. We have EiU|QX(i) = Ex.v.. Hence, aﬁ(i)(w, w) for w, = v, and
wy = Ewl|q, ;) leads to the following matrix expression:

r T

wf Aff A{Vc A{\/X wf
agp(w, w) = Ve Ay A Aﬁ, Y Ve
1 EXC'UC AXf A%C AXX EXcvc
r T
- Ys Ay Asc+ ApxExc
A As + EL Axy AN+ AN, Ex.+ EL (AY, + AY xExc)

X [wr] .
Ve
Minimizing this symmetric positive semi—definite quadratic form with respect to wy
is equivalent to solving the equation
Affwf + (Afc + AfXEXc)Uc =0,

which is the same equation that specifies v5 in the element—free AMGe interpolation
procedure. O

In the next lemma we will remove the constraint on v being fixed at the Qx(3)
points.

Lemma 7.2. The following quadratic forms are spectrally equivalent,

Vg, Ue) = iInf agn(v, v), and V) = 1 S0 .

a1 (ve, ve) o oy =ve Q(z)() V) q2(ve, ve) v::?;edaﬂ(z)(v’ v)
vy=FE;v

That is, there exists a positive constant 1 such that

q1(ve,ve) < @(Ve, V) < nqi(ve,ve) for all v..

ELEMENT-FREE AMGE 15

Proof. It suffices to show that the two quadratic forms have the same null-space. The
null-space of ¢, is v, = const and the null-space of ¢, is the same as that of (1@,”(1;_,)
with v : ¢, = const and E;v = const on €2x{7). Note that g (.) = 0 implies vy is
the same constant as v.. Then E;v is also the same constant, since it 1s an averaging
operator based on the values of v, and vy;. Hence the forms ¢; and ¢, both vanish
only for constant v.. In order to show that the constant 7 is bounded independently

of E;, one first easily sees that
agy(v,v) <C Y ole) Y (w(l) - v(k))*.
eCQ(i) i, kee

The constant C depends only on the number of points used in the averaging procedure
(E;), i.e., it is bounded by the total number of coarse points 2.(7) (plus the interior
point 7). The dofs [and k in the summation are either coarse dofs or 7, and g(e) is
defined in (7.1) to be the maximal value of the local ellipticity bound associated with
the original elliptic operator coefficient a(z). More specifically, for each iy € Qx(7)

v(ix) = (Bw)(ix) = Y oigxv(k),

ke (1)U}
where

Z Qi k= 1, and Qo k > 0.
keQ(i)u{i}

Then, for any j € Q.(z) U {i},

W(ix) —v(d) = D iy (v(k) —v(5)),

keQ.(i)ufi}
and hence

wix) =v()* < > o Y, (k) —v())

ke (5)U{i} keQ(i)u{i}
<A+ D (k) —v(G)
k€N (3)u{i}

As a result we see that, for vy = F;v,

q2(vcv Uc) < aﬁ(i)(va ‘U)

<C Y ole) S w(l) - v(k))?

ecﬁ(i) Lkee
max ole)
<C@1+ IQc(i)l)w > ole) > (v(k) = ()™

e€Q(i) eCQ(i) k,j€en(Q(s)u{i})

16 VAN EMDEN HENSON AND PANAYOT S VASSILEVSKI

Finally, since vy is arbitrary on the right-hand side of this inequality.

max p(e)

9 (v ’UC)SC@_(”—()(IHQCU)\)?{ S ooe) S k) - o)
cea C T \ecqeli) kgeen(Qe(i)ufi)) ‘

It is also true that

a(veve) = inf [S ole) D (w(l) - v(k))

v: ue fixed —
eC(d) 1, k€e

This shows that 7 can be chosen bounded independently of the actual averaging
extension mapping E;. O

Then the following corollary, involving the element-free AMGe interpolated vector
Pu,, is proved in the same way as Lemma 7.2.

Corollary 7.1. Consider the extended neighborhood of 1, Q@) = U{e, e C Qi) ore C
Q(j), for all j € Qx(i)}. There is a constant & = kg, > 0, locally estimated, such
that the following bound holds:

gy (Pve, Puc) <Kk 1nf aﬂ()(w w).

Proof. Let v be defined on (i) as follows:

(Pu)(k), & € 0200, ~
v(k) = ¢ ve(k), k is a coarse dof outside €2(),
(E;v)(k), k€ Qx(j), for some j € Qx(3).

We see that v at every fine dof & in Q(:) is an average value of some neighboring
coarse dofs from Q(i). Hence, in the same way as in the proof of Lemma 7.2, we
establish the inequality

aﬁ(i)(v,v) < K },ﬂi o aﬁ(i)(w, w).
Since agy(Pve, Pve) < ag;(v,v), the desired result follows. O

For each fine dof i, define Z(¢) to be the number of overlapping domains on Q(),
that is, the number of domains €2(j) such that Q(5) N Q(z) # 0. Then we may state
the following theorem.

Theorem 7.1. The element—free interpolation mapping P ezhibits the following ap-
prozrimate harmonic property:

a(Pv,, Pv;) <k inf a(w, w),

W: We=Yc
where the constant kK = max Ka,Z(3), and the Ky are the local constants from

i=fine dof
Corollary 7.1.

ELEMENT-FREE AMGHE 7
Proof. The proof simply follows from the fact that

a(Pv., Pr.) < Z (lﬁ(l—)(])c'l:, P.)

1=fine dof

and by summation of the local estimates from Corollary 7.1. g

Another important property of the element-free interpolation mapping P is that
it partitions unity, as we show in the following theorem.

Theorem 7.2. P provides a partition of unity. Specifically, the row sums of P are
1.

Proof. Let v; = Pu, be given by vy =) 4 ;. c(i). Assume that v(ic) = 1
i €Q(i)

on .(i). Now, P uses the formula that minimizes (7.2) and the minimum (zero) is

achieved for E;u(j) =1 at Qx(z) and vy = 1. That is, we find that

1= E Q iy

i €0(1)
which is the desired unity row—sum property of P. O

Remark 7.2. Theorems 7.1 and 7.2 are the main goals of many two-grid convergence
analyses and they imply convergence of the respective two-grid AMG methods, cf.,
e.g., [14], [8], [13], and [7].

8. NUMERICAL EXPERIMENTS

We describe here several sets of numerical experiments designed to test the efficacy
of the element-free AMGe methods described above. For each of several problems we
apply a set of interpolation rules within an AMG code. The problems are then solved
using a CG solver, preconditioned with one V-cycle of AMG.

The interpolation rules are:

e the AMGe rule [7] for the finite element problems;
e three element—free AMGe rules from Section 6:
1. L,-extension;
2. A—extension;
3. (only for scalar PDE) the simultaneous extension based on minimizing the
quadratic functional described in Section 6.

For systems problems the unknowns are split into physical variables. That is, for
scalar problems the rule is as described in Section 6, while for 2-d elasticity, with
physical variables u and v (displacement in the z- and y-directions, respectively) we
perform the extensions (and associated interpolation) of exterior dofs of type u using
only neighborhood dofs of type u; similarly, the extension to exterior dofs of type v
are carried out using neighborhood dofs of type v; this applies both to L, and A-
extensions. The local neighborhood about a point is defined by the sparsity pattern
of the matrix about that point and the averaging involves only dofs from the sparsity
pattern set S (see Section 6).

N VAN EMDEN HENSON AND PANAYOT S VASSILIEVSK]

7.

W XUTATAY

AR ¥ 4

FIGURE 4. Sequence increasingly coarse elements, formed by element agglomeration.

8.1. An elliptic problem on a triangular element mesh. We apply the various
interpolation rules to a second order elliptic PDE

(8.1) -V -(A(z,y)Vu) = f(z,y) onG
(8.2) u(z,y) = g(z,y) on 4G

where G is the unit square. The matrix of diffusion coefficients includes functions
with relatively benign characteristics— there is both spatial variability and jump dis-
continuity in the coefficients, but the jumps are of relatively small magnitude and the
variation is mild. The discretization is by a finite-element method on an unstructured
triangular mesh. The coarsening algorithm is one of element agglomeration. That
is, the coarse grids are the vertices of coarse elements produced by an agglomeration
algorithm proposed in [7]. Figure 4 displays the coarsening sequence for a typical

ELEMENT-FRELL AMGE 19

problem. Here the fine grid comprises 1600 elements, the first coarse grid has 382
elements, and the remaining grids have 93. 33. 15, 7. 3, and 1 elements. Table 1 gives
the coarsening details for four different versions of this problem. It mav be seen that

TABLE 1. Coarsening history for the problem —V-A(z.y)Vu = f on an
unstructured triangular fine grid. For each level of each problem size.
“nz” is the number of nonzero entries in the operator matriz, “dofs”
gives the number of degrees of freedom, and “elts” gives the number of
finite elements in the agglomerated grid.

No. of elements
,;vel 25600[6400]1600[400 |
0 nz | 90321 | 22761 | 5781 { 1491
dofs | 13041 | 3321 | 861 | 231
elts | 25600 | 6400 | 1600 | 400
1 nz | 32898 | 9540) 2602 | 1094
dofs | 4108 | 1152 | 330 | 114
elts | 6013 | 1427 | 382 | 76
2 nz | 14305 | 4361 | 1397 | 470
dofs | 1507 | 451 143 | 50
elts | 1489 | 374 93 26
3 nz | 7193 | 2098 | 634 | 199
dofs | 643 198 64 23
elts | 392 117 33 11
4 nz | 3458 | 975 | 304 | 88
dofs | 302 91 32 12
elts | 158 47 15 5
5 nz | 1580 | 453 126 | 36
dofs | 140 45 16 6
elts 70 22 7 2
6 nz 714 188 46 16
dofs | 68 22 8 4
elts 33 10 3 1
7 nz 274 84 16
dofs | 30 12 4
elts 14 5 1
8 nz 120 30
dofs 16 6

elts 7 2
9 nz 42 16

dofs 8 4

elts 3 1
10 nz 16

dofs 4

elts 1

the number of elements decreases by about 75% at each coarsening for the first few

20 VAN EVMDEN HENSON AND PANAYOT S, VASSILEVSKI

coarsenings, after which it decreases by about 50% per level. The number of nonzero
entries in the matrix decreases by approximatelyv 50% per level. while the number of
degrees of freedom tends o decrease by 50-60% with each successive Jevel.

For each of the four interpolation rules. the problem is solved using a preconditioned
conjugate gradient method, where the preconditioning consists of a single \'(1.1)-
cycle of AMG, with a GauB-Seidel smoother. The iteration is run until the residual
is less than 107% in norm. We report the results in Table 2. For each problem size
we display, for each interpolation rule, the number of preconditioned CG iterations
required to achieve the desired residual size and p, the average convergence factor
over the iterations.

TABLE 2. CG convergence results; unstructured triangular fine grid:
second order elliptic problem; V(1,1)-cycle MG, Gaufi-Seidel smoother
used as preconditioner.

[Interp. rule | [400 elts | 1600 elts | 6400 elts | 25600 elts ||
AMGe iterations 14 16 21 23
0 0.115 0.172 0.252 0.289
A-extension iterations 13 15 19 20
0 0.118 0.158 0.218 0.247
Lo-extension iterations 13 16 19 21
) 0.119 0.161 0.227 0.249
quadratic funct. || iterations 13 15 19 19
min. 0 0.105 0.152 0.222 0.231

Examination of the results reveals that all three of the extension methods, A-
extension, Lo-extension, and quadratic functional minimization, perform at least as
well oa this problem as does AMGe. In some cases the performance of the exten-
sion methods is marginally better than AMGe. The amount of work entailed for
the A-extension and the L,-extension methods is comparable to that of AMGe, pro-
vided that the neighborhoods are selected to be of comparable size as the element
neighborhoods (which is the case in these experiments). For the quadratic functional
minimization the work is somewhat greater, but still comparable. The advantage
of the element-free methods is, of course, that there is no requirement to have the
actual individual stiffness matrices that are required in AMGe. For this experiment
this represents a considerable savings in storage.

8.2. Two dimensional elasticity, the thin beam. We consider next the two di-
mensional plane-stress elasticity problem on a cantilevered beam, fixed at one end.
The domain of the problem is G = (0,1) x (0, d) with d < 1. For d < 1 this is the
thin-beam problem. The problem is

1—v 1+v

Ugr + T Uyy + 5 VUgy = fh
1+v 1-—
2 u:cy —2_'— Vs + vyy = f 2,

ELEMENT-FREE AMGE .

Y
_

=
\
\

FIGURE 5. The thin-beam elasticity problem domain. Homogeneous
Dirichlet boundary conditions are applied at x = 0.

where u and v are displacements in the z and y directions, respectively. This can
be a difficult problem for standard multigrid methods, especially when the domain
is long and thin. The problem is discretized using uniform square finite elements of
size h. Nodal coarsening is used, with the coarse nodes being the vertices of elements
created by the agglomeration algorithm from [7]. After certain levels of coarsening
the algorithm agglomerates only along the z-direction.

We present results in both the thick beam (d = 1.0) and thin beam (d = 0.05)
cases. For each case we present results for three sizes of the discretization parameter:
h = 0.05,0.025, and 0.0125 for the thick beam and and h = 0.025,0.0125, and 0.00625
for the thin beam. The coarsening histories of the agglomeration algorithm are shown
in Table 3. Table 4 shows the results of the experiments for the beam problem. As
in section 8.1, preconditioned conjugate gradient is used as the solver, with a single
V(1,1)-cycle of AMG as the preconditioner, with a Gauf-Seidel smoother. For this
problem we show the number of iterations required to achieve a residual norm less
than 1078, and also the convergence factor of the final iteration. For this problem we
do not implement the quadratic minimization method described in section 6. That
method is for scalar problems, while this problem is a system of PDEs. We use
the standard AMGe method and compare it with the A- and L,-extension methods
described above. Our expectation is that AMGe should outperform the element-free
methods, at least on the thin beam problem; this is the problem for which AMGe
was originally developed. We observe, however, that for the thick beam problems
the element-free methods both outperform AMGe. First, we note that it takes fewer
iterations to reach the tolerance. It is also apparent that the element-free methods
are more scalable, in that the number of iterations does not grow with the problem
size. The AMGe method requires more iterations for larger problems.

For the thin beam problem, we observe the results we naturally expect. That is,
AMGe outperforms the element-free methods, requiring fewer iterations. Further,
AMGe appears to be more scalable on this problem than the extension methods.
The Ly-extension method exhibits a distinct lack of scalability as the problem grows
larger.

[
[

VAN EMDEN HENSON AND PANAYO'T S, VASSILEVSKI

TABLE 3. Coarsening history; structured rectangular fine grid: 2-d
elasticity. d =1

Thick Beam d = 1.0 Thin Beam d = 0.05
level h =0.050 | h = 0.025 l h =0.0125 | h = 0.025 lh =0.0125 ‘ h = 0.00625
0 nz 14884 58564 232324 3388 12532 48100
dofs 882 3362 13122 246 810 2898
1 nz 10440 40880 161760 1664 7328 30656
dofs 264 924 3444 88 252 820
2 nz 4128 17248 70488 784 3744 10152
dofs 84 264 924 44 132 252
3 nz | 1000 4956 19056 384 1152 3816
dofs 32 94 284 24 48 132
4 nz 256 1404 6128 144 384 1152
dofs 16 38 104 12 24 48
b} nz 64 324 1668 64 144 384
dofs 8 18 42 8 12 24
6 nz 144 576 64 144
dofs 12 24 8 12
7 nz 64 144 64
dofs 8 12 8
8 nz 64
dofs 8

9. CONCLUSIONS

In this paper we propose a general rule for building interpolation weights in AMG,
thus extending the applicability of AMG to more general settings than the traditional
M-matrix case. The applications include elliptic problems on unstructured finite
element grids, where both scalar problems and systems (like elasticity) are considered.
The element-free AMGe method seems as competitive as the AMGe methods but
entail much less overhead. The element information and the element matrices, in
particular, are essential for the AMGe methods but are not required for element-free
AMGe. If we assume more information is available (such as the rigid body modes in
the case of elasticity) it may be incorporated into the construction of the extension
mappings. Thus element-free AMGe can be made to reproduce the extra modes in
the interpolation from their coarse values. This property is important in the AMG
methods for elasticity problems (cf. [12]), and incorporating it into element-free
AMGe is a subject of ongoing research.

REFERENCES

[1] A. BRANDT, Generally highly accurate algebraic coarsening, Elec. Trans. Num. Anal., 10 (2000),
pp- 1-20.

FLEMENT-FREE AMGE 23

TABLE 4. CG convergence results; structured rectangular fine grid; 2-d
elasticity, d = 1. V(1. 1)-cvele NG, Gaufi-Seidel smoother used as pre-

conditioner.
Thick Beam, d = 1.0
Interp. rule | [h=0.050] h=0.025 | h=0.0125 ||
AMGe 1terations 16 18 20
0 0.172 0.206 0.234
A-extension i| iterations 12 12 12
0 0.099 0.098 0.097
Lo-extension | iterations 13 13 13
0 0.101 0.102 0.104
Thin Beam, d = 0.05
Interp. rule | [h=0.025] h=0.0125] h = 0.00625 |
AMGe iterations 17 18 19
0 0.180 0.198 0.22
A-extension | iterations 20 23 22
0 0.227 0.286 0.280
Lo-extension | iterations 18 20 27
0 0.203 0.243 0.254

[2] A. BRANDT, S. F. McCoORMICK, AND J. W. RUGE, Algebraic multigrid (AMG) for automatic
maultigrid solutions with application to geodetic computations. Report, Inst. for Computational
Studies, Fort Collins, Colo., October 1982.

3] , Algebraic multigrid (AMG) for sparse matriz equations, in Sparsity and Its Applications,
D. J. Evans, ed., Cambridge University Press, Cambridge, 1984.

[4] M. BREzZINA, A. J. CLEARY, R. D. FALGOUT, V. E. HENsSON, J. E. JoNEs, T. A. MANTEUF-
FEL, S. F. MCCoORMICK, AND J. W. RUGE, Algebraic multigrid based on element interpolation
(AMGe). Submitted to the SIAM Journal on Scientific Computing, 1998.

[5] A. J. CLEARY, R. D. FaLGOUT, V. E. HENSON, AND J. E. JONES, Coarse-grid selection for
parallel algebraic multigrid, in Proceedings of the Fifth International Symposium on Solving
Irregularly Structured Problems in Parallel, vol. 1457 of Lecture Notes in Computer Science,
Springer-Verlag, 1998, pp. 104-115.

[6] A. J. CLEARY, R. D. FALGOUT, V. E. HENSON, J. E. JONES, T. A. MANTEUFFEL, S. F.

’ McCorMIcK, G. N. MIRANDA, AND J. W. RUGE, Robustness and scalability of algebraic

multigrid, STAM Journal on Scientific Computing, 21 (2000), pp. 1886-1908.

[7] J. E. JONES AND P. S. VASSILEVSKI, Amge based on element agglomeration, SIAM Journal
on Scientific Computing, (to appear).

[8] J. MANDEL, M. BREZINA, AND P. VANEK, Energy optimization of algebraic multigrid bases,
Computing, (to appear).

[9] J. W. RUGE AND K. STUBEN, Algebraic multigrid (AMG), in Multigrid Methods, S. F. Mc-
Cormick, ed., vol. 3 of Frontiers in Applied Mathematics, SIAM, Philadelphia, PA, 1987, pp. 73—
130.

[10] K. STUBEN, Algebraic multigrid (AMG): ezperiences and comparisons, Appl. Math. Comput.,

13 (1983), pp. 419-452.

[11] ——, A review of algebraic multigrid. GMD Report 69, November 1999.

[12] P. VANEK, M. BREZINA, AND R. TEZUAR, Two-grid method for linear elasticity on unstruc-

tured meshes, SIAM J. Sci. Comput., (to appear).

24 VAN EMDEN HENSON AND PANAYOT S, VASSILEVSK]

[13] P. Vaxik, J. MaxpeL, AanND M. BREZINA, Convergence of algebraic multi-
grid based on smoothed aggregation. UCD/CCM Report 126. Center for Computa-
tional Mathematics, University of Colorado at Denver, Februarvy 1998 htip://www-
math.cudenver.edu/ccmreports/rep126.ps.gz.

[14] W. L. Wax, T. F. CHAN, AND B. SMITH, An energy-minimizing interpolation for robust
multigrid methods, STAN J. Sci. Comput., (to appear).

ROBUSTNESS AND SCALABILITY OF ALGEBRAIC MULTIGRID

ANDREW J. CLEARY" , ROBERT D. FALGOUT" , VAN EMDEN HENSON- , JIM E.
JONES*, THOMAS A. MANTEUFFEL'! , STEPHEN F. MCCORMICK', GERALD N.
MIRANDA?! AND JOHN W. RUGE?

Abstract. Algebraic multigrid (AMG) is currently undergoing a resurgence in popularity, due in
part to the dramatic increase in the need to solve physical problems posed on very large, unstructured
grids. \WVhile AMG has proved its usefulness on various problem types, it is not commonly understood
how wide a range of applicability the method has. In this study, we demonstrate that range of
applicability, while describing some of the recent advances in AMG technology. Moreover, in light of
the imperatives of modern computer environments, we also examine AMG in terms of algorithmic
scalability. Finally, we show some of the situations in which standard AMG does not work well, and
indicate the current directions taken by AMG researchers to alleviate these difficulties.

Key words. algebraic multigrid, interpolation, unstructured meshes, scalability

1. Introduction. Algebraic multigrid (AMG) was first introduced in the early
1980’s [11, 8, 10, 12], and immediately attracted substantial interest [32, 28, 30, 29)].
Research continued at a modest pace into the late 1980’s and early 1990’s [18, 14, 21,
25, 20, 26, 22]. Recently, however, there has been a major resurgence of interest in the
field, for “classical” AMG as defined in [29], as well as for a host of other algebraic-
type multilevel methods (3, 16, 34, 6, 2, 4, 5, 15, 33, 17, 35, 36, 37]. Largely, this
resurgence in AMG research is due to the need to solve increasingly larger systems,
with hundreds of millions or billions of unknowns, on unstructured grids. The size
of these problems dictates the use of large-scale parallel processing, which in turn
demands algorithms that scale well as problem size increases. Two different types of
scalability are important. Implementation scalability requires that a single iteration
be scalable on a parallel computer. Less commonly discussed is algorithmic scalability,
which requires that the computational work per iteration be a linear function of the
problem size and that the convergence factor per iteration be bounded below 1 with
bound independent of problem size. This type of scalability is a property of the
algorithm, independent of parallelism, but is a necessary condition before a scalable
implementation can be attained. '

Multigrid methods are well known to be scalable (both types) for elliptic prob-
lems on regular grids. However, many modern problems involve extremely complex
geometries, making structured geometric grids extremely difficult, if not impossible,
to use. Application code designers are turning in increasing numbers to very large
unstructured grids, and AMG is seen by many as one of the most promising methods
for solving the large-scale problems that arise in this context.

This study has four components. First, we examine the performance of “classical”
AMG on a variety of problems having regular structure, with the intent of determining
its robustness. Second, we examine the performance of AMG on the same suite of
problems, but now with unstructured grids and/or irregular domains. Third, we
study the algorithmic scalability of AMG by examining its performance on several of

® Center for Applied Scientific Computing (CASC), Lawrence Livermore National Laboratory,
Livermore, CA. Email:{cleary, rfalgout, vhenson, jjones}@Ilnl.gov

t Department of Applied Mathematics, University of Colorado, Boulder, CO. Email: {tmanteuf,
stevemn}@boulder.colorado.edu

t USS Florida (SSBN-728), Naval Submarine Base, Silverdale, WA, Email: JerryTrish@aol.com

§ Front Range Scientific, Boulder, CO. Email: jruge@sobolev.Colorado.EDU

1

mailto:Jerry�llish@aol.com
mailto:jjones}@llnl.gov
http://stevem}Oboulder.colorado.edu
http://jrugeQsobolev.Colorado.EDU

ALGEBRAIC MULTIGRID 2

the problems using grids of increasing sizes. Finally, we introduce a new method for
computing interpolation weights, and we show that in certain troublesome cases it
can significantly improve AMG performance.)

Our study differs from previous reports on the performance of AMG (e.g., [29. 30])
primarily by our examination of algorithmic scalability, our emphasis on unstructured
grids, and the introduction of a new algorithm for computing interpolation weights.
In Section 2, a description of some details of the AMG algorithm is given to provide
an understanding of the results and later discussion. In Section 3, we present results
of AMG applied to a range of symmetric scalar problems, using finite element dis-
cretizations on structured and unstructured 2D and 3D meshes. AMG is also tested
on nonsymmetric problems, on both structured and unstructured meshes, and the re-
sults are presented in Section 4. A version of AMG designed for systems of equations
is tested, with the focus on problems in elasticity. Results are discussed in Section
5. In Section 6, we introduce and report on tests of a new method for computing
interpolation weights. We concluding with some remarks in Section 7.

2. The Scalar AMG Algorithm. We begin by outlining the basic principles
and techniques that comprise AMG. Detailed explanations may be found in [29)].
Consider a problem of the form

(1) Au=f,

where 4 is an n x n matrix with entries a;;. For convenience, the indices are iden-
tified with grid points, so that u; denotes the value of u at point i, and the grid is
denoted by = {1,2,...,n}. In any multigrid method, the central idea is that error
e not eliminated by relaxation must be removed by coarse-grid correction. Applied to
elliptic problems, for example, simple relaxations (Jacobi, Gauss-Seidel) reduce high
frequency error components efficiently, but are very slow at removing smooth compo-
nents. However, the smooth error that remains after relaxation can be approximated
accurately on a coarser grid. This is done by solving the residual equation Ae = r
on a coarser grid, then interpolating the error back to the fine grid and using it to
correct the fine-grid approximation. The coarse-grid problem itself is solved by a re-
cursive application of this method. One iteration of this process, proceeding through
* all levels, is known as a multigrid cycle. In geometric multigrid, standard uniform
coarsening and linear interpolation are often used, so the main design task is to choose
a relaxation scheme that reduces errors the coarsening process cannot approximate.
One purpose of AMG is to free the solver from dependence on geometry, so AMG
instead fixes relaxation (normally Gauss-Seidel), and its main task is to determine a
coarsening process that approximates error that this relaxation cannot reduce.

An underlying assumption in AMG is that smooth error is characterized by small
residuals, that is, Ae ~ 0, which is the basis for choosing coarse grids and defining
interpolation weights. For simplicity of discussion here, we assume that A is a sym-
metric positive-definite M-matrix, with a; > 0,a;; < 0 for j # 7, and Y a;; > 0.
This assumption is made for convenience; AMG will frequently work well on matrices
that are not M-matrices. To define any multigrid method, several components are
required. Using superscripts to indicate level number, where 1 denotes the finest level
so that A! = A and Q! = §, the components that AMG needs are as follows:

1. “Grids” Q' D Q2 > ... D> QM.
2. Grid operators A!, A%,..., AM,
3. Grid transfer operators:
Interpolation I}, ,k=1,2,...M — 1,

ALGEBRAIC MULTIGRID 3

Restriction I,f“,k =1,2....M - 1.
4. Relaxation scheme for each level.
Once these components are defined, the recursively defined cycle is as follows:
Algorithm: MV*(u*, £f*¥). The (1, p2) V-cycle.
If k=M, set uM = (AM)~1fM,
Otherwise:
Relax p; times on Aku* = f* .
Perform coarse grid correction:
Set ukt! = 0, fF+1 = [FHI(FF — gkyk).
“Solve” on level k+1 with MV +1(yk+1 gh+1)
Correct the solution by u* « uf+If uf+1.
Relax v, times on AFu* = f*.

For this cycle to work efficiently, relaxation and coarse-grid correction must work
together to effectively reduce all error components. This gives two principles that
guide the choice of the components:

P1: Error components not efficiently reduced by relazation must be
well approzimated by the range of interpolation.

P2: The coarse-grid problem must provide a good approzimation to
fine-grid error in the range of interpolation.

Each of these affects a different set of components: given a relaxation scheme,
P1 determines the coarse grids and interpolation, while P2 affects restriction and
the coarse grid operators. In order to satisfy P1, AMG takes an algebraic approach:
relaxation is fixed, and the coarse grid and interpolation are automatically chosen so
that the range of the interpolation operator accurately approximates slowly dimin-
ishing error components (which may not always appear to be “smooth” in the usual
sense). P2 is satisfied by defining restriction and the coarse-grid operator by the
Galerkin formulation:

(2) Ilf+l = (Illcc+1)T and AR = Il’:HAkIfH-

When A is symmetric positive definite, this ensures that the correction from the
exact solution of the coarse-grid problem is the best approximation in the range of
interpolation [23], where “best” is meant in the A-norm: by [|v||a = (Av,v)!/2.

The choice of components in AMG is done in a separate preprocessing step:

AMG Setup Phase:

1. Set k=1.

2. Partition Q* into disjoint sets C* and F*.
(a) Set Q¥+ =C*k .
(b) Define interpolation I} -

3. Set It*1 = (1F,)7 and AF*! = [FHIARTE

4. If Q%! is small enough, set M = k+1 and stop. Otherwise,
set k =k + 1 and go to step 2.

Step 2 is the core of the AMG setup process. Since the focus is on coarsening a
particular level k, such superscripts are omitted here and ¢ and f are substituted for
k + 1 and k where necessary to avoid confusion. The goal of the setup phase is to
choose the set C of coarse-grid points and, for each fine-grid point i € F = Q - C,
small set C; C C of interpolating points. Interpolation is then of the form:

6 Falgout-Jones

where f; is the number of flops required to coarsen a subgrid. Letting f. = 90
(this is representative of what appears in the PFMG code mentioned below).”
we have that P =~ 207. For the PFMG algorithm, we set

Koa= (Cl +co+ L)Pfs'Ya

which yields a P that depends on n, ¢;, and ¢y. However, we can bound P
as follows X

(6/fs)(a/v) < P < (26/f5)(a/7)- (7)
In the case of an isotropic problem, the smoothing cost per 1'-cycle for the
PFMG algorithm is the same as for MG, hence the lower bound in (7). The
upper bound is roughly a factor of four larger, so that P = 898 for the
parameters being considered here. Note from (6) and (7) that P depends
strongly on the ratio of communication latency to computation speed.

This analysis also bears out in practice. In Figure 1, we present results
from an MPI-implementation of PFMG run on an Intel Paragon. The problem
solved was the anisotropic diffusion problem (1) with n = 40, &; = 1/10,
and g2 = 1/100. The figure compares the cost of coarsening using approach
A2 (labeled “Coarsen”) with the cost of a V-cycle. The time for A2 was
not computed directly, but estimated by taking the overall setup time, and
subtracting the setup time for the single processor run. The figure suggests
that the cost of replicating the grid coarsening procedure is greater than the
cost of a V(1,1) cycle when P is larger than about 500.

PFMG Results

6
~ 95
g, o
2 3 !—‘—V-Cycle
~ ——
ij 9 {—- Coarsen
1

0

T 2 T

(=]

1000 2000 3000 4000

procs (problem size)

Fig.1. PFMG results on an Intel Paragon comparing the cost of grid coarsening
to the cost of a V-cycle.

3.2 Ghost Zones

The notion of ghost zones or shadow zones is commonly used in parallel
linear solver codes, and is simply the extra “layer” of data needed from off-
process to complete an on-process computation. The size of the ghost-zone

Multigrid on Massively Parallel Architectures

laver can varv depending on the algorithm implementation. We will consider
here the use of a single layer of ghost zones in the library serting described
earlier. Figure 2 illustrates (in 2D) the layout of data and ghost zones for
two 7 X 7 subgrids, and shows a typical communication pattern for a 3-point
stencil computation. Note that, to simplify code, subgrid data and ghost-
zone data are stored together as part of a single array in memory. To reduce
the number of copies, this extra ghost-zone memory is always present in the
vector data structure (note that ghost-zone memory is usually not persistent
in unstructured-grid multigrid codes).

Fig. 2. Ghost zones and communications for a 5-point stencil and 7 x 7 subgrids.

For the MG and PFMG algorithms, the storage overhead associated with
ghost zones is quite acceptable. But, for more robust methods like SMG,
ghost zone storage can be problematic. To see this, we can again use the
models presented in Section 2. The coefficient multiplying £ in each model
also estimates the amount of ghost-zone storage used. In Figure 3, we plot this
storage cost for the SMG algorithm relative to n3, the cost of storing a vector.
We see that the ghost-zone overhead is quite high, but we also note that the
growth rate is moderate. That is, a log, N dependence of the S-term in a
model does not necessarily produce a ghost-zone memory overhead problem.
For example, consider using alternating line relaxation in a full-coarsening
multigrid method. Using a similar derivation as for SMG, it is easy to see
that the ghost-zone storage cost is approximately 6Ln?, or about 30% that
of SMG. In comparison, the overhead for PFMG for the problem described
in Section 3.1 is about 0.6, and does not grow with P.

3.3 Mixed Programming Models

There is a recent trend to build large, parallel computers out of commodity
parts. The largest such computers are clusters of shared memory processors
(SMPs). In this section, we will discuss the use of mixed programming models
for implementing parallel multigrid methods.

N Falgout-Jones

SMG Model (Ghost Overhead)

0 2000 4000 6000 8000 10000

procs (problem size)

#ghost / #gridpoints
R e Y e

Fig. 3. SMG model illustrating relative storage costs of ghost zones.

Figure 4 illustrates two basic approaches for distributing (and comput-
ing on) subgrid data on a 4-processor SMP node. Pictured on the left (the
mized model) is one large subgrid with ghost layer (for communicating with
other SMP nodes) and four regions of data, each assigned to different threads
(these will usually be run on different processors). Pictured on the right (the
message-passing model) are four subgrids with ghost layers, each subgrid as-
signed to different processes (again, these will usually be run on different
Processors).

message-passing

shared—mcmo'ry

Fig. 4. Schematic of mixed model and message-passing model for a single 4-
processor SMP node.

In theory, the mixed model has a couple of advantages over the pure
message-passing model. The.first advantage is a reduction in the number
of messages going in and out of the SMP node. For example, for a 5-point
stencil computation, the mixed model depicted in the figure requires 4 com-
munications outside of the SMP and the message-passing model requires 8.
The second advantage is the ghost-zone memory savings due to the fewer

Multigrid on Massively Parallel Architectures 4

and larger subgrids in the mixed model. In the figure, the ghost-zone mem-
ory savings is a factor of two. On SMPs with larger numbers of processors.
the memory savings can be even more substantial.

Although the mixed model has these attractive features, our efforts to
outperform the message-passing model have not yet succeeded in practice.
We have developed two implementations of the mixed programming model,
using MPI to do the message-passing in both cases. The first implementation
uses POSIX threads, but we will discuss here only the second implementation,
which uses OpenMP compiler directives. The approach taken was straight-
forward loop-level parallelism of the computational kerne.s in the code. Each
of the kernels is a triply-nested loop over data associated with a subgrid. The
OpenMP directives can only parallelize a single loop, so effective parallelism
can only be achieved when the size of this loop is at least as large as the
number of processors. Since multigrid methods—especially semicoarsening
methods—produce grids of varying shapes and sizes, a fourth outer loop was
added that explicitly decomposes the subgrid into roughly equal sized regions
to be assigned to the different threads.

To be clear, consider the 2D example pictured on the left in Figure 4. Here,
we have an outer loop as just described, but with only a doubly-nested inner
loop. The outer loop has length four, and on each iteration, the inner loops
iterate over the tall rectangular regions. If the outer loop is threaded using
OpenMP, this means that each iteration is assigned to a different thread.
Hence, the computations on each region in the figure are handled by different
processors. The decomposition of the subgrid is done by simply subdividing
the largest subgrid dimension by the number of threads being used.

In Figure 5, we show results comparing the MPI implementation to the
mixed MPI-OpenMP implementation for conjugate gradient (CG) and CG
with three different preconditioners: SMG, PFMG, and diagonal-scaling. We
plot MPI time over MPI-OpenMP time. The MPI implementation is fastest
in all cases.

MPI vs. MPI-OpenMP

o 08 - ——SMG-CG
Z 06
o 06 1% - PFMG-CG
3 04 —+-DS-CG
Z 02 —~CG
a
= o4 ‘ -

0 200 400 600

procs (problem size)

Fig. 5. Comparison of MPI and mixed MPI-OpenMP implementations of various
solvers on an IBM SP2.

10 Falgout-Jones

4 Conclusions

Extra care must be taken when developing codes for large-scale parallel ar-
chitectures. Techniques commonly used for moderate-sized parallelism can
be problematic for large-scale parallelism. Parallel performance models can
provide useful implementation guidance, especially regarding the tradeoffs
of replicating computations in order to reduce communications. On clusters
of SMPs, mixed programming models have several advantages over straight
message-passing, but these advantages are not yet born out in practice.

References

1. S. F. Ashby and R. D. Falgout. A parallel multigrid preconditioned conjugate
gradient algorithm for groundwater flow simulations. Nuclear Science and En-
gineering, 124(1):145-159, September 1996. Also available as LLNL Technical
Report UCRL-JC-122359.

2. P. N. Brown, R. D. Falgout, and J. E. Jones. Semicoarsening multigrid on
distributed memory machines. To appear in the SIAM Journal on Scientific
Computing special issue on the Fifth Copper Mountain Conference on Iterative
Methods. Also available as LLNL technical report UCRL-JC-130720, 1999.

3. W.D. Gropp and D. E. Keyes. Complexity of parallel implementation of domain
decomposition techniques for elliptic partial differential equations. SIAM J. Sci.
Stat. Comput., 9:312-326, 1988.

4. J. E. Jones and S. F. McCormick. Parallel multigrid methods. In Keyes, Sameh,
and Venkatakrishnan, editors, Parallel Numerical Algorithms, pages 203-224.
Kluwer Academic, 1997.

5. S. Schaffer. A semi-coarsening multigrid method for elliptic partial differential
equations with highly discontinuous and anisotropic coeflicients. SIAM J. Sci.
Comput., 20(1):228-242, 1998. ‘

Preprint
UCRL-JC-134260

Language Interoperability
for High-Performance
Parallel Scientific
Components

N. Elliott, S. Kohn, B. Smolinski

This paper was prepared for submittal to the
International Symposium on Computing in Object-Oriented Parallel
Environments, San Francisco, CA, September 29 — October 2, 1999

U.S. Department of Energy

ey ey fommne

Lawrence

Lvemore Nlay 18, 1999

National
Laboratory

="

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor the University of
California nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or usefulness
of any information, apparatus, product, or process disclosed, or represents that its use
would not infringe privately owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer, or otherwise, does
not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or the University of California. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States
Government or the University of California, and shall not be used for advertising or
product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes
may be made before publication, this preprint is made available with the understanding that it will
not be cited or reproduced without the permission of the author.

This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information
P.O. Box 62, Oak Ridge, TN 37831
Prices available from (423) 576-8401
http:/ /apollo.osti.gov/bridge/

Auvailable to the public from the
National Technical Information Service
U.S. Dep-artment of Commerce
5285 Port Royal Rd.,
Springfield, VA 22161
http:/ /www.ntis.gov/

OR
Lawrence Livermore National Laboratory

Technical Information Department’s Digital Library
http:/ /www llnl.gov/tid/Library.html

http://www.ntis.gov

Language Interoperability for High-Performance
Parallel Scientific Components

Noah Elliott, Scott Kohn, Brent Smolinski

Center for Applied Scientific Computing, Lawrence Livermore National Laboratory,
Livermore, CA.

Abstract. With the increasing complexity and interdisciplinary nature
of scientific applications, code reuse is becoming increasingly important
in scientific computing. One method for facilitating code reuse is the
use of components technologies {16, 17, 9], which have been used widely
in industry. However, components have only recently worked their way
into scientific computing [2, 1, 11, 18]. Language interoperability is an
important underlying technology for these component architectures. In
this paper, we present an approach to language interoperability for a
high-performance parallel, component architecture being developed by
the Common Component Architecture (CCA) group.} Our approach is
based on Interface Definition Language (IDL) techniques[6]. We have
developed a Scientific Interface Definition Language (SIDL), as well as
bindings to C and Fortran. We have also developed a SIDL compiler and
run-time library support for reference counting, reflection, object man-
agement, and exception handling (Babel). Results from using Babel to
call a standard numerical solver library (written in C) from C and Fortran
show that the cost of using Babel is minimal, where as the savings in de-
velopment time and the benefits of object-oriented development support
for C and Fortran far outweigh the costs. ’

1 Introduction

Component technologies and component programming methodologies are be-
ginning to work their way into the scientific community {2, 1, 11, 18] in the
hopes of facilitating code reuse. One group developing a component architecture
for high-performance, parallel computing is the Common Component Architec-
ture group. An integral part to this component architecture is a mechanism for
language interoperability. All components that operate within a component ar-
chitecture should adhere to a standard behavior, which includes being able to
easily interoperate with software written in other languages. With the prolifer-
ation of languages used for numerical simulation in recent years, like C, C++,
Fortran 90, Fortran 77, Java, and Python, language interoperability can be a
huge barrier to developing components, as well as developing reusable scientific
applications and libraries.

! The CCA group consists of representatives from DOE laboratories and academia
working towards the specification of a component architecture for high-performance
scientific computing

Getting the many languages used in scientific computing to interoperate can
be a difficnlt problem for developers. For both component and library devel-
opers, the choice of implementation language may severely limit the reuse of
their software. Without language interoperability, users of components may be
required to adopt the language of the component for future applications devel-
opment, even though better alternatives may exist. If language interoperability
is desired, component developers and users would be forced to write “glue” code
that mediates data representations and calling mechanisms between languages.
However, this approach is labor-intensive and in many cases does not provide
seamless language integration across the various calling languages. Fortran 90
is a particular challenge for language interoperability, since Fortran 90 calling
conventions vary widely from compiler to compiler.

1.1 Pairwise Approaches

There have been attempts at automatically generating glue code to support calls
among a small set of targeted languages. For example, the SWIG package [3]
reads C and C++ header files and generates glue code so that these routines can
be called from scripting languages such as Python. Pyflle [19] is similar to SWIG
except that it provides seamless integration of Python and C++. The problem
with these approaches is that they either don’t provide two-way interoperability
between the scripting language and the target language, or all calls between
languages must occur through the seripting environment, which makes them
inappropriate for a high-performance component architecture. For instance, if
a simulation package written in C wanted to call a numerical solver package
written in Fortran 77 the package would have to make the call through the
scripting environment. This would be much too inefficient for general use in
scientific computing. These methods are not general enough to support a high-
performance component architecture.

Foreign invocation libraries, such as Java Native Interface [14], have been
used to handle interoperability between two targeted languages. For instance, the
Java Native Interface defines a set of library routines that enables Java code to
interoperate with applications and libraries written in C and C++. The problem
with this type of approach is that given N languages, O(N?) different software
packages would be needed to get all the languages to interoperate. Again, this
is not general enough to support a high-performance component architecture.

1.2 IDL Approach

One interoperability mechanism used successfully by the distributed systems and
components community [16, 13, 17, 20] is based on the concept of an Interface
Definition Language or IDL. The IDL is a new “language” that describes the call-
ing interfaces to software packages written in standard programming languages
such as C, Fortran, or Java. Given an IDL description of the interface, IDL
compilers automatically generate the glue code necessary to call that software
component from other programming languages.

This approach shows promise, however, current IDL implementations are not
sufficient for specifying interfaces to single-program multiple-data (SPMD) type
of components. First, standard IDLs such as those defined by CORBA and COM
do not include basic scientific computing data types such as complex numbers or
block style dynamic multidimensional arrays. Second, all of these approaches do
not provide support for high-performance same address space function calls for
all the programming languages needed in scientific computing. Our goal was to
make the overhead of calls through the SIDL about as expensive as the invocation
of a C++ virtual function. Third, some of these approaches don’t have support
for true multiple inheritance (e.g. COM does not support multiple inheritance
and implementation inheritance is done with composition or aggregation, which
can be computationally expensive or difficult to implement), and those that
do have support use a limited object model (e.g. CORBA does not support
method overriding and their implementation of multiple inheritance is prone to
method name collisions). It is important that an IDL supports true multiple
inheritance to allow specification of standards for numerical library interfaces,
like the Equation Solver Interface (ESI) specification [10)].

We have used an IDL approach for handling language interoperability in a
scientific computing environment. We have developed a Scientific IDL (SIDL) as
well as a run-time environment (Babel) that implements bindings to SIDL and
provides support necessary for a component architecture, like reflection . Cur-
rently SIDL has bindings to C and Fortran 77. Babel implements those bindings
on Solaris and AIX, with plans to port them to most major platforms. Prelimi-
nary efforts have shown that SIDL is expressive enough for scientific computmg
and that the binding implementations are fast.

This paper is organized as follows. Section 2 describes the features of SIDL
that are necessary to support high-performance parallel computing. Section 3
describes the bindings of SIDL to C and Fortran 77, as well as Babel run-time
environment, which includes a SIDL compiler and library support. Section 4 gives
the results from wrapping a standard solver library with Babel and calling it
from both C and Fortran. Finally, we conclude in Section 5 with an analysis of
the lessons learned while wrapping hypre and identification of future research
and additions to Babel.

2 Scientific Interface Definition Language

For an IDL approach to work in the scientific domain, the IDL must be suffi-
ciently expressive to represent the abstractions and data types common in scien-
tific computing, such as dynamic multidimensional arrays and complex numbers.
Additionally, the IDL must have an object model that supports true multiple in-
heritance. This is necessary for satisfying the CCA component architecture spec-
ification as well as interface standardization efforts like those being implemented
by the ESI. The IDL should also provide error handling mechanisms which are
robust and efficient. Unfortunately, no standard IDL currently exists that sup-
ports all of these, since most IDLs have been designed for operating systems {7, 8]

or for distributed client-server computing in the business domain [13, 17, 20}.
However, SIDL does borrow heavily from the CORBA IDL [17] and the Java
programming language [12]. Some of the features SIDL provides are an object
model similar to Java, language constructs necessary for scientific computing
like complex numbers and dynamic multi-dimensional arrays, and an error han-
dling mechanism that is a cross between Java and CORBA’s exception handling
mechanisms. Also, implicit constructs in SIDL allow SIDL implementation en-
vironments, like Babel, to provide reflection capabilities, which is a necessary
feature for component architectures.

2.1 SIDL Object Model

Currently, interfaces and classes are the only two user defined types in SIDL. SIDL
adopts the same object model as the Java programming language. The Java
object model is advantageous because it is well defined, where other models, like
those used in C++ and CORBA, are not as well defined. For instance, in C++,
a class can inherit from multiple non-abstract classes. This poses a problem if
any two or more of the parent classes have method(s) with the same signature.
Java avoids this problem by only allowing single implementation inheritance and
multiple interface inheritance.

All methods are equivalent in semantics to C++ virtual functions. Methods
can be overridden by child classes, which means the methods in all the parent
classes and interfaces, which have the same signature as the method in the child
class, will be defined by that method in the child class. Methods can also be de-
clared abstract, final, or static. An abstract method is purely declarative and
has no implementation provided for it. When a method is declared abstract,
the class also becomes abstract. All methods of interfaces are abstract. A final
method is one which can not be overridden by child classes. We include the final
construct to allow implementations of the SIDL bindings to perform optimiza-
tions by eliminating a lookup in a class’s virtual function table. A static method
is also final, with additional semantics. Static methods are invoked through a
class, not an instance of a class. They are the closest thing to "global” methods
in SIDL. We include the static construct to ease wrapping of non-object oriented
language libraries and components.

Every class belongs to a nested package scope. Packages in SIDL are similar
to namespaces in C++ and packages in Java. The package construct is used to
create nested SIDL name space scopes. It is the only SIDL construct that creates
a new name scope. Packages help prevent global naming collisions of classes and
interfaces.

2.2 Scientific Data Types

Most IDL's, like those used in COM and CORBA, do not support all the types
needed in scientific computing. For instance, both COM and CORBA’s IDLs
do not support complex numbers nor block style, dynamic multidimensional
arrays. CORBA only supports static multidimensional arrays and sequences,

where COM only support ragged dynamic multidimensional arrays. In addition
to the standard types like int, char, bool, string, and double, we have included
dcomplez, fcomplez, and array. dcompler is a complex number of type double.
fcomplez is a complex number of type float. The array type has both a type
specification and a dimensions specification. The type specification tells what
type of elements the array contains and the dimensions specification tells how
many dimensions are in the array. A SIDL array is the same as a Fortran block
style array.

2.3 FException Handling

Component architectures need robust mechanisms for error handling that can
work across languages. For instance, COM requires all synchronous methods to
return an error code and all asynchronous methods to return void. The mech-
anism for COM is not robust and requires a lot of run-time support to gain
meaningful results, as with an exception mechanism found in Java. CORBA
uses an exception mechanism where an environment variable is passed as the
last argument in an argument list in a method and exceptions are set in that
environment variable. We use a mechanism very similar to CORBA except that
exceptions are not defined as structures, as they are in CORBA, but rather as
objects, as they are in Java. All exceptions in SIDL are objects that inherit from
Throwable. Also, we are exploring using a static environment variable, which
would allow exceptions to be thrown without explicitly passing an environment
variable as a method argument. Of course implementations of this model will
have to be thread safe since they will be used in parallel applications. .

2.4 Reflection

SIDL has constructs that allow support tools to implement reflection capabilities,
which is necessary for components (e.g. CCA components). Recall that SIDL’s
object model is very similar to Java. SIDL also borrows it’s introspection ca-
pabilities from Java. For instance, like Java, all SIDL objects implicitly inherit
from’ Object. Object has a method getClass which returns a Class object. This
Class object contains information about a particular object’s methods, fields, and
constructors, which can be queried and invoked at run-time. Every object has a
Class object associated with it that contains information on it’s methods, fields,
and constructors. Given this, SIDL implementation tools, like Babel, can provide
reflection capabilities by implementing SIDL’s introspection specification.

3 Bindings and Implementation

This sections discusses the bindings of C and Fortran 77 to SIDL, as well as the
implementation of those in the Babel run-time environment. This discussion is
of only the more challenging aspects of developing the bindings and implemen-
tation. See [15] for a complete specification of SIDL and it’s bindings to C and
Fortran 77.

3.1 Bindings to C and Fortran 77

Mapping SIDL onto C and Fortran 77 posed some interesting challenges. For
instance, mapping SIDL objects into C and Fortran 77 objects was not alto-
gether obvious since neither language has object oriented features. Also, map-
ping complex numbers to C as well as mapping the SIDL array syntax to the two
languages, posed some challenges as well. Besides these, the mappings of SIDL
to C and Fortran 77 were fairly straight forward.

For ¢, SIDL objects are mapped to opaque structure pointers. In Fortran an
object is mapped to an integer. Of course a run-time environment that imple-
ments these bindings will have to provide library support that can translate an
integer representation of an object to the actual object, in order to get access
to that object’s data and methods (this is done by the Babel run-time environ-
ment). A method is invoked by passing the reference to the object, whether it be
an integer in Fortran or an opaque structure pointer in C, as the first argument
in the argument list.

Complex numbers in C are mapped to a structure with two elements. The
first element is the real part of the number and the second part is the imaginary
part. Arrays are mapped to structures in C that contain three elements. The first
element is a single dimensional array that contains the lower bounds for each of
the dimensions. The second element is the same as the first, except it contains the

_upper bounds. The third element is a pointer to the data. In Fortran, arrays are
simply mapped to the corresponding array representation in Fortran. Bounds
for the dimensions need to be specified explicitly in Fortran, since Fortran does
not have structures.

3.2 Implementing the Babel Run-Time Environment

Most of the effort in developing the Babel compiler and run-time was in im-
plementing the object model, namely: the virtual function tables, the object
lookup table, reference counting, dynamic type casting, the exception handling
mechanism, and reflection capabilities. The Babel run-time is implemented in C
and the compiler is written in Java, however, the "glue” code that is generated
from the compiler is in C. All of the object support is contained in the ”glue”
code and the run-time library. For instance, every object has a skeleton associ-
ated with it. The skeleton contains the implementation of the object, including
the virtual function table (which is implemented like a static C++ virtual func-
tion table), constructors, destructors, support for dynamic type casting, etc...
The run-time library contains support for reference counting, the object lookup
mechanisms (which is necessary for supporting objects in Fortran), and the
exception handling mechanism. The reflection capability is supported through
both the skeleton and the run-time library.

One of the goals while developing Babel was to make function calls made
through Babel fast. We were able to limit C to C function calls to one extra
function call and one lookup. Calls between C and Fortran 77 required two
extra function calls and one lookup, and Fortran 77 to Fortran 77 calls require

three extra function calls and one lookup. The extra function calls between
languages are needed to translate between the different signatures. Babel does
take advantage of the static and final constructs in SIDL by eliminating a
function table lookup to functions of those types.

4 Results from Wrapping hypre

As a test case, we used Babel to create new interfaces for the hypre semicoursen-
ing mulitigrid solver (SMG) [4], a linear solver that is part of the hypre precon-
ditioner library (5]. nypre is a library of parallel solvers for large, .parse linear
systems being developed at Lawrence Livermore National Laboratory’s Center
for Applied Scientific Computing. The library currently consists of over 30,000
lines of C code, and it has 94 encapsulated user-interface functions. To test Babel
we created a new interface (hypre is written in C, with a C interface provided
by the authors) for both C and Fortran 77 using Babel, and ran similar test
drivers using the two Babel generated interfaces and the original C interface
already provided by the library. We then compared the results from all three.

hypre Interface SIDL Database

Description

Language Mappings
Compller Detalls

Caller
Language
Stub Skeleton
called by_» | Glue Code Glue Code |~ wraps library
library user implementation

Fig. 1. Wrapping hypre

Wrapping hypre with Babel took three steps. The first step was to write a
description of the existing interface in SIDL, which was done by two people,
one who was familiar with SIDL and another who was familiar with the hypre
library. The second step was to run the Babel compiler with the interface de-
scription as input to create all of the "glue-code” for each class (see Fig. 1).
Since the signatures for the library functions were different from those in the
virtual function tables, we also had to manually write the calls to the hypre
functions into the library skeleton generated by the Babel compiler. This was a
somewhat mundane task, but it required only one line of code per function, and
it needed to be done only once, as the same skeleton code was used for both the
C and Fortran (as well as for all other language bindings). Manually editing of

the skeleton code would not be necessary if the library used naming conventions
and calling sequences that complied with the Babel specification (e.g., prepend
every function call with an impl_). Once the function calls were manually added,
the new C interface was complete, and then the Fortran interface was created
almost instantly by running the compiler once more with different options to
create the Fortran stub code. The final step was to compile and link the drivers
with the skeletons, stubs, and the hypre library.

We rewrote an existing SMG test driver to test the efficacy of the new in-
terfaces. The driver uses SMG to solve Laplace’s equation on a 3-D rectangular
domain with a 7-point stencil. First, all calls in the driver to the hypre library
were replaced with the new C interfaces that Babel created. Then we wrote a
new Fortran driver that sets up exactly the same problem using the same algo-
rithm and calls the same hypre functions via the new Fortran interface. Fig. 2
shows a portion of the hypre interface written in SIDL and 3 shows portions of
both the C and Fortran drivers that call the hypre library through Babel.

package hypre {
class stencil {
stencil NewStencil(in int dim, in int size);
int SetStencilElement(in int index, inout array<int> offset);
};
class grid {
grid NewGrid(in mpi_com com, in int dimension);
int SetGridExtents(inout array<int> ilower, imout array<int> iupper);
}
class vector { .
vectoxr NewVector(in mpi_com com, in grid g, in stencil s);
int SetVectorBoxValues(inout array<int> ilower,
inout array<int> iupper, inout srray<double> values);

};
class matrix { /+* matrix member functions omitted in this figure */ };
class smg_solver {

int Setup(inout matrix A, inout vector b, jnout vector x);

int Solve(inout matrix A, inout vector b, imout vector x);

};
};

Fig. 2. SIDL for hypre.

Both new drivers ran with no change in numerical results. We compared the
efficiency of the new C and Fortran drivers to the original C driver. The drivers
that used the Babel wrappers solved large problems both sequentially and in
parallel on 216 processors, with no noticeable effect (less than 1%) on the speed
of execution. The overhead added by Babel is negligible when compared to the
overhead of the numerical kernel of the library.

In all, this took less than an afternoon to wrap and run hypre on both Solaris
and AIX using both a C and Fortran 77 driver. To put this in perspective, there
was an effort by the hypre team to wrap hypre by hand, making it callable from

C Test Code

hypre_vector b, x;

hypre_matrix A;

hypre_smg_solver solver;

hypre_stencil s;

b = hypre_vector_ NewVector(com, grid, s);
x = hypre_vector_NewVector(com, grid, s);
A = hypre_matrix_NeuwMatrix(com, grid, s);

solver = hypre_smg_solver_new();
hypre_smg_solver_SetHaxItr(solver, 10);

Fortran 77 Test Code
integer b, x
integer A
integer solver
integer s
b = hypre_vector_NewVector(com, grid, s)
x = hypre_vector_NewVector(com, grid, s)
A = hypre_matrix_NewMatrix(com, grid, s)

solver = hypre_smg_solver_new()
hypre_smg_solver _SetMaxXtr(solver, 10)

hypre_stg_solver_Solve(solver, A, b, x)
hypre_smg_solver_Finalize(solver)

hypre_smg_solver_Solve(solver, &A, kb, &x);
hypre_smg.solver_Finalize(solver);

Fig. 3. Sample test code.

Fortran on a Solaris platform, that took over one week for one person to do.
Even after they finished wrapping it, they had to redo the effort when they
ported it to another platform.

5 Lessons Learned and Future Work

Our experience using Babel to create new interfaces for hypre shows that Babel
is an effective tool to support language interoperability for high-performance,
parallel scientific computing. While it is not difficult to use for an existing library
such as hypre, Babel can be easier to use if a library, or component, is designed
and written from the beginning with Babel naming conventions in mind. Calls
to the library, or component, will also be faster, if these conventions are followed,
since there will be one less function call. Calls through Babel can be streamlined
even further by declaring methods final or static, where possible. This will
eliminate a virtual function table lookup. Also, developers who use non-object
oriented languages can take advantage of the object support that Babel provides.

In the future we will develop bindings for C++, Java, Fortran 90, and Python
and implement those bindings in Babel. We will also explore various component
composition and introspection models for scientific computing, in conjunction
with the CCA, and develop the appropriate library implementations in Babel
to support them.

References

1. R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L. McInnes, S. Parker,
and B. Smolinski, Toward a common component architecture for high performance
scientific computing, 1999.

2. S. Balay, B. Gropp, L. C. Mclnnes, and B. Smith, A microkernel design for
component-based numerical software systems, in Proceedings of the First Work-
shop on Object Oriented Methods for Inter-operable Scientific and Engineering
Computing, 1998.

3. D. M. Beazley and P. S. Lomdahl, Building flezible large-scale scientific computing
applications with scripting languages, in The 8th SIAM Conference on Parallel
Processing for Scientific Computing, Minneapolis, MN, March 1997.

4. P. Brown, R. Falgout, and J. Jones, Semicoarsening multigrid on distributed mem-
ory machines, in SIAM Journal on Scientific Computing special issue on the Fifth
Copper Mountain Conference on Iterative Methods, 1999.

5. E. Chow. A. Cleary, and R. Falgout, Design of the hypre preconditioner library, in
Proceedings of the First Workshop on Object Oriented Methods for Inter-operable
Scientific and Engineering Computing, 1998.

6. A. Cleary, S. Kohn, S. Smith, and B. Smolinski, Lenguage interoperability mecha-
nisms for high-performance applications, in Proceedings of the First Workshop on
Object Oriented Methods for Inter-operable Scientific and Engineering Computing,
1998:

7. G. Eddon and H. Eddon, Inside Distributed COM, Microsoft Press, Redmond, WA,
1998.

8. E. Eide, J. Lepreau, and J. L. Simister, Flerible and optimized IDL compilation
for distributed applications, in Proceedings of the Fourth Workshop on Languages,
Compilers, and Run-time Systems for Scalable Computers, 1998.

9. R. Englander, Developing Java Beans, O’Reilly, 1997.

10. Equations Solver Interface Forum. See http://z.ca.sandia.gov/esi/.

11. D. Gannon, R. Bramley, T. Stuckey, J. Villacis, J. Balasubramanian, E. Akman,
F. Breg, S. Diwan, and M. Govindaraju, Component architectures for distributed
scientific problem solving, 1998.

12. J. Gosling and K. Arnold, The Java Programming Language, Addlson«WesIey Pub-
lishing Company, Inc., Menlo Park, CA, 1996.

13. B. Janssen, M. Spreitzer, D. Larner, and C. Jacobi, ILU Reference Manual, Xe-
rox Corporation, November 1997. " Available at
ftp://ftn.parc.xerox.com/pub/ilu/ilu.html.

14. JAVASOFT, Java Native Interface Specification, May 1997.

15. S. Kohn and B. Smolinski, Component tnteroperability architecture: A proposal to
the common component architecture forum. in preperation, 1999.

16. MICROSOFT COR-
PORATION, Component Object Model Spectfication (Version 0.9), October 1995.
Available at http://wuw.microsoft.com/oledev/olecom/title.html.

17. OBIJECT MANAGEMENT GROUP, The Common Object Request Broker: Architecture
and Specification, February 1998. Available at http://wuv.omg.org/corba.

18. S. Parker, D. Beazley, and C. Johnson, The SCIRun Computational Steering Soft-
ware System, E. Arge, A.M. Bruaset, and H.P. Langtangen (Eds.), Modern Soft-
ware Tools in Scientific Computing, Birkhauser Press, 1997.

19. Paul Dubois, personal communication. See
http://xfiles.11lnl.gov/CXX_Objects/cxx.htm.

20. J. Shirley, W. Hu, and D. Magid, Guide to Writing DCE Applications, O'Reilly &
Associates, Inc., Sebastopol, CA, 1994.

This article was pfocessed using the BTEX macro package with LLNCS style

Work performed under DOE at LLNL under contract No. W-7405-Eng-48.

ftp://ftp.parc.xerox.com/pub/ilu/ilu.html
http://xfiles.llnl.gov/CXX-Objects/cxx.htm

- Infrastructure

Technology

SAMRAI is an object-oriented
software framework for struc-
tured adaptive mesh refinement
(AMR) research. SAMRAI pro-
vides computational scientists
with general and extensible sup-
port for rapid prototyping and
development of parallel struc-
tured AMR applications. The
primary goal of the SAMRAI effort
is to facilitate numerical method
and solution algorithm develop-
ment for AMR applications that
require high-performance com-
puting hardware.

evelopments in high-perfor-
Dmance computing hardware

make it possible to simulate
large three-dimensional problems that
model increasingly complex chemical
and physical processes. However, the
numerical resolution required to cap-
ture the phenomena represented by
mathematical models still makes such
computations very expensive. In
many interesting science dnd engineer-
ing applications, the most important
features of the simulation occur in
localized regions of the computational
domain. Uniformly fine computa-
tional meshes that resolve the local
phenomena may be unnecessarily fine
outside the regions of interest. Asa
result, such uniform grid simulations
can be inefficient or even prohibitively
expensive.

Structured AMR provides a system-
atic way to focus computational
resources (CPU time and memory) by
employing varying degrees of local
spatial and temporal resolution. Thus,
AMR is an important technology
needed to support large-scale, physi-
cally and numerically well-resolved,
three-dimensional simulations.

University of Califomia

[l Lawrence Livermore
National Laboratory

u\/«;ﬁ / Center for Applied
) 4\ Scientific Computin
< ’

Figure 1. Adaptive mesh refinement concentrates computational effort in areas of Interest, such as
near the shock fronts in this hydrodyanmics simulation.

Emerging AMR Application
Domains

Structured AMR has proved tobe a
useful simulation technology for many
fluid dynamics applications (Figure 1).
SAMRAL is being developed as a sub-
stantial generalization of existing AMR
technology. In addition to supporting
more traditional AMR applications,
SAMRAL is designed to explore new
problem areas and new AMR solution
algorithms. New applications include,
but are not limited to, problems mod-
eled by coupled systems of partial
differential equations that exhibit com-
plicated combinations of hyperbolic,
elliptic, and parabolic behavior (such as
radiation hydrodynamics, flow and
transport in porous media, combus-
tion, and reactive transport), neutron
transport, hybrid models that combine
discrete and continuum numerical
models, and Arbitrary Lagrangian-
Eulerian (ALE) integration methods.

The application of structured AMR
to such problems gives rise to many
interesting algorithmic, numerical, and
computer science research questions.
These issues are related to mathemati-
cal model approximations in an AMR

setting, adaptive integration methods,
load balancing for distributed memory
parallel computing, and software
framework design and development.
SAMRAI currently supports a variety
of computational science projects.
Through collaborations with
researchers at DOE laboratories and
universities, we are investigating the
application of AMR technology to some
of the application domains mentioned
previously.

The SAMRAI Framework
Numerical algorithms for AMR
problems are complex and require a
substantial amount of software infra-
structure. However, many software
components used in AMR codes are
similar across a broad spectrum of
applications. These common compo-
nents can be incorporated into a single
general-purpose application frame-
work. SAMRAL is being developed for
two purposes: first, to codify existing
AMR software support into a flexible,
extensible, parallel development frame-
work; and second, to apply structured
AMR technology to new problem
domains and to develop alternative

UCRL-TB-128634 Rev. 2

URL: http:/Avww.linl.gov/CASC/SAMRAI/

http:/Ewvrruv.llnl.gov/CASC/SAMRAI

SAMRAL

Hievarchy

foxes
Pasches
Vaneties

Figure 2. The SAMRAI framework consists of a
collection of software components that greatly
simplify the development of structured AMR
applications.

adaptive solution algorithms for more
traditional applications.

Since AMR applications involve
complex, dynamically changing data
communication patterns, it is particular
challenging on parallel computers.
From its inception, SAMRAI was
designed to facilitate sophisticated
numerical algorithm development in a
parallel computing environment. Three
main software design points SAMRAI
addresses are: first, support for a wide
range of complex data structures on an
adaptively-refined mesh, including
arbitrary user-defined types; second,
algorithmic flexibility, extensibility, ard
software reuse; and third, general soft-
ware support for parallel application
development.

SAMRAI facilitates rapid prototyp-
ing of various application code
implementation alternatives by freeing
developers from low-level data struc-
ture and algorithm management. An
application developer views
SAMRALI as a collection of software
packages and classes that may be com-
bined in complex ways to build an
application (Figure 2). We use object-
oriented design techniques so that
many fundamental SAMRAI compo-
nents may be enhanced without
changing the underlying framework
source code or re-compiling the
library. In particular, software compo-
nents may be specialized and
extended through C++ class deriva-
tion. We are also addressing

interoperability issues that will allow
applications built using SAMRALI to
take advantage of other software
packages, such as linear and nonlinear
solver libraries, including PETSc,
KINSOL, and hypre.

SAMRALI's framework structure pro-
vides flexibility to explore a wide range
of AMR applications. Its design helps
to reduce code development, encour-
ages interoperability in application
software, and simplifies the learning
curve for new adaptive computational
methods. Finally, SAMRAI provides
robust support for parallelism to insu-
late communication operations from
application code without impeding
performance.

SAMRAI Applications and
Framework Validation

In collaboration with researchers,
we are using SAMRAI across a
diverse range of applications. We
are collaborating with academic
researchers to employ SAMRAI in an
application that couples fluid
dynamics models (including turbu-
lence and reactive chemistry) to
container dynamics models to study
firespread problems. Another SAM-
RAI applications code combines
plasma fluid simulation with a
model for laser light propagation.
Other projects include simulation of
solar winds in the Earth’s magnetos-
phere, radiation-hydrodynamics
using ALE integration methods,
shear band formation in granular
materials, flow and transport in
porous media, neutron transport,
and multi-physics problems that
combine continuum and discrete
particle models.

Each application emphasizes the
combination of different numerical
models and solution techniques in
the context of structured AMR. For
example, the firespread application
uses both implicit and explicit inte-
gration methods for fluid
calculations that are coupled to
particle-like methods to model solid

figure 3. Embedded boundary capabliities
enable structured AMR applications to capture
complex geometry in an efficient manner.

containers. The solar wind problem
combines magneto-hydrodynamics

equations with a dipole field model
of the Earth’s ionosphere.

In addition to producing interest-
ing computational science research,
these applications serve as a valida-
tion of the SAMRALI software
architecture, as they require substan-
tial data structure and algorithmic
flexibility. The applications produce
a variety of simulation data on an
adaptive mesh, including particles
and embedded interfaces (Figure 3),
as well as various forms of array-
based data. Also, these complex
solution algorithms combine sophisti-
cated numerical methods to treat
different aspects of each problem.
Finally, incorporation of linear and
nonlinear solution software tests
SAMRALI's ability to interoperate
with independently developed solver
libraries.

For additional information about the
SAMRAI project, visit the Web site at
http:/fwww.linl.gov/ CASC/SAMRAI
or contact:

Richard Hornung,

(925) 422-5097, hornung@lInl.gov, or
Scott Kohn,

(925)422-4022, skohn@lInl.gov.

Work performed under the auspices of the U.S. DOE by LLNL under contract No. W-7405-ENG-48.

http://m.Ilnl
mailto:hornung@llnl.gov
mailto:skohn@llnl.gov

UCRL-JC-131825
Preprint

The Use Of Object-Oriented Design Patterns
In the SAMRALI Structured AMR Framework

R. D. Hornung
S. R. Kohn

This paper was prepared for submittal to
Society for Industrial & Applied Mathematics
Workshop on Object- Oriented Methods for
Interoperable Scientific and Engineering Computing
Yorktown Heights, NY
October 21-23, 1998

October 17, 1998

This is a preprint of a paper intended for publication in a journal or proceedings?
Since changes may be made before publication, this preprint is made available
with the understanding that it will not be cited or reproduced without the
permission of the author.

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed hercin do not
necessarily state or reflect those of the United States Government or the University of California, and shall not

be used for advertising or product endorsement purposes.

The Use of Cbject-Oriented Design Patterns
in the SAMRAI Structured AMR Framework*

Richard D. Hornung! Scott R. Kohn!

Abstract

We describe the use of object-oriented design parterns in the implementation of a
flexible structured adaptive mesh refinement software framework called SAMRAIL We
present five common patterns—Smart Pointers, Singleton, Abstract Factory, Strategy,
and Chain of Responsibility—that have greatly simplified framework development.
These design patterns have enabled the decomposition of complex algorithms into
smaller, more manageable, decoupled components that may be reused across a variety
of applications.

1 Introduction

The design and implementation of quality, high-performance numerical software frameworks
is difficult. Framework designers must address issues of algorithm complexity, evolving
requirements in a research environment, and software reuse within the targeted application
domain. Many modern numerical algorithms, such as structured adaptive mesh refinement
methods [3, 4], consist of many complex numerical components involving sophisticated time
integration methods, various geometry descriptions, time interpolation, spatial refinement
and coarsening, and linear and nonlinear solvers. These numerical components interact
in complex ways that must be captured in the design of the software framework. Finally,
numerical frameworks are usually developed in tandem with research projects in algorithms
and applieations; thus, the framework software must be designed to evolve as computational
scientists improve their understanding of application domains and the associated numerical
methods.

In this paper, we address some of these design issues in the context of a parallel
structured adaptive mesh refinement (SAMR) framework called SAMRAI. Object-oriented
techniques and design patterns [8] have been valuable tools for the high-level organization of
the SAMRALI software architecture. They have enabled us to isolate various functional parts
of complex algorithms into different framework components so that applications can be
built from smaller algorithmic “building blocks.” As a result, we provide a flexible software
framework that simplifies the management of inherently complex SAMR algorithms and is
being applied to diverse SAMR applications. '

This paper is organized as follows. We begin with a brief overview of the SAMRAI
framework and the basic SAMR methodology. Section 3 describes five different design

*This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under contract number W-7405-Eng-48.

tCenter for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore,
CA 94551, http://www.11nl.gov/CASC/SAMRAI, hornung@llnl.gov, skohn@llnl.gov. ‘

1

http://hornnngOlldl.gov
http://t;lcohnbllnl.gov

2

patterns-—Smart Pointers |7}, Singleton, Abstract Factory, Strategy, and Chain of Hespon-
sibility [8]—used in the SAMRALI framework. Finally, Section 4 discusses the usefulness of
design patterns and object-oriented techniques within the SAMRAI framework and for the
general computational science community. :

2 The SAMRAI Framework

Structured adaptive mesh refinement has shown great potential as a numerical simulation
methodology for a variety of applications in computational fluid dynamics {2, 1, 12}, laser-
plasma interactions [6], radiation transport [11], porous media [10], and materials [9, 13, 14].
However, SAMR methods are not widely used by the scientific computing community. The
primary reason for this is that SAMR coaes are complex and require a substantial amount
of software infrastructure to support productive application development. Fortunately,
many software components are common across diverse application domains and may be
incorporated into a general-purpose framework that supports a broad range of applications.

SAMRALI is a C+ object-oriented framework that provides computational scientists
with general and extensible software support for prototyping and developing parallel
SAMR applications. The primary goal of the SAMRALI effort is to explore the use of
SAMR technology in new problem domains and to develop new numerical and algorithmic
approaches for more traditional SAMR applications. SAMRAI provides an overarching
software framework that orchestrates the various processes involved in a complex numerical
simulation. SAMR algorithms can usually be decomposed into smaller, simpler constituent
parts such as algorithmic components, data structures, and numerical routines. In the
process of building a new application with SAMRAI, computational scientists select the
appropriate numerical and algorithm components from the framework and supply only
those operations that are specific to their application. Thus, the computational scientist
leverages a large simulation code base and only specializes certain components as needed
for his application.

A full description of SAMR algorithms is well beyond the scope of this paper. However,
we will provide a brief overview of the basic SAMR approach as an aid to understanding
the algorithmic and software issues in the remainder of this paper. The SAMR approach,
introduced by Berger, Oliger, and Colella 3, 4], represents simulation data using a hierarchy
of nested levels of spatial and temporal mesh refinement. This hierarchy dynamically adapts
to follow interesting features in the evolving simulation and focus computer resources in
these localized portions of the computational domain.

A SAMR hierarchy consists of a number of levels. All computational cells at a particular
level in the hierarchy represent the same mesh resolution. Each level consists of a collection
of patches, each of which is a logically rectangular collection of computational cells. A
patch contains data that represent simulation quantities in the region of the simulation
domain defined by the patch region. The level with the coarsest mesh resolution defines an
abstract, global integer index space. Then, each successively finer level is a refinement of a
portion of the next coarser index space. The organization of the computational mesh into a
hierarchy of levels of patches allows data’ communication and computation to be expressed
as geometrically-simple, efficient operations. Consequently, the SAMR methodology is used
to construct application codes from a set of computational tasks, each of which is defined
in terms of operations on mesh patches, organized in a highly structured fashion.

In the remainder of this paper, we discuss object-oriented techniques used to implement
two of SAMRAT's design goals. First; SAMRAI must support a wide range of complex data.

3

structures on SAMR patches, including arbitrary user-defined types. Second, SAMRAI
must provide flexible and extensible algorithm support for a variety of SAMR applications.
One important design constraint is that SAMRAI must enable new applications develop-
ment and support new user-defined data types without requiring changes to the underlying
framework source code or recompilation of the libraries.

3 Design Patterns in SAMRALI

Design patterns are specific solutions to common, recurring software engineering problems.
Each pattern codifies a general solution technique by providing a problem description, the
solution pattern, and a list of consequences resulting from the application of the pattern. In
practical terms, design patterns describe the configuration of a small set of objects whose
cooperative behavior solves a software design problem. There are several useful books that
describe design patterns [5, 8, 15]; our discussion follows that of Gamma et al. [8] most
closely.

We have found design patterns to be very useful in solving some important design
problems during the construction of the SAMRAI software architecture. Some of these
patterns are covered in detail in the following five sections. We begin each section with
a discussion of a design problem encountered in the SAMRAI software framework. We
then describe the design pattern selected to solve that particular design problem and the
consequences of that decision.

Section 3.1 describes the Smart Pointer pattern that simplifies the management of
dynamically allocated memory and provides safe dynamic type casting. The Singleton
pattern (Section 3.2) defines a single point of contact for objects shared among various
components. The Abstract Factory creational pattern (Section 3.3) enables SAMRAI
to support new user-defined patch data types without requiring modifications to the
framework. Finally, the Strategy (Section 3.4) and Chain of Responsibility (Section 3.5)
behavioral patterns are used in SAMRALI to decouple various framework components and
thus obtain greater reuse of fundamental algorithm pieces.

3.1 Smart Pointers

In this section, we describe two typical problems in the SAMRAI framework that are
solved through the use of Smart Pointer [7] techniques: (1) safe dynamic type casting and
(2) memory management for shared objects. The need for safe dynamic type casting is
illustrated by the following example. As described in Section 3.3, all SAMRALI patch data
types share a common base class called PatchData:

class PatchData : public ... {
void copy(const PatchData& source) = 0;

};

The concrete data types that are instantiated on SAMRAI patches—such as
CellData<double> or EmbeddedBoundaryData—inherit the signature for copy() declared
in PatchData. However, concrete classes often require the type of the copy() argument
to be the same as the concrete class, not any arbitrary PatchData object. For example, it
would probably not make sense to copy EmbeddedBoundaryData into CellData<double>.
Unfortunately, there is no way to enforce this through the C++ type system at compile-
time. Although templates are often used in similar cases to ensure type safety, they are not
sufficient for complex applications that must access data through abstract base classes.

4

Run-time type safety can be achieved through the usc of run-time dynamic type
casting. In this case, dynamic type casting of the argument source within the copy ()
implementation returns a pointer to the object if the cast is valid and NULL otherwise.
Although dynamic type-safe casting is part of the C++ standard, it is not yet supported by
all C++ compilers. '

Another common problem solved through Smart Pointers is memory management for
shared objects. In this case, many framework objects maintain pointers to a shared object
instance that must be deallocated when all references to it disappear. Since ownership of
this shared object cannot be uniquely established, the application cannot easily determine
when to deallocate it. For example, SAMRAI patches typically share a pointer to a
patch descriptor object. Moreover, patches arc created and destroyed dynamically dusing
mesh refinement. The memory allocation problem is solved with reference counting smart
pointers that track the number of references to an object and then delete the pointed-to
object when the number of references decrements to zero.

3.1.1 Pattern Description The Smart Pointer pattern is a common C+ pattern [7]. It
consists of two parts: a templated Pointer class that manages the object reference counting
and a collection of classes that support run-time safe type casting. All pointed-to objects
are required to inherit from a common base class and provide a small number of functions
to implement the type conversions.

3.1.2 Consequences The use of the Smart Pointer pattern within SAMRALI has greatly
simplified the management of dynamic memory allocation; multiple objects may share
pointers to the same object and the smart pointers guarantee that there will be no memory
leaks. The type-safe dynamic casting ensures that type errors will be caught at run-time.
The primary disadvantage of the Smart Pointer approach is that it introduces a common
base class for all pointed-to classes. While not a burden when writing new code, it is
esthetically unappealing to force otherwise unrelated -classes to inherit from a common
base class, since it introduces extraneous coupling in the software architecture.

3.2 Singleton Classes

Many classes in the SAMRALI framework may be instantiated only once, with that single
instance shared by various framework components. For example, a VariableDatabase
object contains information about the variables used in a computational simulation (e.g.,
pressure, density, or velocity). The database must be accessible to all algorithm components
to extract information about the variables and their roles in the simulation. Traditionally,
such shared objects were implemented using global variables; however, global variables do
not ensure only one instance of a class and they do not allow extension by subclassing.
Instead, we implement shared objects such as VariableDatabase using the Singleton
creational pattern as described in Gamma et al. (8]

3.2.1 Pattern Description The Singleton pattern ensures that a class will have only
one instance and provides global, well-defined access to that instance. The class may be
extended through inheritance. Then, clients may use the subclass object without changes
to their code. :

In SAMRAI, the VariableDatabase encapsulates its single instance and maintains
strict. controls over access to this instance. It declares a getDatabase() static member
function that returns a pointer to the single database instance. In addition, the constructor
and destructor of the class are protected to ensure that only the database and its subclasses

Patch - PatchData

copy(PatchDatad&);
packStrearn(...);

? A

[1
e NodeData ParticleData |«
copy(PatchData&); copy(PatchData&);
packStream(...); packStream(...);
Patch Y
Descriptor
7 PatchDataFactory
— -
allocatePatchData()
| — /\ 5|
NodeDataFactory ParticleDataFactory
-4--- allocatePatchData() aliocatePatchData() -t

F1G. 1. The Abstract Factory pattern manages the allocation of data for the SAMRAI patch
hierarchy. As illustrated by the dotted lines, subclasses of PatchData are created by associated
subclasses of PatchDataFactory. This diagram follows the OMT (Object Modeling Technique)
notation [8].

may create instances of the database.

3.2.2 Consequences The Singleton pattern provides a more flexible alternative to the
use of global variables. The name space remains cleaner and applications may use extensions
of a basic singleton object, even at run-tiine. A singleton can be extended through standard
class derivation and any client can use the subclass without needing changes in its own code.

© 3.3 Abstract Factory

Recall that one of the primary considerations in the design of SAMRAI was the need to
support complex user-defined data on an SAMR patch hierarchy. The patches in an SAMR
application may contain data such as cell-centered arrays of doubles, node-centered arrays
of integers, or user-defined collections of particles. These patch data types are manipulated
by the SAMRAI framework, which manages allocation, deallocation, data copying, and
marshaling and unmarshaling of data for communication between processors.

We believe that SAMRALI users should not modify the framework software or recompile
the libraries to add new data types, as such practices violate sound software engineering
principles. Thus, the framework cannot know the concrete class types for user-defined patch
data, since these classes may be designed and implemented long after the framework has
been compiled. In this case, how can the framework allocate user-defined data? Clearly,
SAMRALI cannot execute new for concrete types that do not exist at compile-time. The
solution to this problem is the Abstract Factory creational pattern.

3.3.1 Pattern Description The Abstract Factory pattern defines an approach for
creating families of related objects without specifying their concrete classes [8]. This

6

pattern does so through two related inheritance hierarchies. The first hierarchy 1s rooted
in an abstract product class that declares the interface for all objects to be created by the
pattern. These product objects are created by factory objects in a second hierarchy.
Figure 1 illustrates how this pattern is implemented in the SAMRAI framework.
The SAMRAI Patch is a container class for all patch data types that exist in some
rectangular region of index space. All patch data types inherit from an abstract PatchData
class and define a set of required routines such as copy() and packStream() (used for
interprocessor communication). Each Patch has a smart pointer to a PatchDescriptor
that contains the factory objects needed to make the concrete patch data. Then, to create
an instance of a PatchData object, the Patch consults the PatchDescriptor and asks
the appropriate PatchDataFactory to allocate a PatchData instance. In particular, the
allocatePatchData() function returns the concrete PatchData instance.

3.3.2 Consequences The Abstract Factory pattern separates concrete object creation
and declaration by encapsulating the responsibility for creating product objects. Use of
this pattern enhances software flexibility and extensibility since concrete product classes
(such as NodeData in Figure 1) never appear in the framework code. Thus, new product
classes can be added after the framework has been compiled and archived into a library.

There are two drawbacks to Abstract Factory pattern. First, every new product class
requires the definition of two new classes—the product class and the factory class. Second,
some form of dynamic safe type casting is needed to obtain concrete class references.
For example, although it is sufficient for the Patch container class to manipulate data
as abstract PatchData objects, user-defined numerical routines will need to extract data
from the patch and process that data using the concrete class interface. The cast from
abstract product to concrete product requires some form of run-time type checking such as
that described in Section 3.1.

3.4 The Strategy Pattern

SAMR a&pplications involve sophisticated algorithms that can be decomposed into smaller
constituent parts. These parts include algorithms for sequentially advancing a set of SAMR
patch levels, integrating single patch levels, dynamically changing the mesh, and numerical
routines defined on individual patches. A primary goal of SAMRALI is to provide a flexible
algorithmic framework that encapsulates components such as these so that they may be
reused in different SAMR applications when appropriate.

Developing a flexible algorithmic framework is difficult. The most important research
challenge is discovering how complex algorithms may be factored into their constituent
parts. Then, the specific behavior of each component must be determined and appropriate
interfaces must be defined between the different pieces. Ideally, each individual algorithmic
part may be replaced or enhanced without adversely influencing the behavior of the other
components. If this separation is attained, it is relatively easy to combine existing software
components to construct a complete SAMR algorithm. While we are still grappling with
these issues in the development of SAMRAI, we believe that the approach outlined here
demonstrates substantial progress.

The Strategy design pattern is the primary object-oriented design technique that we
use to encapsulate algorithms and define reusable interfaces between software components.
Next, we illustrate our use of this pattern by describing the decomposition of a standard -
SAMR algorithm into its primary components.

TimeSieppingAlgonthm | » TimeLevelintegrator

o1
. sor- t R
integrater->advancel evel(d initializeLevel()

advancelevel(dt)
synchronizel evefWithCoarser()

A

[1

Hyperbolicintegrator Anotherintegrator
initializeLevel() initializet evel()
advancelevel(dt) advancelevel(dt }
synchronizel evelWithCoarser(synchronizeLevelWithCoarser(

FiG. 2. SAMRAI uses Strategy to define a family of time-dependent integration algorithms.

3.4.1 Pattern Description The intent of the Strategy pattern is to define and
encapsulate families of algorithmic components to make them interchangeable through
common interfaces. Consequently, this pattern is well-suited to our concerns. An concise
example of the basic form of the Strategy pattern is illustrated in Figure 2.

In SAMRAI, a TimeSteppingAlgorithm class controls a sequence of timesteps that
advances the levels in an SAMR hierarchy. While this class is fairly general, the rou-
tines that advance data on the individual levels are specific to each application. When a
TimeSteppingAlgorithm object is created, it is configured with a suitable level integration
algorithm object. The level integration class may be supplied by the framework; for exam-
ple, the HyperbolicIntegrator class is provided for systems of hyperbolic conservation
laws. Otherwise, another integrator class must be implemented (e.g., AnotherIntegrator).
Each level integrator class is derived from the TimeLevelIntegrator abstract base class
and must satisfy the interface defined by that class. The TimeSteppingAlgorithm object
‘maintains a pointer to the abstract type. Thus, it knows nothing of the specific, .concrete
level integration process.

Figure 3 shows multiple Strategy patterns, including a particular instance of the
pattern in Figure 2, combined to form a complex algorithm from simpler components.
The configuration represents a common SAMR algorithm for treating hydrodynamics
applications, such as the Euler equations of gas dynamics, with explicit timestepping [3, 4].

At the top algorithmic level, the TimeSteppingAlgorithm class controls
the overall SAMR scheme. It is configured with HyperbolicIntegrator and
RichardsonExtrapolation objects, which supply routines to advance the data and
‘dynamically adjust the mesh, respectively. Consistent with the Strategy pattern, the
timestepping algorithm knows only the abstract types TimeLevelIntegrator and
GriddingAlgorithm.

The Strategy pattern is repeated in the design of RichardsonExtrapolation and
HyperbolicIntegrator. Concrete subclasses of MeshGenerator and LoadBalancer (not
shown) provide routines that create box regions and load balance the patches on a
new patch level. The EulerPatchModel class supplies numerical routines for the Eu-
ler equations on a single patch in the mesh hierarchy. Both HyperbolicIntegrator
and RichardsonExtrapolation invoke functions in EulerPatchModel (e.g., numerical
flux computation, conservative difference, select cells for refinement, etc.), but they
are independent of the specific routines. That is, the HyperbolicIntegrator has
a pointer to HyperbolicPatchModel and RichardsonExtrapolation has a pointer to

TimeSteppingAlgorithm MeshGenerator
; | GriddingAlgorithm makeBoxes()
‘ regridAliFinerLevels()'/ Z,>
l 4 LR N]
" TimeLevelintegrator - -
~ RichardsonExtrapolation N LoadBalancer
advancelevel(dt)
4 [~e findErrorCells() \ makeNewPatches()
oee
Hyperbolicintegrator &‘
advanceLevel(dt) ®] - HyperbolicPaichModel| | RichExtrapPatchMode!

computeFluxesOnPalch() findErrorCellsOnPatch()
conservativeDiffOnPatch()

L A

1
EulerPatchModel

problem-specific
numerical routines

FIG. 3. Multiple instances of the Strategy pattern are combined in SAMRAI to build a complex
AMR solution from simpler components.

RichExtrapPatchModel. The EulerPatchModel class, derived from both of these abstract
base classes, implements functions declared in both of their interfaces.

3.4.2 Consequences The Strategy pattern provides a useful degree of algorithmic
encapsulation in SAMRAI Using common interfaces to characterize families of related
algorithmic components, a system may be configured to perform a wide range of behaviors.
This type of “plug-and-play” interoperability is advantageous for several reasons. First,
it frees application programmers from unnecessary, redundant code implementation and
reduces development time. Second, it promotes the exploration of different algorithmic
choices within a single application. Third, it increases software reuse within the framework,
which facilitates testing, maintenance, and extensibility of the architecture.

The encapsulation forced by the Strategy pattern is a valuable alternative to large,
overly-complex classes that can occur through the abuse of inheritance. For instance, the de-
sign in Figure 2 could have been implemented by inheriting from TimeSteppingAlgorithm
directly. The result would be several larger, more complicated classes that differ in level
integration procedures, but have much timestepping code in common. Although decoupling
the algorithm components slightly increases function call overheads, the cost is negligible
at the high algorithmic level at which we use the Strategy pattern.

3.5 Chain of Responsibility

Data motion between SAMR hierarchy patches requires time interpolation, coarsening, and
refinement operators that depend on problem geometry, the type of patch data, and the
centering of patch data. The SAMRAI parallel communication routines are defined in terms
of abstract operator and geometry base classes to decouple them from the details of the
particular geometry or concrete operators used in an application. The association between

9

a patch data type and its concrete operators is managed through the SAMRAI geometry
classes, which are responsible for cataloging the operators for a particular patch data type.
As users define new patch data types for their applications, they must also provide the
required operators for these types. However, the SAMRAI geometry classes cannot know
the concrete types of these new operators, since they were defined after the compilation
of the SAMRAI framework. Thus, the geometry classes require an extensible lookup
mechanism that allows the definition of new operators for user-defined patch data types.
This particular design problem is solved by the Chain of Responsibility design pattern.

3.5.1 Pattern Description The Chain of Responsibility pattern avoids coupling the
sender of a request to any potential request receiver by giving multiple objects handlers an
opporcunity to handle the request. Our implementation of this pattern follows Gamma [8].

To obtain a operator, an algorithm object queries the geometry object for the operators
associated with a particular patch data type. The geometry object passes the request to
the chain of handlers it owns. The request is forwarded along the chain until the correct
operator handler is found. This handler then returns a pointer to the desired operator.
The correct operator handler is found when the patch data type of the request matches the
patch data type of the handler, where the type equality is determined using the dynamic
casting facilities described in Section 3.1.

3.5.2 Consequences There are several advantages to using the Chain of Responsibility
pattern for the operator lookup. First, this pattern reduces the coupling between patch
data types, operators, and the algorithms that use them since these objects have no explicit
knowledge of each other’s concrete types. The same mechanism may be used for arbitrary
patch data types and operators without changing any of the algorithm code. Second, the
system is sufficiently flexible so that new concrete operator handlers (thus, new operators)
may be added to the chain at run.time. In particular, there is no need to use conditional
statements or enumerated types that cannot be extended without recompilation. Third,
the use of the dynamic cast mechanism ensures type safety. That is, an operator cannot
be associated with a patch data type if the patch data type is not of the type supported
by the operator handler.)

There.are some disadvantages to the Chain of Responsibility pattern. In particular, the
pattern requires the implementation of an operator class and hander class for each concrete
operator. The number of classes can be reduced by bundling operators together within
larger classes and using conditionals to choose the correct behavior. However, the overall
amount of source code required for this bundled implementation is about the same. In most
applications, each chain is traversed only once for each variable. Once an operator is found
and a pointer to its instance is returned, the operator may be called directly through the
pointer. No future use of the chain is required. We believe that the general flexibility that
we achieve using the chain mechanism far outweighs these drawbacks for our framework.

4 Summary and Conclusions

Object-oriented design patterns have been very useful in the design and development of the
SAMRALI structured adaptive mesh refinement software architecture. By using patterns
such as Abstract Factory, Strategy, and Chain of Responsibility, we have simplified the
management of complex SAMR algorithms. Consequently, design patterns have enabled us
meet two of our most important design goals: flexible, extensible algorithm support for a
wide range of SAMR applications and generic support for arbitrary patch data types.
When considering the adoption of object-oriented techniques, the scientific computing

10

community has often focused on implementation and performance issucs associated with
“low-level” classes such as vectors, matrices, arrays, and C++ STL containers. While these
abstractions are useful, we feel that object-oriented design offers the most benefit at the
higher leveis of a numerical software architecture. Object-oriented techniques enable tie
decomposition of complex algorithms into smaller, more manageable pieces that are suitable
for a variety of applications. They promote code and algorithm reuse and also facilitate.
testing and management of software framework components. Most importantly, object-
oriented patterns support more productive application construction by allowing rapid
exploration of new algorithms that are built from both existing and new components.

References

[1] M. Aftosmis, M. Berger, and J. Melton, Adaptation and surface modeling for cartesian mesh
methods, in Proceedings of the 12th AIAA Computational Fluid Dynamics Conference, San
Diego, CA, June, 1995, 1995. AIAA Paper 95-1725.

[2] A.S. Almgren, J. B. Bell, P. Colella, L. H. Howell, and M. L. Welcome, A conservative adaptive
projection method for the variable density incompressible navier-stokes equations, Tech. Rep.
LBNL~39075, Lawrence Berkeley National Laboratory, Berkeley, CA, 1996.

{3] M. J. Berger and P. Colella, Local adeptive mesh refinement for shock hydrodynamics, Journal
of Computational Physics, 82 (1989), pp. 64-84.

{4] M. J. Berger and J. Oliger, Adaptive mesh refinement for hyperbolic partial differential
equations, Journal of Computational Physics, 53 (1984), pp. 484-512.

{5] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, A System of Patterns,
John Wiley and Sons, New York, NY, 1996.

[6] P. Colella, M. Dorr, and D. Wake, Numerical simulation of plasma fluid equations using
locally refined grids, Tech. Rep. UCRIL-JC-129913, Lawrence Livermore National Laboratory,
Livermore, CA, 1998. submitted to J. Comp. Phys.

[7] 1. Coplien, Advanced C++: Programming Styles and Idioms, Addison-Wesley Publishing Co.,
Menlo Park, CA, 1992.

{8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of reusable
Object-Oriented Software, Addison-Wesley Publishing Co., Menlo Park, CA, 1995.

{9] F. X. Garaizar and J. A. Trangenstein, Adaptive mesh refinement and front tracking for shear
bands in an antiplane shear model. to appear in SIAM Journal on Scientific Computing, 1998.

[10] R. D. Hornung and J. A. Trangenstein, Adaptive mesh refinement and multilevel iteration for
flow in porous media, Journal of Computational Physics, 136 (1997), pp. 522-545.

(11] J. P. Jessee, L. H. Howell, W. A. Fieveland, P. Colella, and R. B. Pember, An adaptive mesh
refinement algorithm for the discrete ordinates method, in Proceedings of the 1996 National
Heat Transfer Conference, Houston, TX, August 3-6, 1996, 1996.

- [12] R. L Klein, J. B. Bell, R. B. Pember, and T. Kelleher, Three dimensional hydrodynamic
calculations with adaptive mesh refinement of the evolution of rayleigh taylor and richtmyer
meshkov instabilities in converging geometry: Multi-mode perturbations, in Proceedings of the
4th International Workshop on Physics of Compressible Turbulent Mixing, 1993.

[13] S. Kohn, J. Weare, E. Ong, and S. Baden, Software abstractions and computational issues in
parallel structured adaptive mesh methods for electronic structure calculations, in Proceedings
of the Workshop on Structured Adaptive Mesh Refinement Grid Methods, Minneapolis, MN,
March 1997, Springer-Verlag.

{14] J. A. Trangenstein, Adaptive mesh refinement for wave propagation in nonlinear solids, SIAM
J. Sci. Stat. Compaut., 16 (1995), pp. 819-839.

[15] J. Vlissides, Pattern Hatching: Design Patterns Applied, Addison-Wesley Publishing Co.,
Menlo Park, CA, 1998. Software Patterns Series.

Coarse-Grid Selection for Parallel Algebraic Multigrid

Al]. Cleary
R. Falgout
V.E. Henson
J.E. Jones

Center for
Applied Scientific Computing

UCRL-JC-130893
June 1998

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United
States Government Neither the United States Government nor the University of California
nor any of their employees, makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completencss, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise, does not necessarily con-
stitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United States Government or the
University of California, and shall not be used for advertising or product endorsement
purposes

PREPRINT

This is a preprint of a paper that was submitted to the Irregular 98 Conference, Berkeley, CA,
August 9-11,1998 This preprint is made available with the understanding that it will not be
cited or reproduced without the permission of the authors

P 8 £ et o
RiERE K RS IRV)

Coarse-grid Selection for Parallel Algebraic
Multigrid

Andrew J Cleary, Robert D Falgout, Van Emden Henson, Jim E Jones

Center for Applied Scientific Computing, Lawience Livermore National Laboratory,
Liveimore, CA

Abstiact. The need to solve linear systems aiising fiom pioblems posed
on extiemely large, unstiuctured giids has spaiked great interest in pai-
allelizing algebraic multigiid (AMG) To date, howevel, no parallel AMG
algorithms exist We introduce a paiallel algorithm for the selection of
coaise-grid points, a ciucial component of AMG, based on modifica-
tions of certain paallel independent set algoiithms and the application of
hewistics designed to inswme the quality of the coarse giids A protatype
serial veision of the algorithm is implemented, and tests are conducted
to deteimine its effect on multigiid convergence, and AMG complexity

1 Introduction

Since the intioduction of algebiaic multigiid (AMG) in the 1980's [4, 2, 3, 5, 19,
16, 18, 17] the method has attiacted the attention of scientists needing to solve
lazge problems posed on unstiuctuied grids Recently, there has heen a major
suige of inteiest in the field, due in large part to the need to solve incieasingly
larget systems, with hundieds of millions o1 billions of unknowns Most of the
curient reseaich, however, focuses either on improving the standaid AMG algo-
1ithm [9, 7], or on dramatic new algebiaic approaches {20, 6] Little reseaich has
been done on parallelizing AMG The sizes of the modein problems, however,
dictate that laige-scale parallel processing be employed

Methods for parallelizing geometiic multigiid methods have been known for
some time [10), and most of the AMG algorithm can be patallelized using existing
technology Indeed, much of the parallelization can be accomplished using tools
1eadily available in packages such as PETSc or ISIS++ But, the heart of the
AMG setup phase includes the coaise-grid selection process, which is inherently
sequential in natuie

In this note we introduce a paiallel algorithm for selecting the coaise-grid
points The algorithm is based on modifications of paiallel independent set algo-
1ithms Also, we employ hemnistics designed to insute the quality of the coatse
grids A prototype serial code is implemented, and we examine the effect the
algorithm has on the multigiid convergence properties

In Section 2 we outline the basic principles of AMG Section 3 desciibes
our paiallelization model and the undeilying philosophy, while the details of the
paiallel algorithm are given in Section 4 Results of numetical expetiments with
the serial prototype aie presented and analyzed in Section 5 In Section 6 we
make concluding remarks and indicate ditections for future 1eseaich

2 Algebraic Multigrid

We begin by outlining the basic principles of AMG Detailed explanations may
be found in [17] Consider a problem of the form Au = f, whete Aisan n x n
matiix with entiies a;; For AMG, a “giid” is simply a set of indices of the
vatiables, so the oiiginal gtid is denoted by 2 = {1,2, ,n} In any multigrid
method, the cential idea is that eiror e not eliminated by 1elaxation is eliminated
by solving the 1esidual equation Ae = r on a coaiser giid, then inteipolating
e and using it to correct the fine-g1id appioximation The coarse-gtid pioblem
itself is solved by a recuisive application of this method Pioceeding through all
levels, this is known as a multigtid cycle One purpose of AMG is to free the
solver fiom dependence on geometry (which may not be easily accessible, if it is
known at all) Hence, AMG fixes a 1elaxation method, and its main task is to
determine a coarsening process that approximates error the 1elaxation cannot
1educe

Using supeisctipts to indicate level number, wheie 1 denotes the finest level
so that A = A and 2! = {2, the components that AMG needs aie: “grids”
2D N> D NM; grid operators A, A%, , AM interpolation operators
If k= 1,2, M -1, restiiction operators ' k=12 M-12anda
telaxation scheme foi each level Once these components are defined, the 1ecur-
sively defined multigirid cydle is as follows:

Algorithm: MV*(u*, £*) The (411, 52) V-cycle
If k = M, set uM = (AM)-1fM
Othexwise:
Relax y,; times on Afu® = f¥
Peiform coaise giid correction
Set uktl =0, f5+! = [F¥I(£5 — A*ub)
“Solve” on level k + 1 with MV&+1(yk+! fk+l)
Coriect the solution by uf « u* + If u*+!
Relax v, times on AFu* = f*

For this to work efficiently, two ptinciples must be followed

P1: Errors not efficiently reduced by relazation must be well-epprozimated
by the range of interpolation

P2: The cousse-grid problem must provide a good approzimation to fine-
grid error in the range of interpolation

AMG satisfies P1 by automatically selecting the coaise grid and defining intex-
polation, based solely on the algebraic equations of the system P2 is satisfied
by defining 1estiiction and the coaise-grid operator by the Galerkin formulation
[14):

U= (k)T and ARH = RLARTE (1)

Selecting the AMG components is done in a sepaiate preprocessing step

AMG Setup Phase:

1 Setk=1

2 Paitition £2¢ into disjoint sets C* and F*
(a) Set Rkt =C*
(b) Define inte1polation I},

3 Set I8! = (1k,,)7 and AM = IFHLARIE, |

4 If %! is small enough, set M = k+ 1 and stop Otherwise, set
k=k+1 and go to step 2

2.1 Selecting Coarse Grids and Defining Interpolation

Step 2 is the core of the AMG setup process The goal of the setup phase is to
choose the set C of coarse-g1id points and, for each fine-gtid pointi € F = 2-C,
a small set C; C C of interpolating points Interpolation is then of the foim

uf+? if i €C,
(Tinu**), =4 ST wyubtt ifieF @)
JEC;

We do not detail the construction of the interpolation weights w;;j, instead 1efer-
1ing the 1eader to [17] for details

An underlying assumption in AMG is that smooth er1o1 is chatacterized by
small 1esiduals, that is, Ae = 0, which is the basis for choosing coaise grids and
defining interpolation weights For simplicity of discussion hete, assume that A
is a symmetric positive-definite Af-matrix, with a;; > 0,a;; < 0 for j # 1, and
2ai; 20

We say that point i depends on point j if a;; is “laige” in some sense, and
hence, to satisfy the ith equation, the value of u; is affected more by the value
of u; than by other vatiables Specifically, the set of dependencies of i is defined
by ¢

Si = {j #£1 —a; > a‘i}g?‘(“aik)}) @)

with « typically set to be 0 25 We also define the set ST = {j i€ S;}, that
is, the set of points j that depend on point i, and we say that S7 is the set of
influences of point ¢

A basic premise of AMG is that 1elaxation smoothes the er101 in the direction
of influence Hence, we may select C; = S; NC as the set of interpolation points
for i, and adheie to the following ciiterion while choosing C and F:

P3: For eachi € F, each j € S; is either in C or S;NC; # 0

That is, if ¢ is a fine point, then the points influencing i must either be coaise
points o1 must themselves depend on the coaise points used to interpolate u;

The coaise giid is chosen to satisfy two ciiteria We enfoice P3 in orde: to
insure good inteipolation However, we wish to keep the size of the coarse-grid
as small as possible, so we desite that

P4: C is a mazimal set with the property that no C-point influences
another C-point

It is not always possible to enforce both critetia Hence, we enfoice P3 while
using P4 as a guide in coarse-point selection

AMG employs a two-pass process, in which the gid is fitst “colored”, pro-
viding a tentative C/F choice Essentially, a point with the laigest number of
influences (“influence count”) is colored as a C point The points depending on
this C point are colored as F points Other points influencing these F' points
aie moie likely to be useful as C points, so their influence count is increased
The process is 1epeated until all points are either C o1 F points Next, a second
pass is made, in which some F points may be 1ecoloied as C points to ensure
that P3 is satisfied Details of the coarse-giid selection algorithm may be found
in {17], while a recent study of the efficiency and robustness of the algoiithm is
detailed in {7]

Like many linear solvers, AMG is divided into two main phases, the setup
phase and the solve phase Within each of these phases aie ceitain tasks that
must be parallelized to cieate a parallel AMG algorithm They are

— Setup phase:
e Selecting the coaise giid points, 28+!
o Construction of interpolation and 1estriction operators, If,,, If+!
o Constructing the coaise-grid operator A¥+1 = [F+1 gk [¥+1
— Solve phase:
e Relaxation on A*u* = f*
o Calculating the 1esidual x* f* — A*¥u®
o Computing the 1estiiction f¥+1 = JF+1pk
o Interpolating and coirecting u* « u® + If, ub+!

3 Parallelization Model

In this work we taiget massively paiallel distiibuted memory aichitectures,
though it is expected that the method will prove useful in other settings, as well
Curtently, most of the taiget platfoims suppoit shaied memory within clusters
of processors (typically of size 4 or 8), although for poitability we do not utilize
this featuwe We assume explicit message passing is used among the processors,
and implement this with MPI [15] The equations and data are dist1ibuted to the
processors using a domain-partitioning model This is natmal for many problems
of physics and engineering, wheie the physical domain is paititioned by subdo-
mains The actual assignment to the processo1s may be done by the application
code calling the solver, by the giidding program, or by a subsequent call to a
graph partitioning package such as Metis {12] The domain-paztitioning st1ategy
should not be confused with domain decomposition, which refeis to a family of
solution methods

We use object-oriented software design for paiallel AMG One benefit of this
design is that we can effectively employ keinels fiom other packages, such as

PETSc (1] in several places thioughout our code Internally, we focus on a matriz
object that generalizes the featuies of “matiices” in widely-used packages We
can write AMG-specific 1outines once, for a variety of matiix data stiuctures,
while avoiding the necessity of reinventing widely available 1outines, such as
matiix-vector multiplication

Most of the 1equired operations in the solve phase of AMG are standard, as
aie several of the coie opeiations in the setup phase We list below the standaid
operations needed by AMG:

— Matriz-vector multiplicetion: used for 1esidual calculation, for intexpolation,
and 1estriction (both use rectangular matiices, 1estiiction multiplies by the
tianspose) Some packages provide all of the above, while others may have
to be augmented, although the coding is stiaightforwaid in these cases

— Basic iterative methods used for the smoothing step Jacobi o1 scaled Ja-
cobi are most common for parallel applications, but any iterative method
provided in the parallel package could be applied

— Gathering/scattering processor boundary equations used in the constiuction
of the inter polation operatois and in the constiuction of coarse-grid operators
via the Galerkin method Each processor must access “processor-boundary
equations” stored on neighboring processors Because similai functionality
is 1equired to implement additive Schwaiz methods, parallel packages imple-
menting such methods alieady provide tools that can be modified to fulfill
this 1equirement

4 Parallel Selection of Coarse Grids

Designing a paiallel algorithm for the selection of the coarse-grid points is the
most difficult task in paiallelizing AMG Ciassical AMG uses a two-pass algo-
1ithm to implement the heuristics, P3 and P4, that assuie giid quality and .
contio] g1id size In both passes, the algorithm is inherently sequential The first
pass can be described as:

1) Find a point j with maximal measure w(j) Select j as a C point
2) Designate neighbols of § as F' points, and update the measures of
other neatby points, using heuzistics to inswe grid quality
Repeat steps 1) and 2) until all points aie either C' o1 F points

This algorithm is cleaily unsuitable for paialielization, as updating of measures
occurs after each C point is selected The second pass of the classical AMG
algotithm is designed to enfoice P3, although we omit the details and refer the
1eader to {17] We can satisfy P3 and eliminate the second pass thiough a simple
modification of step 2)

Fuither, we may allow for parallelism by applying the following one-pass
algmithm Begin by perfoiming step 1) globally, selecting a set of C points, D,
and then peifoim step 2) locally, with each processor woiking on some poition
of the set D With different ciiteria for selecting the set D, and aimed with

various heuristics fo1 updating the neighbois in 2), a family of algoiithms may
be developed The overall framework is:

Input the n x n matrix 4* (level &)

Initialize
F=0,C=9
Vie {1l n},

w(i) +initial value
Loop until |C| + |F| =n
Select an independent set of points D
Vj € D:
c=CuUj
Y k in set local to j, update w(k)
if w(k) =0, F=FUk
End loop

4.1 Selection of the set D

For the measuie w(i), we use |ST| + o(i), the number of points influenced by
the point i plus a tandom number in (0,1) The 1andom number is used as a
mechanism for breaking ties between points with the same number of influences
The set D is then selected using a modification of a paiallel maximal independent
set algorithm developed in [13, 11, §]

A point j will be placed in the set D if w(j) > w(k) for all k that eithe
influence o1 depend on j By construction, this set will be independent While our
implementation selects a maximal set of points possessing the 1equisite pioperty,
this is not necessaiy, and may not be optimal An impoitant observation is that
this step can be done entirely in paiallel, provided each processor has access to
the w values for points with influences that cross its processor boundary

4 2 Updating w(k) of neighbors

Desciibing the heuristics for updating w(k) is best done in tetms of graph theory
We begin by defining S, the auxiliary influence matriz

o _J1 if j€5;,
Sij = {0 otherwise)

That is, S;; = 1 only if ¢ depends on j The ith row of S gives the dependencies
of i while the ¢th column of S gives the influences of 1+ We can then form the
directed graph of S, and obseive that a directed edge fiom vertex ¢ to veitex
j exists only if S;; # 0 Notice that the directed edges point in the direction
of dependence To update the w(k) of neighbors, we apply the following pair of
beutistics

P5: Values at C points aze not interpolated, hence, neighbois that in-
fluence a C point a1e less valuable as potential C points themselves

P6: If k and j both depend on ¢, a given C point, and j influences &, then
j is less valuable as a potential C point, since k can be inte1polated
fiom c

The details of how these heuristics are implemented are:

Ve € D,
P5:
Vj|Se#0, (each j that influences ¢)
w(j) « w(j) -1 (decrement the measuie)
Sej <0 (remove edge ¢j from the giaph)
P6:
Vil|S;c#0 (each j that depends on ¢),
Sje +0 (remove edge jc fiom the giaph)
Vk|Sk #0, (each k that j influences),
if Ske #0 (if k£ depends on c¢),
w(j) + w(j) — 1 (decrement the measure)
Skj < 0 (remove edge kj from the graph)

The heuristics have the effect of lowering the measute w(k) for a set of neighbors
of each point in D As these measuies ate lowered, edges of the graph of S are
removed to indicate that certain influences have alieady been taken into account
Frequently the step w(j) = w(j) — 1 causes |w(j}] = 0 When this occuis j is
flagged as an F' point

Once the hemistics have been applied for all the points in D, a global com-
munication step is 1equited, so that each processor has updated w values fo1 all
neighbois of all theit points The entite process is then 1epeated C points are
added by selecting a new set, D, from the vertices that still have edges attached
in the modified graph of S This process continues until all n points have eithet
been selected as C points or F points

5 Numerical Experiments

To test its effect on convergence and algotithmic scalability, we include a seiial
implementation of the parallel coaisening algmithm in a standard sequential
AMG solver Obviously, this does not test paiallel efficiency, which must wait
for a full paiallel implementation of the entite AMG algorithuin

Figme 1 shows the coaise grid selected by the paiallel algoiithm on a stan-
daid test problem, the 9-point Laplacian operator on a 1egula: grid This test is
important because the giid selected by the standaid sequential AMG algoiithm

ca—6
BRI
(X v@vge T
LRI XIXIXIX]
g!%’&%’"!‘
[KIXIXIXIXIX]

IXIXIRIXIXIXT
¢

Fig 1 Coarse g1ids for the structured-grid 9-point Laplacian operator The dark circles
are the C points Left: Grid selected by the standeid algorithm Right: Grid selected by
the parallel algorithm

Fig.i Coatse grids for an unstructuwred gr1id The large circles are the C points Left:
Grid selected by the standard algorithm Right: Grid selected by the parallel algorithm
Graph connectivity is shown on the left, while the full digraph ts shown on the 1ight

is also the optimal grid used in geometric multigrid for this problem Examining
many such test problems on 1egulax giids, we find that the paiallel coarsening
algorithm typically produces coarse grids with 10-20% moie C points than the
sequential algorithm On unstiuctuted grids o1 complicated domains, this in-
crease tends to be 40-50%, as may be seen in the simple example displayed in
Figuie 2

The impact of the parallel coaisening algorithm on convergence and scal-
ability is shown in two figures Figwe 3 shows the conveigence factor for the
9-point. Laplacian operato: on 1egular giids ranging in size fiom a few hundred
to neatly a half million points Several different choices for the smoother and the
parameter « aie shown In Figuie 4 the same tests atre applied to the 9-point
Laplacian operator fo1 anisotiopic grids, wheie the aspect 1atios of the under-

—e—Jacobi, 010
. —& - Jacobi, 025
8 —+—0G-5 010
£ G5 025

—%— AMG, 025

0 200 400 600 800
N(N x Ngrid)

Fig 8 Convergence factors for parallel AMG for the 9-point Laplacian

lying quadiilateral finite elements are extiemely high In both figures, we see
that convergence factors for the giids chosen by the paiallel algorithm aze sig-
nificantly larger than standard AMG (shown as “AMG” in Figure 3, not shown
in Figure 4), although the paiallel algorithm still produce solutions in a 1eason-
able number of iterations Of more concern is that the conveigence factors do
not scale well with increasing problem size We believe that this may be caused
by choosing too many coarse giid points at once, and that simple algorithmic
modifications mentioned below may impiove out 1esults

Figure 5 shows the grid and operator complexities for the parallel algorithm
applied to the 9-point Laplacian operator Grid complexity is the total number
of grid points, on all grids, divided by the number of points on the oiginal giid
Operator complexity is the total number of non-zeios in all operators A, A2
divided by the number of non-zeros in the otiginal matiix Both the giid and
operator complexities generated using by the paiallel algorithm aie essentially
constant with increasing problein size While slightly laiger than the complexities
of the sequential giids, they nevertheless appear to be scalable

The fiamework desciibed in Section 4 permits easy modification of the al-
gorithm For example, one may alter the choice of the set D of C points We
believe that the convergence factor degiradation shown in owm 1esults may be due
to selecting too many coatse giid points One possibility is to choose the minimal
numbe: of points in D, that is, one point per processor This amounts to running
the sequential algorithm on each processor, and there a number of different ways
to handle the inteiprocessor boundaiies One possibility is to coaisen the pro-
cessor boundairy equations fiist, using a parallel MIS algoithm, and then tieat
each domain independently Another option is to 1un the sequential algorithm
on each processor ignoring the nodes on the boundary, and then patch up the

—+— Jacobi, 0 10

§ i Jacobi, 0 25
§ —,g——GS g10

x» G5,025 |

0 200 400 600 800
N(Nx Ngrid)

Fig. 4 Convergence 1ates for parallel AMG for the anisoliopic grid problem

giids on the processor boundaiies

6 Conclusions

Modein massively paiallel computing 1equires the use of scalable linear solvers
such as multigrid Foi unstructured-giid problems, howevet, scalable solvers have
not been developed Parallel AMG, when developed, promises to be such a solvex
AMG is divided into two main phases, the setup phase and the solve phase The
solve phase can be paiallelized using standaid techniques common to most paral-
lel multigrid codes Howevel, the setup phase coaisening algorithm is inhexrently
sequential in natuie '

We develop a family of algorithins for selecting coaise grids, and piototype
one member of that family using a sequential code Tests with the prototype
indicate that the quality of the selected coaise gids are sufficient to maintain
constant complexity and to provide convergence even for difficult anisotiopic
problems Howevei, convergence 1ates are higher than for standaid AMG, and do
not scale well with problem size We believe that this degtadation may be caused
by choosing too many coaise giid points at once, and that simple algorithmic
modifications may improve ou: 1esults Exploration of these algorithm variants
is the subject of our curient 1eseaich

References

1 S BaLAy, W Groprpr, L C MCINNES, AND B SuiTH, Petsc 2 0 user ’s manual,
Tech Rep ANL-95/11, Aigonne National Laboratory, Nov 1995

complexity

ol
W e Grd, 010
151 4=% =t =4 ——0p, 010
14 —&—Grd, 025
—%—0p, 025
05+
0 t 1 :
0 200 400 600 800
N(Nx Ngrkl)

Fig. 5 Operator complezity for parallel AMG on example problem

A BRANDT, Algebraic multigrid theory The symmetiic case, in Pieliminary Pro-
ceedings for the Inteinational Multigrid Conference, Copper Mountain, Colorado,
Apil 1983

A BRANDT, Algebraic multigiid theory: The symmetric case, Appl Math Com-
put, 19 (1986), pp 23-56

A Branpo1,S F McCoraick, ANDJ W RUGE, Algebraic multigrid (AMG) for
automatic multigrid solutions with application to geodetic computations Report,
Inst for Computational Studies, Foit Collins, Colo , October 1982

——, Algebraic multigrid (AMG) for sperse matriz equations, in Spaisity and Its
Applications, D J Evans, ed , Cambridge Univeisity Press, Cambidge, 1984

M BRrezINA, A J CLEARY, R D Farcour,V E HensonN,J E Jones, T A
MANTEUFFEL, S F McCorMICK, AND J W RuGe, Algebraic multigrid based
on element interpolation (AMGe) Submitted to the SIAM Jownal on Scientific
Computing special issue on the Fifth Copper Mountain Conference on Iterative
Methods, 1998

A J CLEARY, R D FaLcout, V E Henson, J E JoneEs, T A MANTEUF-
FEL, S F McCormick, G N MIRANDA, AND J W RUGE, Robustness and
scalability of algebraic multigrid Submitted to the SIAM Jownal on Scientific
Computing special issue on the Fifth Copper Mountain Conference on Iterative
Methods, 1998

R K GJERTSEN, JR ,M T JONES, AND P E PLASSMAN, Pasallel heuristics for
improved, balanced graph colorings, Jowrnal of Parallel and Distiibuted Computing,
37 (1996), pp 171-186

G GoruBovict AND C PoPA, Interpolation and related coarsening techniques for
the algebraic multigrid method, in Multigrid Methods IV, Pioceedings of the Fowth
Ewopean Multigiid Conference, Amsterdam, July 6-9, 1993, vol 116 of ISNM,
Basel, 1994, Birkhausel, pp 201-213

10

11

12

13

14

15

16

17

18

19

20

J E Jonks AND S F McCORMICK, Parallel multigrid methods, in-Parallel Nu-
merical Algoiithms, D E Keys, A H Sameh, and V Venkatakiishnan, eds , Doi-
diecht, Netherlands, 1997, Kluwer Academic Publications

M T Jones AND P E PLASSMAN, A parallel graph coloring heuristic, SIAM
Journal on Scientific Computing, 14 (1993), pp 654-669

G KaRypPiS AND V KUMAR, A coarse-grain parallel multilevel k-way partitioning
algorithm, in Proceedings of the 8th SIAM Conference on Parallel Piocessing for
Scientific Computing, 1997

M LuBY, A simple parallel algorithm for the mazimal independent set problem,
SIAM Jownal or Computing, 15 (1986), pp 1036-1053

S F McCORMICK, Multigiid methods for variational problems: genesal theory for
the V-cycle, STAM J Numer Anal, 22 (1985), pp 634-643

MPI FOoruM, MPI: A message-passing interface standard, International J Supei-
computing Applications, 8(3/4) (1994), pp 654-669

J W RuUGE aND K STUBEN, Efficient solution of finite difference and finite ele-
ment equations by algebraic multigrid (AMG), in Multigrid Methods for Integral
and Differential Equations, D J Paddon and H Holstein, eds, The Institute of
Mathematics and its Applications Conference Seiies, Claiendon Piess, Oxford,
1985, pp 169-212

, Algebraic multigrid (AMG), in Multigrid Methods, S F McCotmick, ed,
vol 3 of Fiontiers in Applied Mathematics, SIAM, Philadelphia, PA, 1987, pp 73-
130

K STUBEN, Algebraic multigrid (AMG) experiences and comparisons, Appl
Math Comput , 13 (1983), pp 419-452

K StiBEN, U TROTTENBERG, AND K WITSCH, Softwure development based on
multigrid technigues, in Proc IFIP-Conference on PDE Software, Modules, Inte1-
faces and Systems, B Enquist and T Smedsaas, eds , Sweden, 1983, Sodetkoping
P VANEk, J MANDEL, AND M BREZINA, Algebraic multigrid based on smoothed
aggregation for second and fourth order problems, Computing, 56 (1996), pp 179-
196

This article was processed using the IXTEX macio package with LLNCS style

SAMRAI

Structured Adaptive Mesh
Refinement Applications
Infrastructure

Technology

SAMRAI is an object-oriented
code framework that provides
computational scientists with
general and extensible software
support for rapid prototyping
and development of parallel
structured adaptive mesh
refinement (AMR) applications.
The primary goal of the SAMRAI
effort is to facilitate numerical
and algorithmic exploration in
AMR applications that require
high performance computing
hardware.

umerical simulations,
especially those involving
complex physical models

and large spatial domains, are very
expensive. In many applications of
interest to science and engineering,
the most important features of the
physical processes occur in local-
ized regions of the computational
domain. Uniformly fine computa-
tional grids with sufficient
resolution to capture these local
phenomena may be unnecessarily
fine outside the regions of interest.
As a result, such uniform grid simu-
lations can be inefficient or even
prohibitively expensive.
Structured AMR provides a
systematic way to focus computer
resources (CPU time and memory)
in local regions of a computational
domain by employing varying
degrees of spatial and temporal res-
olution. As such, AMR is an
important technology needed to
support large-scale, physically and
numerically well-resolved, three-
dimensional simulations.

University of California

&

Lawrence Livermore
National Laboratory

aqueous phase saturation

adaptive mesh configuration

Fig. 1. Adaptive mesh refinement concentrates computational effort near the aqueous phase

front in this polymer flooding simuiation.

Emerging AMR Application
Domains

Structured AMR has been
applied successfully to the numeri-
cal solution of systems of partial
differential equations associated
with fluid dynamics applications.
SAMRALI is being developed to sup-
port the extension of traditional
structured AMR methodology to
new problem areas (see Figs. 1 and
2). These include, but are not lim-
ited to, problems modeled by
tightly coupled systems of hyper-
bolic and elliptic or parabolic
partial differential equations (such
as hydrodynamics coupled with
radiation diffusion, flow and trans-
port in porous media, and
combustion), neutron transport,
hybrid models that combine vastly
different numerical methods (e.g.,
discrete and continuum), and Arbi-
trary Lagrangian Eulerian (ALE)
integration methods.

The application of AMR to these
non-traditional problem areas gives
rise to many interesting algorithmic,
numerical, and computer science
research questions. For example, the
equations of radiation hydrody-
namics—which simulate the
transport of radiation and its inter-
action with matter via radiation
emission and absorption—couple
hyperbolic hydrodynamics with

parabolic radiation-diffusion.
Developing radiation hydrodynam-
ics AMR applications requires new
solvers, new time integration meth-
ods, and extended data structure
support.

In collaboration with scientists at
LLNL, other DOE laboratories, and
academia, we are exploring open
research questions associated with
the application of AMR to these
non-traditional problem areas.

The SAMRAI Framework

Building AMR applications is
difficult and requires substantial
software and algorithmic develop-
ment. Experience has shown that
AMR applications require substan-
tially more complicated
programming and longer develop-
ment time than codes employing
simpler uniform computational
grids. AMR can be particularly chal-
lenging on parallel computers, since
the programmer is responsible for
managing and orchestrating com-
plicated communication patterns
among the processors of the
machine. The SAMRALI framework
facilitates the rapid prototyping of
various design alternatives by free-
ing scientists from low-level data
structure and algorithm manage-
ment, and other implementation
details.

UCRL-TB-128634

URL: httpAwww.linl.gov/CASC/SAMRAY

SAMRALI

Fig. 2. AMR and front tracking techniques
have been used to study the formation of
shear bands in granular materials.

The SAMRAI framework must be
applicable to a broad range of
structured AMR applications;
therefore, the design of the software
architecture reflects an emphasis on
generality and extensibility. Object-
oriented design techniques have
been applied throughout so that
data structures and algorithms can
be specialized and extended
through derivation. In particular,
SAMRALI's algorithmic framework
can be adapted for a particular AMR
application by derivation from
SAMRAL's abstract classes and
defining application-specific
operations (see Fig. 3). Also,
problem-dependent data types are
incorporated easily by exploiting
SAMRALI's flexible data structure
abstractions.

In summary, SAMRAI reduces
code duplication, encourages
interoperability of application
software, and simplifies the learning
curve for new computational
methods. SAMRALI's object-oriented
architecture provides the flexibility
to address a wide range of AMR
applications. The advantages of this
approach include reduced code
development time and broader,
more in-depth research into
numerical methods for AMR
applications.

SAMRAI Applications and
Framework Validation

In collaboration with scientists at
LLNL and academia, we are using
SAMRALI to develop applications in
the areas of computational fluid
dynamics, shear band formation in
granular flow, flow and transport in
porous media, and multi-physics
problems. In addition to producing
interesting scientific research, these
applications serve as a validation of
the SAMRALI software architecture
since they require Lubstantial data
structure and algorithmic flexibility.

One particularly interesting
application is multi-phase reactive
flow and transport in porous media.
The model equations contain general
mass balance for the chemical species,
general non-isothermal energy
balance, and a wide variety of
chemical reactions. The nonlinear
coupling of equations in this system
requires highly sophisticated linear
and nonlinear solution techniques.
The disparate length and time scales
over which the chemical and physical
mechanisms operate, along with the
transient nature of the important
phenomena, suggest that some form
of AMR is necessary to treat the
problem successfully. Developing

appropriate adaptive solution
algorithms for this problem area is a
challenging test for the SAMRAL
algorithmic framework. Complicated
domain geometry, including
subsurface fractures and faults, and
the need to represent different sets of
primary variables in different regions
of the physical domain (i.e., different
sets of phases, species, and reactions)
will motivate future development of
SAMRAI framework.

Other applications presently tar-
geted for SAMRAI development
include radiation hydrodynamics
simulations, for which hydrody-
namics equations of hyperbolic
character are coupled to parabolic
equations modeling radiation diffu-
sion, and high explosives
simulations in which various
processes (chemical, thermal, hydro-
dynamic, etc.) interact at different
length and time scales.

For additional information about the
SAMRALI project, contact Xabier
Garaizar (510-423-1521,
garaizar@linl.gov),

Richard Hornung (510-422-5097,
hornung@Iinl.gov), or

Scott Kohn (510-422-4022,
skohn@lInl.gov).

Time Refinement
Integrator

]b Level Integrator

!

l
Hyperbolic Level Mixed Level
Integrator Integrator

User-Defined Level
integrator

Hyperbolic

Patch Integrator

Abstract Classes
Concrete Classes

Euler Patch
Integrator

Navier-Stokes
Patch Integrator

Fig. 3. The SAMRAI software framework supports a variety of AMR application domains through a

careful object-oriented design.

Work performed under the auspices of the U.S. DOE by LLNL under contract No. W-7405-ENG-48

UCRL-JC-127598
PREPRINT

Software Abstractions and Computational Issues
in Parallel Structured Adaptive Mesh Methods
for Electronic Structure Calculations

S. Kohn
J. Weare
E. Ong
S.Baden

This paper was prepared for submittal to the

Workshop on Structured Adaptive Mesh Refinement Grid Methods
Minneapolis, MN
March 12-13, 1997

This isa preprint of a paper intended for publication in a journal or proceedings.
Since changes may be made before publication, this preprintis made available with
the understanding that it will not be cited or reproduced without the permission of the
author.

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor the
University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or the University of California, and shall not be used for advertising
or product endorsement purposes.

SOFTWARE ABSTRACTIONS AND COMPUTATIONAL
ISSUES IN PARALLEL STRUCTURED ADAPTIVE
MESH METHODS FOR ELECTRONIC STRUCTURE
CALCULATIONS*

SCOTT KOHN', JOHN WEARE?, ELIZABETH ONG! AND SCOTT BADENT

Abstract. We have applied structured adaptive mesh refinement techniques to
the solution of the LDA equations for electronic structure calculations. Local spatial
refinement concentrates memory resources and numerical effort where it is most needed,
near the atomic centers and in regions of rapidly varying charge density. The structured
grid representation enables us to employ efficient iterative solver techniques such as
conjugate gradient with FAC multigrid preconditioning. We have parallelized our solver
using an object-oriented adaptive mesh refinement framework.

Key words. Structured Adaptive Mesh Refinement, Electronic Structure Calcula-
tions, LDA, Paraliel Framework, Object Oriented Design.

1. Introduction. Electronic structure calculations attempt to accu-
rately model the chemical properties of important materials through com-
puter simulation. These computational methods complement traditional
“wet” laboratory experiments. They help scientists to understand and
predict the chemistry and structure of complex compounds. Simulations
can provide insight into chemical behavior and material structure that is
often unavailable from experiments; such insight can be used to guide the
design of new classes of materials with desired properties.

Computations at the quantum mechanical level require the solution
to some approximation of Schrédinger’s equation. The direct solution of
Schrédinger’s equation is currently computationally intractable except for
- the smallest of molecules, since problem size scales exponentially with the
number of electrons in the system. One common first-principles approxi-
mation—and the one we use here—is the Local Density Approximation
(LDA) of Kohn and Sham [19)].

Over the past thirty years, computational scientists have developed
various approaches to solving the LDA equations. The most common and
successful techniques in use today include Fast Fourier Transform (FFT)
methods that expand the LDA equations using a planewave basis set [23]

® This work has been supported by the NSF (ASC-9503997, ASC-9520372, and
CCR-9403864), AFOSR (F49620-94-1-0286), ONR (N00014-93-1-0152 and N00014-91-
J-1835), the UCSD School of Engineering, the San Diego Supercomputer Center, and
by LLNL under DOE contract W-7405-Eng-48.

t Center for Applied Scientific Computing (CASC), Lawrence Livermore National
Laboratory (LLNL), Livermore, CA.

? Department of Chemistry and Biochemistry, University of California at San Diego
(UCSD), La Jolla, CA.

§ Department of Mathematics, UCSD, currently visiting CASC.

1 Department of Computer Science, UCSD.

1

2 Kohn et al.

and LCAO (Local Combination of Atomic Orbitals) methods that use a
Gaussian basis set [2]. Other computational techniques include finite dif-
ference methods on uniform grids [9,6], wavelets [10,25], finite elements
with p-refinement (but not spatial refinement) [27], and adaptive coordi-
nate methods [13,14] that locally deform a logically rectangular mesh.

We are primarily interested in studying aperiodic systems that exhibit
multiple length scales and therefore require local spatial refinement [8].
Examples of such systems include metal-carbon clusters or molecules with
loosely bound, diffuse electrons. Ideally, our basis set should adapt to
local changes in the electronic charge density, such as near atomic centers.
Although LCAO methods support a form of local refinement, they do not
scale well with increasing system size and can be inefficient when coupled
to molecular dynamics. Planewave methods do not readily support local
adaptivity since Fourier basis functions cover all space; consequently, local
changes are propagated throughout the entire computational domain. The
adaptive coordinate method has been somewhat successful in supporting
spatial adaptivity; however, it is limited in the amount of local refinement
since large mesh deformations can result in numerical instabilities.

To address the limitations of current simulation techniques, we have
developed a prototype LDA code based on structured adaptive mesh re-
finement techniques using a finite element basis set. Adaptive methods
nonuniformly place computational effort and memory in those portions of
the problem domain with the highest error. Using our adaptive approach,
we have studied systems with very short length scales that would have been
difficult or infeasible with a uniform grid method.

In this paper, we describe some of the computational and numeri-
cal issues surrounding structured adaptive mesh refinement methods for
electronic structure calculations. In particular, the software infrastructure
needed to support these applications can become quite complex, especially
on parallel computers. We also present computational results for some
simple diatomic systems. Although our adaptive implementation is not yet
competitive with the more mature planewave methods, we have identified
changes that will improve the accuracy and competitiveness of the adaptive
approach.

This paper is organized as follows. Section 2 introduces the LDA equa-
tions, and Section 3 describes the numerical methods employed in solving
the LDA equations on a structured adaptive grid hierarchy. Section 4 pro-
vides an overview of the software framework and parallelization techniques.
Section 5 evaluates our approach for a few diatomic molecules with known
properties. Finally, Section 6 summarizes this work and highlights new
research directions.

2. The LDA Equations. In the Local Density Approximation, the
electronic wavefunctions are given by the solution of the nonlinear Kohn-

Parallel AMR for Materials 3

Sham eigenvalue equations
(21) Hepi = e,
where the symmetric, indefinite LDA Hamiltonian H is

_ 2
(2.2) H= (2V + Veze + Vu(p) + VzC(P)) :

Atomic units are assumed throughout this paper. The electronic charge
density is p(z) = Z.N=1 [l (2)||?, and N is the number of occupied electron
orbitals describing the system. The electronic charge density can be inter-
preted as giving the spatial distribution of the total electron charge. The
eigenvectors (or wavefunctions) y; are orthonormal and ¢; is an eigenvalue.
In general, we require the lowest N eigenvalues and associated eigenvectors.
For a typical system of interest, N is a few tens to a few hundreds, and
the number of basis functions used to describe each v; is on the order of a
quarter million.

The first term in the Hamiltonian operator represents the kinetic en-
ergy of a wavefunction. V.z¢ describes the interactions between an electron
and the nuclear ions. The Hartree potential Vg models electron-electron
repulsion and is the solution to the free-space or infinite domain Poisson
problem

(2.3) V2Vy(z) = —4np(z), Vi (z) = 0 as ||z|| — oo.

Vzc is the electron exchange-correlation functional and depends only on
the local charge density. In our implementation, we use the correlation
parameterization obtained by Vosko, Wilk, and Nusair [26]. Both Vy and
V. are functions of the electron density, which, in turn, depends on the
eigenfunctions; thus, the Kohn-Sham eigenvalue problem must be solved
self-consistently.

The length scale difficulties in the LDA equations arise in the accurate
representation of the external potential term V..., given by

(2:4) Vest(z) =) "z%)'{a—",

where the sum is over the atoms in the system, and atom a has nuclear
charge Z, and position X,. We have solved these “all-electron” problems
with the 1 singularity in V.., using our adaptive code but find that inner
core electrons, which play little—if any—role in chemical bonding, create
stiffness and conditioning problems for the discrete eigenvalue equations.
The core electron } singularities can be removed without much loss of
accuracy by replacing the Coulomb attraction of the atomic centers using
separable pseudopotentials {15,16]. For each species of atom a, we define a
collection of pseudopotentials V;* and corresponding pseudowavefunctions

4 Kobn et al.

uf that solve the single-atom LDA equations for the valence electrons alone.
The number of pseudopotentials in the expansion roughly depends on the
type of bonding behavior associated with the atom; typically, three or four
pseudopotentials are sufficient to approximate each atom. The V,,; term
in the Hamiltonian then becomes

(2.5) Vere(@)(z) = Y Vida(z)¥(z) +
YY) Gt @AV ()
a |,m
(2.6) AVR(z) = V() — ViealT)
@) o Juln@AVR(@)Y(z)d
‘ b Ju? (@ AVE (z)}, (z)dz

V3. is the local ionic pseudopotential and is typically chosen as the pseu-
dopotential V}* with the largest quantum number I.

The application of pseudopotentials significantly softens V,,,; however,
depending on the types of atoms in the molecule, V,.; may still be too stiff
for uniform grid methods. Pseudopotentials may be softened, but softening
can introduce artificial physics. Our adaptive approach has been motivated
by the need to accurately describe atoms such as oxygen or transition
metals with stiff pseudopotentials.

Note that we have presented the LDA equations assuming a restricted
spin formulation; that is, all up-spin electrons are paired with down-spin
electrons. In many molecules, however, spins are not paired and the Local
Spin Density (LSD) equations must be used instead. The LSD equations
are similar to the restricted spin equations given above except that the
exchange-correlation functional V.. is now a function of two densities, p¢
and p,, corresponding to the two types of electrons.

3. Computational Approach. We seek to accurately model
molecules containing atoms with steep pseudopotential representations,
such as oxygen, florine, or transition metals (see Section 5). To do so
requires some form of local spatial refinement about the atomic center to
capture the rapidly varying pseudopotentials.

Structured adaptive mesh refinement methods solve partial differential
equations using a hierarchy of nested, locally structured grids. All grids
at the same level of the hierarchy have the same mesh spacing, but each
successive level has higher spatial resolution than the ones preceding it,
providing a more accurate representation of the solution (see Figure 3.1).
Structured adaptive mesh techniques were originally developed for compu-
tational fluid dynamics [4,3].

We have implemented an LDA application using the techniques of
structured adaptive mesh refinement methods. Although the data represen-
tations are similar, our eigenvalue problem has very different mathematical

Parallel AMR for Materials 3

et e
- 4 = =
s s ERPYEREE P
& s . E.E
Grid Hierarchy ' Level 0 Level 1 Levei 2

F16. 3.1. Three levels of a structured adaptive mesh hierarchy. The eight dark circles
represent regions of high ervor, such as atomic centers in a materials design application.
The mesh spacing of each level is half of the previous coarser level.

properties than computational fluid dynamics and therefore requires differ-
ent discretizations and solver algorithms. The following Sections cover our
discretization approach and numerical algorithms in detail.

3.1. Finite Element Discretization. We discretize the Kohn-Sham
equations {Eq. 2.1) using the finite element method, which for our applica-
tion has a variety of advantages over competing discretization techniques.
Finite elements readily admit local adaptivity. Finite element basis func-
tions are very localized in space, interacting only with their immediate
neighbors, and therefore do not suffer from the scaling problems of LCAO
methods that use Gaussian basis sets. Finally, the finite element approach
provides a consistent framework for defining operators across coarse-fine
grid interfaces in adaptive grid hierarchies, as opposed to finite difference
or finite volume discretizations that can result in nonsymmetric operators
with complex Kohrn-Sham eigenvalues.

The finite element approach expands a function f(z) in a basm of M
functions {¢;(z)} with coefficient weights a;

M
f@) = a45(x).

=1

All spatially varying quantities in the LDA equations—including the wave-
functions ¢;, the charge density p, and the potentials V.., Vg, and V,.—
are represented by their discrete expansion coefficients as indicated above.
The Kohn-Sham equations are discretized using a Ritz formulation, result-
ing in the discrete nonlinear eigenvalue problem

3 [Vo9t [[1Vert + Vo) + Vil = & [301, 5 =1,...,

where the unknowns are the coefficients in the expansion of ;. Note that
we have shown only one wavefunction ; and one eigenvalue ¢; to simplify
the notation; the full Kohn-Sham equations involve a set of N ; coupled

6 Kohn et al.

through the charge density p. Our current code uses a 3d trilinear basis
element ¢; and approximates the rightmost two integrals in the above equa-
tion using the mid-point integration rule. The Hartree equation (Eq. 2.3)
and the pseudopotential equations (Egs. 2.5 through 2.7) are discretized in
a similar manner.

Numerical computations on structured adaptive meshes consist of local
array-based calculations on refinement patches and “fix-up” computations
on the boundaries of the patches. Since computations are over structured
domains, there is no need to explicitly create and store a sparse matrix.
Instead, all operations are performed matrix-free. For example, the code
to compute the discrete Laplacian operator on the interior of a grid patch
uses the standard second order finite element stencil; however, the form
of the stencil on coarse-fine grid interfaces becomes more complex. The
following Section describes how to manage the computation at interfaces
between coarse and fine grids.

3.2. Grid Interfaces. Our composite grid hierarchy uses node-
centered refinement, as this is the natural centering for a second order
linear finite element discretization. One difficulty with node-centered re-
finement on adaptive grids is that not all grid values are true degrees of
freedom; rather, some grid points are “slaved” to the values of other nodes
in the hierarchy. Here we refer to these grid points as “slave nodes.”

As shown in Figure 3.2, there are two types of slave nodes. In the
first case, the slave node adjoins a coarse grid cell. To maintain continuity
across grid interfaces, the value of the slave node must match the value at
the edge of the coarse grid cell. For linear elements, the fine grid slave node
is linearly interpolated from the two adjacent grid points. The second type
of slave node exists wherever two fine grid cells overlap. In this case, the
same degree of freedom is represented on two different refinement patches.
One of the replicated values must be designated as the “real” value (the
black point in the Figure) and the other as the “slave” (the grey point).
To differentiate between slave and free nodes, we impose an ordering on all
grid patches at one level of the refinement hierarchy. Degrees of freedom
on lower numbered patches are designated real nodes and all overlapping
nodes on higher numbered grids are marked as slave nodes. The numer-
ical algorithm must ensure that slave nodes remain consistent with their
corresponding degrees of freedom.

Recall that the calculation of an operator (e.g, the Laplacian) on the
interior of a grid patch uses the standard uniform grid stencil; however,
something special must be done on interfaces between coarse and fine grids.
To compute the operator at coarse grid points, it is sufficient to inject nodal
values from the fine grid into the coarse grid and then apply the uniform
stencil. The computation on the fine grid interface is more complicated,
especially in three dimensions. There are many interface cases to consider
(see Figure 3.3 for two examples), and it would be tedious to catalog the

Parallel AMR for Materials 7

Slave Nodes

FIG. 3.2. Slave nodes are mesh points that do not represent true degrees of freedom;
rather, they are “slaved” to the values of other nodes. The values of the fine grid slave
nodes on the left are determined by the finite element basis functions on the coarse grid.
For linear elements, slave node values are linearly interpolated from neighboring mesh
points. On the right, onc degree of freedom is represented on two different fine patches.
In this case, the nodes on the black patch are chosen as the true degrees of freedom and
the grey nodes are “slaved” to the black nodes.

appropriate stencils for these various cases.

Instead, we exploit the variational nature of the finite element formu-
lation to compute the operator on the exterior of fine grid patches. The
algorithm is as follows.

1. Whenever a new refinement level is created in the hierarchy, the
boundary points of each new fine grid patch are tagged as to the
refinement status of the cells adjacent to it. For example, the
center node in Figure 3.3a would be tagged to indicate that the
cells to the northwest and southwest are coarse cells. Likewise, the
center node in Figure 3.3b would have northwest, southwest, and
southeast tagged.

2. To compute the operator on the boundaries of the fine patch, first
add a ghost cell boundary layer two cells wide to each patch. Fill
the ghost cell region with interpolated coarse grid data. Then copy
into the ghost cells data from adjacent fine grid cells, overwriting
coarse grid data where there is overlap.

3. Apply the uniform grid stencil to the interior of the patch along
with the one ghost cell layer surrounding it.

4. Finally, iterate over all the points on the boundary of the fine grid
patch. Update the operator value by adding in the appropriately
weighted values from all surrounding nodes that are not true de-
grees of freedom on the fine grid. The weights are determined from
the finite element basis functions (see Figure 3.3).

Using this approach, there is no need to catalog all the various types of
stencils at the interfaces. Instead, a relatively simple procedure can be
used to compute stencil values directly. The only additional bookkeeping
is a flag for each point on the boundary indicating the type of refinement

8 Kohn et al.

Fi1G. 3.3. To compute the composite grid operator at grid interfaces, we first grow the fine
grid by two ghost cells and then epply the uniform grid stencil on the expanded domain.
We then fir the values on the boundaries of the original patch using weighted sums
of neighboring values. Shown here are the weights for the center node in the FPigure;
the weights are determined by the numerical values of the bilinear finite element at the
neighboring nodes. .

for the cells surrounding it.

3.3. Eigenvalue Solver. The Kohn-Sham equations (Eq. 2.1
and 2.2) pose a nonlinear eigenvalue problem. Standard eigenvalue solvers
such as Lanczos [12] are not appropriate, since the Hamiltonian may change
during the solution procedure due to the nonlinear coupling through the
electronic charge density. Using a naive algorithm, such as steepest de-
scent, would require extremely small step sizes (to guarantee convergence)
dictated by the smallest length scales in the system, resulting in numer-
ous iterations and unacceptably long solution times. Therefore, we use an
eigenvalue solver technique developed by Longsine and McCormick called
Simultaneous Rayleigh Quotient Minimization with subspace diagonaliza-
tion [20].)

The basic idea behind this approach is to take iterative steps that
minimize the Rayleigh Quotient

. f YHY
RQ(U) - j‘r’"o”

where H is the Hamiltonian (Eq. 2.2) of the Kohn-Sham equations. The
algorithm begins by freezing the nonlinear terms in the Hamiltonian. It
then cycles through the wavefunctions in turn. For each wavefunction yy,
it takes a few iterations of the form ¥ « ; + ad, where a minimizes
the Rayleigh Quotient for that wavefunction,

3!21\ RQ(\bi + ad)a

assuming all other wavefunctions are fixed. Under the assumption that the
Hamiltonian operator is approximately linear about the location y, the

Parallel AMR for Materials 9

method can compute the step size « efficiently without a nonlinear search.
The step directions d are generated via a CG-like process. After working
through all wavefunctions, the solver performs a subspace diagonalization
that accelerates the overall convergence of the method.

Our Rayleigh Quotient solver is essentially a band-by-band conjugate
gradient solver, similar to other methods used in the materials science com-
munity. Unfortunately, these methods suffer from ill-conditioning problems
with additional levels of refinement. We are actively pursuing a multilevel
preconditioning technique to reduce the dependence on the number of re-
finement levels and therefore speed convergence. We are considering either
a multigrid preconditioner {7] or a multilevel nodal basis preconditioner [5)].
Experiments by Sung, Ong, and Weare {24] for planewave methods show
the effectiveness of multilevel preconditioners for the eigenvalue equations.

3.4. Hartree Equations. Recall from Section 2 that the LDA
Hartree potential Vy is the solution to a free-space Poisson equation

(3.1) V2Vy(x) = —4np(z), Vi (z) = 0 as ||z]| = co.

Vy is a function of the electron charge density p, which depends in tum
on the wavefunctions ;. Thus, Vg must be recalculated many times dur-
ing the eigenvalue solution procedure. There are two parts to computing
Vi: (1) obtaining the Dirichlet boundary conditions on a finite computa-
tional domain, and (2) solving the resulting boundary value problem on a
nonuniform grid hierarchy.

3.4.1. Free-Space Boundary Conditions. Fast numerical meth-
ods such as multigrid require a finite computational domain with bound-
ary conditions g(z) on 8§:

(3.2) ViVy(z) = —4mp(z), Vy(z) = g(z) on 89.

Therefore, we must find a fast and accurate scheme for computing the
boundary values on 80 that would arise from free-space boundary condi-
tions on an infinite domain. We would prefer a method that scales as O(N)
since our multigrid solver scales linearly with the number of unknowns.
We can evaluate the potential on the boundaries of the computational
domain through a direct numerical integration of the Green's function

(3.3) g(z) = —4n /" @ ":(_yz’“dy, vz € 90.

However, this approach scales as O(N$). To reduce the computational
cost to O(N), we have developed a method that employs a multipole-
like approximation due to Anderson {1]. Instead of evaluating the Green’s
integral for each of the O(N#) boundary points in 89, we only evaluate
it at a small, constant number of points located on a sphere that encloses

10 Kohn et al.

0.0 os 1.0 15
Tine {meec) per Grid Point

Fi1G. 3.4. Preconditioning becomes essential with increasing local refinement. These
graphs compare the convergence of (a) an nonpreconditioned conjugate gradient method
with (b) a multigrid-preconditioned conjugate gradient solver as the number of levels of
adaptive refinement is varied. The number of iterations is approzimately proportional
to the time per grid point.

the boundary of the computational domain. Using the potentials at these
locations, we then approximate the true boundary values using Anderson’s
multipole expansion formula. With little loss in accuracy, this approach
reduces the overall computational cost from O(N $) to O(N). The current
method employs only 72 evaluation points but provides accuracy through
the first eight multipole moments.

Our approximation is justified when the boundaries of the compu-
tational domain are “well-separated” from the support of the electronic
charge density p. In practice, the boundaries are expanded so that each
dimension of the computational domain is approximately twice the size of
the support of the charge density. Uniformly spaced grids would therefore
require eight times more storage. However, because we employ nonuni-
form grid refinements, we can represent this “expanded” area using a very
coarsely spaced grid with little additional memory storage overhead.

3.4.2. FAC Multigrid Solver. One of the difficulties of solving the
Hartree equations on a composite grid hierarchy is that the condition num-
ber of the discrete Kohn-Sham equations is dependent on the number of
levels of refinement. As shown in Figure 3.4a, iterative methods such as
nonpreconditioned conjugate gradient require twice as many iterations to
converge with each new level of adaptive refinement (assuming a mesh re-
finement factor of two). Typical adaptive mesh computations such as the
ones presented in Section 5 need up to six levels of adaptive refinement,
resulting in perhaps sixteen times more iterations for a naive solver. Thus,
practical and efficient implementations of the adaptive method require so-
phisticated numerical algorithms and scalable preconditioners.

Adaptive codes represent PDEs on a hierarchy of grids at different
length scales; thus, it would seem appropriate to develop a multigrid-like

Parallel AMR for Materials 11

solver that could exploit this multiscale information and speed convergence.
The multigrid method is a highly efficient and practical solver for many
elliptic partial differential equations. Multigrid is optimal in the sense that
it converges in a constant number of iterations independent of the size of
the linear system of equations.

We have implemented a multigrid preconditioner to accelerate the com-
putation of the Hartree potential (2.3). We use a variant of multigrid for
structured adaptive mesh hierarchies called FAC (Fast Adaptive Compos-
ite) [21}. The advantage of FAC over competing adaptive multigrid meth-
ods is that it provides a consistent framework for applying the composite
grid operator at interfaces between fine and coarse grids.

Figure 3.4b illustrates the performance of our Hartree solver with the
FAC preconditioner. (Although we could use FAC by itself without CG,
the conjugate gradient wrapper provides some extra robustness to the it-
erative solver.) Preconditioning significantly reduces the time to solution,
especially for adaptive mesh hierarchies with many refinement levels. For
example, for an adaptive mesh with five levels of refinement, the FAC solver
reduces the Hartree residual by more than twenty orders of magnitude in
the same time that the standard conjugate gradient method reduces it by
only two orders of magnitude.

4. Software Framework and Parallelism. Structured adaptive
mesh applications are difficult to implement on parallel architectures be-
cause they rely on dynamic, complicated data structures with irregular
communication patterns. On message passing platforms, the programmer
must explicitly manage data distribution across the processor memories and
orchestrate interprocessor communication. Such implementation difficul-
ties soon become unmanageable and can obscure the mathematics behind
the algorithms.

To simplify the implementation of our application, we have developed
an object-oriented adaptive mesh software infrastructure in C++ that pro-
vides high-level support for structured adaptive mesh applications. The
main components of our framework are illustrated in Figure 4.1. MPI {22]
is a basic message passing coordination and communication substrate. We
have used KeLP [11] to parallelize work at one level of the mesh hierarchy.
KeLP provides powerful mechanisms that manage data decomposition and
interprocessor communication for irregular block-structured applications
running on parallel architectures. KeLP adds very little execution-time
overhead to MPI but can significantly reduce the bookkeeping complexity
for dynamic block-structured codes. On top of KeLP, we have built func-
tionality to support collections of levels arranged in an adaptive mesh hi-
erarchy. Finally, the LDA application layer defines problem-specific classes
such as molecule descriptions and energy functionals.

4.1. Parallelization Approach. Typically, parallelism in structured
adaptive mesh applications lies across patches at a particular level of the

12 Kohn et al.

r N Application specific classes (LDA energy
LDA Application functionals, numerical solvers, molecule
N descriptions, preconditioners, etc.)

Adaptive Mesh Generic support for collections of levels
Infrastructure arranged in an adaptive mesh hierarchy

-

KeLP provides parallel coordination
KeLP and communication across one level
of the hierarchy

Basic message passing substrate

FiG. 4.1. Our LDA application support framework consists of three layers of C++
classes built on top of the MPI message passing system.

grid hierarchy. For example, the FAC multigrid method (see Section 3.4.2)
cycles through levels sequentially but can compute in parallel across the
refinement patches at each level. Thus, a natural data decomposition as-
signs each patch to a single processor. This is KeLP’s data decomposition
model.

Parallel loops over patches are executed as follows. First, the frame-
work uses KeLP’s communication schedule building mechanisms to describe
the data motion that must take place to satisfy data dependencies. These
descriptions of data motion can be quite complex. For example, the proper
management of the slave nodes shown in Figure 3.2b implies that the slave
values must not be included in data dependence computations since they
do not represent actual degrees of freedom. If these slave nodes were com-
municated, their values might overwrite valid data. Next, this description
is executed, forcing communication between processors via MPI's message
passing mechanisms. The actual communication of data is managed by
KeLP and is invisible to the programmer. Finally, now<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>