
Approved for public release; further dissemination unlimited

Preprint
UCRL-JC-148375

The Computational
Complexity of the
Minimum Degree
Algorithm

P. Heggernes, S.C. Eisenstat, G. Kumfert, A. Pothen

This article was submitted to
14th Norwegian Computer Science Conference, Oslo, Norway,
November 26-28, 2001

May 15, 2002
Lawrence
Livermore
National
Laboratory

U.S. Department of Energy

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and shall
not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited or
reproduced without the permission of the author.

This report has been reproduced directly from the best available copy.

Available electronically at httu: / /www.doc.gov/bridpe

Available for a processing fee to U.S. Department of Energy
And its contractors in paper from

U.S. Department of Energy
Office of Scientific and Technical Information

P.O. Box 62
Oak Ridge, TN 37831-0062
Telephone: (865) 576-8401
Facsimile: (865) 576-5728

E-mail: reuorts@adonis.osti.eov

Available for the sale to the public from
U.S. Department of Commerce

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900

E-mail: orders@ntis.fedworld.gov
Online ordering: hm: / /www.ntis.eov/orderinP.htm

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library

http: / /www.llnl.gov/ tid/Library.html

mailto:orders@ntis.fedworld.gov
http://www.llnl.gov

The Computational Complexity of
the Minimum Degree Algorithm *

P. Heggernest S. C. Eisenstatt G. Kumferts A. Pothen7

Abstract

The Minimum Degree algorithm, one of the classical algorithms of sparse matrix
computations, is widely used to order graphs to reduce the work and storage needed
to solve sparse systems of linear equations. There has been extensive research involv-
ing practical implementations of this algorithm over the past two decades. However,
little has been done to establish theoretical bounds on the computational complexity
of these implementations. We study the Minimum Degree algorithm, and prove time
complexity bounds for its widely used variants.

1 Introduction and motivation
One of the most famous and well studied problems of graph theory is the problem of
adding as few edges as possible to a given graph so that the resulting graph is chordal.
This is called the minimum fill problem, and it has applications in many areas within
computer science, especially in sparse matrix computations [5, 9, 10, 11, 121. As the
minimum fill problem is NP-hard [14], several heuristics have been proposed to find low
fill. One of the most famous and widely used of these heuristics is the Minimum Degree
(MD) algorithm [6, 8, 131.

One rigid requirement of a practical MD implementation is that its space complexity
should be linear in the size of the input graph. Several algorithmic variants of the h4D al-
gorithm have been developed since it was first proposed in 1957, and these enhancements
reduce the running time of the algorithm or reduce the fill generated by the ordering.
However, the theoretical time complexity of the practical MD algorithm has never been
established. Now that the increasing power of modern microprocessors enable us to order

*This work was supported by the National Science Foundation grant DMS-9807172, by the Department
of Energy under subcontract B347882 from the Lawrence Livermore National Laboratory, and by NASA
under contract NAS1-97046 while the last author was in residence at ICASE, NASA Langley Research
Center, Hampton, VA 23681-2199. This research was initiated while the first author was visiting Old
Dominion University in June 2000.

t Department of Informatics, University of Bergen, NO-5020 Bergen, Norway.
pinar.heggernes@ii.uib.no

*Department of Computer Science, Yale University, New Haven, CT 06520-2825 USA. stan-
ley.eisenstat@yale.edu

§Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, CA 9455 1-0808
USA. kumf ert@llnl . gov

‘Department of Computer Science, Old Dominion University, Norfolk, VA 23529-0162 USA.
pothen@cs . odu. edu and ICASE, NASA Langley Research Center, Hampton, VA 23681-2199 USA.
pothen@icase.edu. A part of this work was done while the author was at the Computer Science
Research Institute at Sandia National Labs, Albuquerque, NM.

mailto:ley.eisenstat@yale.edu
mailto:pothen@icase.edu

very large graphs (with millions of vertices), the asymptotic bounds obtained from the
theoretical analysis could be met on some large worst-case examples. Our aim in this pa-
per is to study the MD algorithm, explaining the steps in its modem implementation, and
to give a theoretical time bound on its running time. We will also show with an example
that the time bound presented is tight on general graphs.

This paper is organized as follows: We provide the necessary graph theoretical back-
ground in Section 2. In Section 3, the various MD algorithms are described and their
time complexity is analyzed, along with examples on which the bounds are attained. We
conclude in Section 4.

2 Graph elimination and fill
A graph G = (V, E) consists of a set V of vertices (or nodes), and a set E 2 V x V
of edges. Vertices u and w are adjacent, or neighbors, if (u, w) is an edge in E. An
ordering a : V -H { 1,2, ..., n} of G is a permutation, or a numbering, of its vertices; here
n]VI. The graph G ordered by a is denoted by G,, however we will omit the subscript
when the ordering is clear from the context. If the vertices of G are ordered already, we
will write V = {1,2, ..., n}. The set of vertices adjacent to a vertex i in G, is denoted
by a d j G (i) . The degree of i in G is d G (i) = ladjG(i)I . For a set of vertices X c V ,
ad j (X) = UiExadj (i) - X , and the external degree of X is ladj(X) 1. A set K of vertices
is an independent set if no pair of vertices in K is adjacent. A set C of vertices is a clique
if every pair of vertices in C is adjacent.

A chord in a cycle is an edge that connects two non-consecutive vertices of the cycle.
A graph is chordal if every cycle with more than three edges contains a chord.

2.1 Elimination graph model
A graph model of the Cholesky factorization of a sparse matrix A is given in the algorithm
[9] shown in Figure 1. This algorithm is often referred to as the elimination game.

Go = G;
f o r i = l t o n d o

Add edges as necessary to make all neighbors of vertex i in Gi-1 pairwise adjacent;
Remove the vertex i and all edges incident to i;
Denote the resulting graph by Gi;

Figure 1 : The elimination game.

The input to the elimination game is G = G(A). Before elimination, we assume an
ordering on the vertices of G. At each step i, the neighborhood of vertex i is turned into
a clique, and i is deleted from the graph. This is referred to as eliminating vertex i, and
the graphs Gi = ({i + 1, ..., n}, Ei) are called elimination graphs. (The set Ei contains
the edges in the ith elimination graph Gi.) TheJilled graph G+ = (V, E+) is obtained by
adding to G all the edges added by the algorithm. Thus E+ = UyziEi, and the set ofJill
edges is F = E' \ E. We will let m IEI and m+

Fulkerson and Gross [3] showed that the filled graphs resulting from this algorithm
are exactly the class of chordal graphs. Different filled graphs result from processing the
vertices of G in different orders. Thus in order to find a low fill, it is important to find a

!E+].

good order on the vertices of the given graph before running elimination game. Finding
an ordering that results in the minimum fill is an "-hard problem [14].

2.2 The minimum degree idea
The minimum degree idea aims to minimize fill locally at each step i of the elimination
game by choosing to eliminate a vertex with the minimum degree in the elimination graph
Gi-1. The algorithm starts by assuming that there is no numbering on the vertices, and
chooses a vertex in G with the minimum degree to be numbered and eliminated first.
At each following step i, a vertex of minimum degree in Gi-l is chosen as vertex i and
eliminated, and ties are broken arbitrarily. This is clearly a greedy algorithm, with no
guarantees on the quality of the resulting ordering. However, the orderings produced by
minimum degree are surprisingly good with respect to fill in practice.

The time complexity of this approach is definitely O(nm+), since all degrees in Gi-1
can be computed in O(m+) time at each step i. However, this requires O(n + m+) space,
violating the O(n + m) space requirement.

2.3 Supernodes
In a graph G, two adjacent vertices u and w are said to be indistinguishable if adj(u) U
(u} = adj(w) U {w}. Clearly, if u and w are indistinguishable then they have the same
degree, and if one of them, say u, is eliminated, no new fill edges joining w to any other
neighbor of u are created. The degree of w will decrease by one (to reflect the elimination
of u) in the remaining graph. Thus if one of them is among the vertices with minimum
degree, then they both are, and after the elimination of one, the other will continue to
be among the vertices with minimum degree in the next elimination graph. For this rea-
son, both vertices could be eliminated at the same step, and numbered consecutively in a
minimum degree ordering.

It is shown in [5] that two vertices that become indistinguishable at one step of the
elimination game remain indistinguishable for the rest of the algorithm. In addition, they
can be eliminated together whenever one of them is chosen for elimination [6]. Thus
for purposes of the MD algorithm, the two vertices can be merged into a supernode and
treated as one vertex for the remainder of the algorithm. This is called mass elimination
in MD implementations.

At the beginning of the algorithm, all vertices are supernodes of size one. Then during
the algorithm, indistinguishable supernodes are merged together as they are detected. It is
common to use the external degrees of supernodes [7]: the external degree of a supernode
is the number of vertices adjacent to it that belong to other supernodes. The weight of a
supernode is the number of vertices that are absorbed in it.

2.4 Quotient graph model
In the elimination graph model, the graph shrinks by one vertex at each step, but it might
grow by many edges, and thus require significantly more space than the original graph.
Quotient graphs [4] enable the ordering algorithm to use space bounded by the size of the
original graph (O(n + m) space), and are used in all modern implementations of MD.

The quotient graph B consists of two types of nodes: snodes and enodes. Initially, BO
is identical to the elimination graph Go and consists of only snodes (supernodes). When
an snode is eliminated, it is not removed from the quotient graph, but it becomes an enode

2 reach (3) = {5, 6)

4 reuch(4,5,6)= { }

Figure 2: The elimination process illustrated with elimination graphs (column on the left)
and quotient graphs (column on the right).

(eliminated supernode). In Figure 2, an example of the elimination is shown with both
elimination graph and quotient graph representations. The snodes are drawn as circles,
and enodes are drawn as squares. The adjacency set of an snode in the quotient graph is
divided into its s-adjacency and its e-adjacency. The set of snodes adjacent to an snode T

is denoted by sadj(r), and the set of enodes adjacent to T is denoted by eadj(r). Thus in
the quotient graph, a d j (~) = sadj(r) U eadj(r).

The reachable set of an snode T , reach(r), is the union of its s-adjacency and the
snodes that it can reach through paths consisting of only enodes, and thus it corresponds
to the neighbors in the elimination graph: reuchGi (T) = adjGi (T). Consequently, to de-
termine the next vertex to eliminate in MD, the sizes of the reachable sets of all candidate
snodes must be computed. In order to make this more efficient, neighboring enodes are
merged together so that a path consisting of only enodes is now shortened to one enode.
Hence, reach(r) = sadj(r) U (UeEeadj(r)Sadj(e)).

When an snode T is eliminated, T and all the enodes that are neighbors of T are merged
into one enode. If T does not have any neighboring enodes then it becomes an enode by
itself. The elimination of T could cause changes in the adjacency sets of other snodes as
well. If two snodes become indistinguishable, they are merged together. If two adjacent
snodes T and s have an enode e as a neighbor, then the edge joining T and s can be
deleted from the quotient graph since it is redundant. (The snodes T and s are adjacent in
the elimination graph since they are reachable from each other through e in the quotient
graph.) This process is illustrated in Figure 2. The numbers in the middle indicate step
k of the elimination process. The graphs on the left side represent the elimination graphs
Gk, and the ones on the right side represent the quotient graphs G k for each k.

3 Minimum Degree algorithms in detail
In the previous section, we introduced the idea of the minimum degree algorithm by con-
sidering the elimination of a single vertex in an elimination graph. However, practical
implementations use the quotient graph data structure, and eliminate supernodes. In this
section we present detailed algorithmic descriptions of several MD algorithms; all these
are modern implementations based on quotient graphs and use the tools described in Sec-
tion 2.4. Since we use the external degree of a supernode, the computed ordering might
not in some cases correspond to a strict minimum degree ordering. However, the use of
external degree tends to give better results than exact degree in practice [7].

3.1 Original Minimum Degree
The original MD algorithm, enhanced by the techniques mentioned in Section 2.4, is
presented in Figure 3. We only discuss the details of the most time consuming steps.

Asymptotically, the costliest operation in MD is the degree update. After a vertex
has been eliminated, the graph changes, and the degrees of the remaining nodes have to
be recomputed in order to choose a vertex of minimum degree. Thinking in elimination
graph terms, it is easy to see that only the neighbors of the eliminated vertex need to
have their degrees recomputed. In the quotient graph, this corresponds to reachGk,_, (uk),
where Uk is the supernode eliminated at step k. Thus we need to compute the reachable
set of the snode to be eliminated. After the elimination, the snodes in the reachable set
examine their own reachable sets to find their new degrees. These two steps correspond
to the major steps in the MD algorithm described in Fig. 3.

We now study the time complexity of the MD algorithm given in Figure 3. Let np
denote the total number of supernodes eliminated. At each step k, when snode uk is to be
eliminated in gk-1, the following steps are performed:

1. The enodes adjacent to uk are merged into uk.

2. The snodes adjacent to Uk and the snodes adjacent to the enodes merged with Uk are
included in the reachable set. Note that each snode appears once in the reachable
set since we mark the snodes when they are reached the first time. The computed
reachable set is equal to reachGk-, (uk).

3. For each snode T in the reachable set, we count each of its neighboring snodes s
and each of its neighboring enodes e in Gk-1 exactly once.

4. Finally, for each enode e that we reach in this fashion, the s-adjacency of e is also
examined. This is done exactly once for each enode e in the e-adjacency of each
snode T in the reachable set. However, in the worst case, the same enode e can
belong to the e-adjacency of every snode T in the reachable set. Thus the adjacency
of e might have to be examined once for every snode in the reachable set. This is
illustrated in Figure 4.

As a consequence, the number of edges examined during a run of the algorithm is
expressed as follows:

Go = G;
Compute initial supernodes and their weights;
Compute initial degrees;
mark = 0; k = 0; t = 0;
while there are snodes in G k do

k = k + l ;
choose 'LLk to be an snode of minimum degree;
replace mode 'Ilk with enode U k ;

{ 1. Find the reachable set of 'ilk }
t = t + 1; reach = {};
{ la. Include snodes adjacent to Uk in reachable set }
for each snode T E SUdj(Uk) do

{ lb. Process enodes adjacent to Uk and include snodes adjacent to them in the reachable set }
for each enode e E eadj(uk) do

mark(r) = t; reach = reach U r ;

for each snode r E sadj(e) with mark(r) < t do

merge e into U k ;

mark(r) = t; reach = reach U r ;

Detect new supernodes;
Form updated quotient graph G k ;

(2. Update the degrees of snodes in the reachable set of ?Lk }
for each snode T E reach do

t = t + 1; mark(r) = t; degree(r) = 0;
{2a. Examine snodes adjacent to T }
for each snode s E sadj(r) do

(2b. Examine enodes adjacent to T and snodes adjacent to the enodes }
for each enode e E eadj(r) do

mark(s) = t; degree(r) = degree(r) + weight(s);

for each snode s E sadj(e) with mark(s) < t do
mark(s) = t;
degree(r) = degree(r) + weight(s);

n, = k;

Figure 3: The MD algorithm.

Figure 4: The local graphs searched by (a) the MD and MMD algorithms, and (b) the
AMD algorithm. The node uk is the current snode being eliminated; it becomes an enode
in this step. The square nodes denote enodes, the hatched circles denote snodes in the
reachable set of uk, and the open circles denote additional snodes examined to update the
degrees of the snodes in the reachable set. The thick lines represent edges that might be
traversed several times at each step.

All sets appearing in this expression should have subscript Gk-1 since we are considering
adjacencies in this quotient graph.

Theorem 1 The running time of MD is O(n2m).

Proof: Resolving the above sum term by term, the adjacencies of all the nodes in the
graph is O(m). The sum of the s-adjacencies of the enodes examined at a step is also
O(m). The reach set is bounded by O(n); and the number of edges examined when
considering the s-adjacencies of the reach sets is O(m). Thus the running time of MD is
O(n(m + (nm))) = O(n2m).

Depending on the graph and the snodes, np might be quite smaller than n, making the
given theoretical bound too pessimistic. The graph needs also to be quite dense to meet
the given bound, and as we get more and more cliques new supernodes will probably be
formed, decreasing np. However, we will show at the end of this section that the given
bound is tight by showing a simple graph that meets the given bound.

3.2 Multiple Minimum Degree
The Multiple Minimum Degree (MMD) algorithm, an improvement over the MD algo-
rithm, was proposed by Liu [7]. Consider an independent set K of vertices. The elim-
ination of a vertex in K cannot change the degree of any other vertex in this set, since
no two vertices in K are adjacent. If we include only vertices of minimum degree in K ,
then clearly after the elimination of any vertex in K , the other vertices of K will still be
among the minimum degree vertices at the next elimination step. The idea of the MMD
algorithm is to eliminate a maximal independent set of minimum degree vertices before
doing a degree update. At each step i of the algorithm, an independent set Ki of minimum
degree vertices are found. These are eliminated and vertices adjacent to them are marked
as vertices whose degrees need to be updated. The degrees of all the marked vertices are
updated only after all the vertices in Ki are eliminated. In the quotient graph model, the
set of snodes whose degrees need to be updated is the union of the reachability sets of
the snodes in Ki. If these reachability sets have snodes in common, fewer degree updates
would be needed than in the hCD algorithm.

Go = G;
Compute initial supernodes and their weights;
Compute initial degrees;
murk = 0; i = 0; t = 0;
while there are snodes in Gi do

i = i + l ;
choose Ki to be an independent set of snodes of minimum degree;
t = t + 1; updute = {};
{ 1. Eliminate snodes in Ki ;}
{ updute is the union of the reachability sets of these snodes. }
for each snode k E Ki do

murk(k) = 00;

for each snode T E sudj(k) do

for each enode e E eadj(k) do
murk(r) = t; updute = updute U r;

for each snode r E sudj(e) with murk(r) < t do
m m k (r) = t; updute = updute U T ;

(2. Update quotient graph after eliminating snodes in Ki.)
for each snode k E Ki do

replace snode k with enode k;
merge k and eudj(k) to one enode;

Detect new supernodes;
Form Gi ;
(3. Compute degrees of each snode in the updute set.)
for each snode T E updute do

t = t + 1; murk(r) = t; degree(r) = 0;
for each snode s E sudj(r) do

for each enode e E eudj(r) do
murk(s) = t; degree(r) = degree(r) + weight(s);

for each mode s E sudj(e) with murk(s) < t do
murk(s) = t; degree(r) = degree(r) + weight(s);

n h = i;

Figure 5: The MMD algorithm.

When the MMD idea is implemented with supernodes instead of single vertices, the
assumed current minimum degree might become inaccurate. Since we use external de-
grees for snodes, eliminating an snode in the independent set K might actually cause
an snode outside of K to acquire an external degree lower than that of any of the other
snodes in K. In this case, eliminating the snodes of K before other snodes of possibly
lower degree will generate a slightly perturbed minimum degree ordering. However, in
practice the quality of the orderings from the MMD algorithm is usually even better than
orderings from the MD algorithm with respect to fill.

If all the independent sets are of size one, then the work of MMD is equal to that of
MD. The difference is that degree update is done less frequently when the independent
sets are not just singletons. Let Ki be the set of independent supernodes that are elimi-
nated at step i, and let nh be the total number of steps. For each snode k E Ki, we will
do the same work as for each 'ilk in the MD algorithm to find reach(uk). However, the
degree update is performed on all the snodes of reach(&) at the same step i. Adding up
the operations of the algorithm in a straight forward manner, we get:

Theorem 2 The running time of MMD is O(n2m).

Proof: The analysis is similar to the MD algorithm. At most O(n) snodes can be in the
total reachable set, and thus the time complexity of MMD is also O(n(m + (nm))) =
O(n2m). ~7

For the MMD algorithm, the gap between nh and n is even larger. Thus we can expect
better performance of MMD than the given bound on average. However, the example at
the end of this section shows that the given bound is tight.

3.3 Approximate Minimum Degree
Like MD, and unlike MMD, the Approximate Minimum Degree (AMD) algorithm is a
single elimination algorithm; hence the degree and graph updates are performed after a
single supernode is eliminated. The idea of the AMD algorithm is to compute an upper
bound on the degrees inexpensively instead of computing the exact degrees, and to use
this upper bound as an approximation to the degree for choosing supernodes to eliminate.

Let us define the weight of an snode to be the number of nodes in the original graph
Go that are members of the supernode. We also define the weight of an enode e to be
the sum of the weights of the snodes adjacent to it in the current quotient graph, Le.,
weight(e) = &sadj(e) weight(s). Let r be an snode whose degree is to be updated. The
degree of r cannot be greater than the sum of the weights of all the snodes and the enodes
adjacent to it in the current quotient graph. AMD starts with this upper bound as an
approximation for the degree of r. However, the s-adjacency sets of the enodes in eadj(r)
might overlap, making the bound too loose, and causing a large gap between the real
degree and the approximated degree bound of r. This gap can be reduced by computing
a quantity diae) associated with each enode [l, 21 to remove some of the overlap in the
adjacency sets.

Let Uk denote the snode that is eliminated at step I C . It is then merged with all of its
e-neighbors, and the weight of the new giant enode u k in the quotient graph Gk becomes
the sum of the weights of all the snodes r E reachp,-, (u k) :

Since each snode r in the reachability set above is a neighbor of enode u k in Gk, the
value weight(uk) will be added to the approximate degree of r. Therefore, for all the
other enodes e E eadj(r) where e # U k , to prevent double counting, we should include
in weight(e) only the contribution from the weights of the snodes disjoint from those
in the reachability set; i.e, we should sum only the weights of snodes s E sadj(e) \
reachpk-, (u k) instead of summing the weights of all snodes in sadj(e).

We define a di8 function for enodes e E eadj(reachGk-, (u k)) in the quotient graph
Gk as

weight(e) if e = u k ,

weight(e) - &E(reachpk-l (uk)nsadj(e)) weight(r) if e # u k .
di#(e) =

The approximate degree of r E reachGk-, (u k) can be then computed from:

adegree(r) = weight(uk) + weight(s) + diJg (e).
S E S U d j (r) eEeadj(reach(uk))

The AMD algorithm is described in Figure 6. The local graph that is searched is
shown in Fig. 4. Note that now each edge in this local graph is examined at most twice,
once from each of its endpoints.

Go = G;
Compute initial supernodes and their weights;
for each snode T E Go do

sdegree(r) = 0;
for each snode s E sadj(r) do

sdegree(r) = sdegree(r) + weight(s);
mark = 0; k = 0; t = 0;
while there are snodes in Gk do

k = k + l ;
{ 1. Eliminate an snode 'llk and compute its reachable set.}
choose U k to be an snode of minimum approximate degree;
kweight = Weight(Uk);
replace snode U k with enode U k ;

t = t + 1; reach = {}; Weight(Uk) = 0;
{la. Include snodes adjacent to Uk in the reachable set}
for each snode T E sadj(uk) do

mark(r) = t; reach = reach U r ;
weight(uk) = Weight(Uk) + weight(r);
sdegree(r) = sdegree(r) - kweight;

{ lb. Include snodes that are neighbors of enodes adjacent to U k in the reachable set }
for each enode e E eadj(uk) do

for each snode r E sadj(e) with mark(r) < t do
mark(r) = t; reach = reach U r ;
weight(uk) = weight(uk) + weight(r);

let U k absorb e;
Detect new supernodes; Form G k ; t = t + 1;
{2a. Compute dine) for enodes adjacent to snodes in the reachability set.}
for each snode T E reach do

i fmark(e) < t then

else

for each enode e E eadj(r), e # U k do

difle) = weight(e) - weight(r); mark(e) = t;

difle) = difle) - weight(r);
{2b. Compute approximate degrees for snodes in the reachability set.}
for each snode r E reach do

adegree(r) = sdegree(r) + Weight(Uk) - weight(r);
for each enode e E eadj(r), e # Uk do

adegree(r) = adegree(r) + difle);
np = k;

Figure 6: The AMD algorithm.

Because of the increased difficulty of finding the set intersections, multiple elimi-
nation is usually not implemented in AMD. Without the multiple elimination, the total
number of steps in the AMD algorithm is:

Theorem 3 The running time of AMD is 0 (nm).

Proof: In the expression above, the second and the third terms together is O(m). Hence
the complexity is O(n(m + m)) = O(nm). 0

For AMD, Amestoy, Davis, and Duff [l] have shown a tighter time complexity of
O(m+) on bounded degree graphs, when quotient graphs are employed to satisfy the
O (n + m) space bound.

3.4 Examples that meet the bounds
Consider the following graph on 8k + 1 vertices (shown in Figure 7 for k = 1): There are
4k “outer” vertices 21, . . . , x4k, 4k “inner” vertices 91, . . . , y4k, a “hub” vertex z, an edge
between each xi and each yj with li - j l # 2k, and an edge between each yj and z.

Figure 7: An example on which MD requires O(n2m) time.

Clearly MD eliminates the 4k outer vertices first and, with the right tie-breaking
strategy, does so in the order xl, . . . , x g k . At the time that each of the k outer vertices
xk+l, . . . , 2 2 ~ is eliminated, it is distinguishable and adjacent to at least k distinguish-
able inner vertices (including y1, . . . , yk). Each of these inner vertices is adjacent to at
least k unmerged enodes (including xl, . . . , xk), and each of these enodes is adjacent to
at least k distinguishable inner vertices (including y1, . . . , yk). Thus the total work to up-
date degrees while eliminating these outer vertices is f2(k4). Consequently, MD requires
O(n2m) time on this example since n = 8k + 1 and e = 4k2. By the same arguments,
AMD requires O(k3) = O(nm) time on the same example.

An example for MMD is slightly more complicated. Beginning with the graph above,
add a clique with 4k vertices c1,. . . , c4kr add edges between xi and c1, . . . , ci-1 for each
i, add edges between each yj and each ce, and add edges between z and each q. Then
MMD first eliminates the outer vertices one at a time in the same order as above, so the
work is again f2(k4), resulting in O(n2m) time.

4 Conclusions
We have given a thorough analysis of the MD algorithm together with its variants MMD
and AMD. Based on quotient graph implementations and O(n + m) space requirement,
we have established an O(n2m) time bound for MD and MMD, and an O(nm) bound for
AMD. Note that these bounds are for nearly dense graphs. Fortunately, these bounds are
not often observed for problems that are solved in practice. A further development of this
work is to identify graph classes with provably better MD time complexities.

Acknowledgments. We thank Prof. Tim Davis of the University of Florida for his
helpful comments.

References
[l] P. AMESTOY, T. A. DAVIS, AND I. S. DUFF, An approximate minimum degree

ordering algorithm, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 886-905.

[2] T. A. DAVIS AND I. S. DUFF, An unsymmetric-pattern multifiontal method for
sparse LU factorization, SIAM J. Matrix Anal. Appl., 18 (1996), pp. 140-158.

[3] D. R. FULKERSON AND 0. A. GROSS, Incidence matrices and interval graphs,
Pacific J. Math., 15 (1965), pp. 835-855.

[4] J. A. GEORGE AND J. W. H. LIU, A quotient graph model for symmetric factoriza-
tion, in Sparse Matrix Proceedings 1978, I. S . Duff and G. W. Stewart, eds., SIAM
Publications, 1978, pp. 154-175.

151 - , Computer Solution of Large Sparse Positive Definite Systems, Prentice-Hall
Inc., Englewood Cliffs, New Jersey, 1981.

C61 - , The evolution of the minimum degree ordering algorithm, SIAM Review, 31
(1989), pp. 1-19.

[7] J. W. H. LIU, Mod@cation of the minimum degree algorithm by multiple elimina-
tion, ACM Trans. Math. Software, 11 (1985), pp. 141-153.

[8] H. M. MARKOWITZ, The elimination form of the inverse and its application to
linear programming, Management Science, 3 (1957), pp. 255-269.

[9] S. PARTER, The use of linear graphs in Gauss elimination, SIAM Review, 3 (1961),
pp. 119-130.

[lo] D. J. ROSE, A graph-theoretic study of the numerical solution of sparse positive
definite systems of linear equations, in Graph Theory and Computing, R. C. Read,
ed., Academic Press, New York, 1972, pp. 183-217.

[ll] D. J. ROSE, R. E. TARJAN, AND G. S. LUEKER, Algorithmic aspects of vertex
elimination on graphs, SIAM J. Comput., 5 (1976), pp. 266-283.

[12] R. E. TARJAN, Graph theory and Gaussian elimination, in Sparse Matrix Compu-
tations, J. R. Bunch andD. J. Rose, eds., Academic Press, 1976, pp. 3-22.

[13] W. F. TINNEY AND J. W. WALKER, Direct solutions of sparse network equations
by optimally ordered triangular factorization, Proceedings of the IEEE, 55 (1967),
pp. 1801-1809.

[14] M. YANNAKAKIS, Computing the minimumfill-in is NP-complete, SIAM J. Alg.
Disc. Meth., 2 (1981), pp. 77-79.

