
Preprint
UCRL- JC- 146233

Treating a User-Defined
Parallel Library as a
Domain-Specific Language

D.J. Quinlan, 6. Miller, M. Schordan, 6. Philip

This article was submitted to
7th International Workshop on High-Level Programming Models and
Supportive Environment, Ft. Lauderdale, FL, April 15-1 9, 2002

November 19,2001

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited
or reproduced without the permission of the author.

This report has been reproduced directly from the best available copy.

Available electronically at htttx / /www.doc.Pov/bridge

Available for a processing fee to U.S. Department of Energy
And its contractors in paper from

U.S. Department of Energy
Office of Scientific and Technical Information

P.O. Box 62
Oak Ridge, TN 37831-0062
Telephone: (865) 576-8401
Facsimile: (865) 576-5728

E-mail: reDorts@ado nis.osti.gov

Available for the sale to the public from
U.S. Department of Commerce

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900

E-mail: prders@ntis. fedw orld. POV
Online ordering: htb: / /www.ntis.cov /orderinc.htm

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library

http: / /www.llnl.gov/ tid/Library.html

Treating a User-Defined Parallel Library
as a Domain-Specific Language

Daniel J. Quinlanl, Brian Miller', Markus Schordan', and
Bobby Philip'

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory, Livermore, CA, USA

Abstract. An important purpose of a programming language is to in-
sulate the programmer from low level details and provide a high enough
level of abstraction to be productive and develop reasonabily portable ap-
plication codes. For these reasons scientific programming is longer done
using assembly language. But high performance of scientific applications
often requires that critical sections of code be expressed at a particu-
larly low level to avoid inefficencies introduced by the comiler (function
call overhead, poor cache use, etc.). The use of high-level abstractions
exaserbates this problem since the compiler is often unable to generate
the equivalent low-level code required for good performance. The result
is often significantly degraded performance.
Libraries provide a way for domain specific knowledge to be developed
for large numbers of users. Libraries thus simplify the development of
many application codes and the work spent building libraries can be
amortized across large numbers of applications and application develop-
ers. Such a hierarchy puts langages and compilers at the root of tree of
abstractsions developed within numerous libraries at one level and nu-
merous applications at a second level. Libraries provide a way to define
high-level abstractions.
We have developed specific libraries to simplify the development of serial
and parallel scientific applications. The A++/P++ library provide an
essential array abstraction for C++ scientific applications. The effect is
to provide a single array abstraction that permits the development of
serial code (using A++). The serial application code using the array
abstractions need only be recompiled (using P++) to run on parallel
distributed memory machines. The resulting abstractions are simple and
powerful since it simplifies serial application code and even completely
hides parallel details. But since it operates as a library the compiler
is oblvious to its semantics and likewise the library is oblivious to the
context of the use of its abstractons within the users application code.
It is discouraging that the development of efficient code from high-level
abstractions is blocked by compilers that are unable to use very specific
high-level semantics essentially because it is user-defined.
In this paper we show how high-level serial and parallel libraries have
been used to simplify the development of scientific applications and how
with the specific semantics of such high-level abstractions we can develop

preprocessors that don’t extend the C++ language but instead permit
the user-defined semantics of the high-level abstractions to be leverages
together with the context of the high-level abstractions within the user’s
application to optimize the performance of the final application code.

1 Introduction

The future of scientific computing depends upon the development
of more sophisticated application codes. The original use of Fortran
represented higher-level abstractions than the assembly instructions
that preceded it, but exhibited performance problems that took years
to overcome. However, the abstractions represented in Fortran were
standardized within the language; today’s much higher-level object-
oriented abstractions are more difficult to optimize because they are
user-defined.

The introduction of parallelism greatly exacerbates the compile-
time optimization problem. While serial languages serve well for par-
allel programming, they know only the semantics of the serial lan-
guage. As a result a serial compiler cannot introduce scalable parallel
optimizations. Significant potential for optimization of parallel ap-
plications is lost as a result. There is a significant opportunity to cap-
italize upon the parallel semantics of the object-oriented framework
and drive significant optimizations specific to both shared memory
and distributed memory applications.

We present a preprocessor based mechanism, called ROSE, that
optimizes parallel object-oriented scientific application codes that
use high-level abstractions provided by object-oriented libraries. In
contrast to compile-time optimization of basic language abstractions
(loops, operators, etc.), the optimization of the use of library ab-
stractions within applications has received far less attention. With
ROSE, library developers define customized optimizations and build
specialized preprocessors. Source-to-source transformations are then
used to provide an efficient mechanism for introducing such cus-
tom optimizations into user applications. A significant advantage of
our approach is that preprocessors can be built which are tailored
to user-defined high-level abstractions, while vendor supplied C++
compilers know only the lower-level abstractions of the C++ lan-

guage they support. So far, our research has focused on applications
and libraries written in C++.

This approach permits us to leverage existing vendor C++ com-
pilers for architecture specific back-end optimizations. Significant im-
provements in performance associated with source-to-source trans-
formations have already been demonstrated in recent work, under-
scoring the need for further research in this direction.

Other work exists which is related to our own research. Internally
within ROSE a substantially modified version of the SAGE II [7]
AST restructuring tool is used. Nestor [9] is a similar AST restruc-
turing tool for Fortran 77, Fortran 90, and HPF2.0, which, however,
does not attempt to recognize and optimize high-level user-defined
abstractions. Work on MPC++ [lo, 111 has led to the development of
a C++ tool similar to SAGE, but with some additional capabilities
for optimization. However, it does not attempt to address the sophis-
ticated scale of abstractions that we target or the transformations
we are attempting to introduce.

Related work on telescoping languages [8] shares some of the
same goals as our research work and we look forward to tracking
its progress in the coming years. Other approaches we know of are
based on the definition of library-specific annotation languages to
guide optimizing source code transformations [12] and on the specifi-
cation of both high-level languages and corresponding sets of axioms
defining code optimizations [13].

Work at University of Tennessee has lead to the development of
Automatically Tuned Linear Algebra Software (ATLAS) [5]. Within
this approach numerous transformations are written to define a search
space and the performance of a given architecture is evaluated. The
parameters associated with the best performing transformation are
thus identified. Our work is related to this in the sense that this is
one possible mechanism for the identification of optimizing transfor-
mations that could be used within preprocessors built using ROSE
to optimize application codes. Our approach to the specification of
transformations in this paper is consistent with the source code gen-
eration techniques used to generate transformations within ATLAS.

The remainder of this paper is organized as follows. In section 2
we give a survey on the ROSE infrastructure; we describe the pro-
cess of automatically generating library-specific preprocessors and

explain their source-to-source transformation mechanisms. The main
focus of this paper is on the specification of these source-to-source
transformations by the developer of the library. We will thus discuss
two alternative specification approaches and an AST query mecha-
nism in section ??. In section 4 we finally summarize our work.

2 ROSE Overview

We have developed ROSE as a preprocessor mechanism because our
focus is on optimizing the use of user-defined high-level abstractions
and not on lower-level optimizations associated with back-end code
generation for specific platforms. Our approach permits ROSE to
work as a preprocessor independent of any specific C++ compiler.

In the following we will briefly describe the internal structure of
a preprocessor which has been automatically generated using ROSE;
particularly the recognition of high-level abstractions (section 2.1),
the overall preprocessor design (section 2.2), and finally the specifi-
cation of the transformations (section ??), which is the main focus
of this paper.

2.1 Recognition of Abstractions

We recognize abstractions within a user’s application much the same
way a compiler recognizes the syntax of its base language. To rec-
ognize high-level abstractions we build a hierarchy of high-level ab-
stract grammars and the corresponding high-level ASTs using ROSE.
This hierarchy is what provides for a relationship to telescoping lan-
guages [8].

These high-level abstract grammars are very similar to the base
language abstract grammar - in our case an abstract C++ gram-
mar. They are modified forms of the base language abstract gram-
mar with added terminals and non-terminals associated with the
abstractions we want to recognize. They cannot be modified in any
way to introduce new keywords or new syntax, so clearly there are
some restrictions. However, we can still leverage the lower-level com-
piler infrastructure; the parser that builds the base language AST.
New terminals and nonterminals added to the base language ab-
stract grammar might represent specific user-defined functions, data-

structures, user-defined types, etc. More detail about the recognition
of high-level abstractions can be found in [3]

2.2 Preprocessor Design

L .- I," I

2
* Recognition of High-Level Abstractions .-
3 m * * * m w

0
v)
v)
a, AST Transformation
0
0-

- Construction of Hierarchy of ASTs

m
L - -

~

?i

ROBE UnpaW

Fig. 1. Source-to-source C++ tran
frastructure.

1 with preprocessors using the

Figure 1 shows how the individual -4STs
quence of steps: automatically nerated translators generate higher
level ASTs from lower level ASTs. The following describes these
steps:

1. The first step generates the Edison Design Group (EDG) AST.
This ilST has a proprietary interface and is translated in the
second step to form the abstract C++ grammar's -4ST.

2. The C++ AST restructuring tool is generated by ROSETTA [l]
and is essentially comformant with the SAGE I1 implementation.
This second step is representative of what SAGE I1 provides and

presents the AST in a form where it can be modified with a non-
proprietary public interface. At this second step the original EDG
AST is deleted and afterwards is unavailable.

3. The third step is the most interesting since at this step the ab-
stract C++ Grammar’s AST is translated into higher level ASTs.
Each parent AST (associated with a lower level abstract gram-
mar) is translated into all of its child ASTs so that the hierarchy
of abstract grammars is represented by a corresponding hierarchy
of ASTs (one for each abstract grammar). Transformations can
be applied at any stage of this third step and modify the parent
AST recursively until the AST associated with the original ab-
stract C++ grammar is modified. At the end of this third step
all transformations have been applied.

4. The fourth step is to traverse the C++ AST and generate opti-
mized c++ source code (unparsing). This completes the source-
to-source preprocessing.

An obvious next and final step is to compile the resulting opti-
mized c++ source code using a vendor’s c++ compiler.

3 Performance Measurements

We wish to compare the parallel performance of a ROSE-transformed
C++ code to an HPF implementation solving the same problem. We
choose to solve the simple partial differential equation (PDE)

Where we fix an exact solution ue = (1 + t) (2 + x + y) which we
use to determine the forcing f(z, y, t) and boundary conditions for
the PDE. The domain f2 is the unit square (z, y) E [0,1] x [0,1]. We
use centered finite differences to discretize the z and y derivatives,
and the leap frog method to advance in time. This numerical method
is formally second order accurate and thus solves the PDE exactly.
We use this fact to ensure the correctness of our implementation and
to detect any errors introduced by the optimizing compiler.

Our C++ implementation takes advantage of restricted point-
ers. That is, pointers are guaranteed to have no aliases. With this
assumption, the code should perform as well as a FORTRAN 77 im-
plementation. To test this for the platform of interest, we construct
three smaller test codes that simply apply a five point stencil opera-
tion and then copy one array to another. This loop test was written
in FORTRAN 77, ANSI C, and ANSI C++.

Our test machine is ASCI Blue Pacific at LLNL. This IBM ma-
chine consists of 256 compute nodes, each node containing 4 332MHz.
PowerPC 604e CPUs with 1.5 GB of RAM. Our initial test was to
confirm that our loop test codes written in C and C++ could indeed
achieve F77 performance levels when run on a single processor. Ta-
ble 3 shows the compiler options used to compile each version of the
loop test. This table also shows the total computation time for the
loop test, 100 repetitions of applying a five point stencil operation
and copying one 1000x1000 array to another.

xlf -qarch=auto -04 -qhot

xlc -qalias=allp -qunroll=6
- 0 5 -qarch=auto -qtune=auto -qcache=auto

- 0 3 +K3 -qmaxmem=8192
-backend ” -05 -qalias=allp -qunroll=6”

KCC -restrict -abstract-pointer

.169 s.

.159 s.

.158 s.

These results confirm that under the right conditions, namely
using restricted pointers and aggressive optimization, C and C++
code can achieve FORTRAN like performance. We next turn to our
intended target, a performance comparison of the numerical solution
of the linear PDE (I), (2), and (3).

Each code partitions the computational domain into strips per-
pendicular to the x-axis. The HPF code represents the solution val-
ues using its intrinsic distributed arrays. The C++ code uses the
P++ parallel array class library to do the same. We have tested
three P++ based codes using various levels of abstraction available
in P++. Two scaling studies are presented. The first keeps the ar-
ray size fixed as the number of processors grows from 1 to 64 while

the second test fixes the array size per processor for all numbers of
processors.

np(HPFIP++ HighlP++ MedlP++ Low
1 I 39.5 I I 133.9 1 38.8
2 23.3
4 14.0

16 3.9
_ - I I

64 I I 3.65 I 1.4
Table 2. Scaling for constant size problem

P++ High represents using the highest level of abstractions
available in P++, with the resulting code looking very much like
HPF. P++ Med uses a lower level API to access C++ objects local
to each processor. P++ Low is the lowest level API available in
P++ using pointers to data local to each processor. This code has at
its core loops over C arrays, but also achieves HPF like performance.
The ROSE-preprocessed code will use this level of abstraction to
meet our performance requirements.

Table 3 indicates that although all versions of the code scale
equally, only the version of the code using the lowest level API
achieves the performance of HPF. In Table 3 we see as before, that
all versions of the code scale similarly, but only the C++ version
using the lowest level P++ API achieves HPF performance.

nplHPFIP++ HighlP++ MedlP++ Low
1 1 I I

8
16
32
64

Table 3. Scaling for constant size per processor problem

4 Conclusions

ROSE is a library to simplify the construction of optimizing pre-
processors. The specification of the transformation is done within
the program that is compiled to be the preprocessor. This program
leverages both the ROSE library for internal infrastructure and the
source code generated by ROSETTA (part of ROSE). Source code
generated by ROSETTA implements AST restructuring tools corre-
sponding to abstract grammars and higher-level abstractions, this
source code is compiled to build the preprocessor. Infrastructure
within ROSE permits the specification of transformations, either di-
rectly modifying the AST or indirectly through the specification of
source-strings which are processed to form AST fragments which are
used to modify the AST.

We have presented the ROSE infrastructure to automatically
generate library-specific source-to-source compilers (preprocessors).
These preprocessors can be used to optimize the use of high-level
abstractions in parallel object-oriented applications.

We have presented two basic approaches for specifying transfor-
mations. While our first approach of direct AST construction turned
out to be tedious (especially for complex cache-based transforma-
tions), our second approach, which leverages the compiler front-end
instead, provides an elegant and comfortable alternative.

References

1. Quinlan, D., Philip, B., ”ROSETTA: The Compile-Time Recognition Of Object-
Oriented Library Abstractions And Their Use Within Applications”, Proceedings
of the PDPTA’2001 Conference, Las Vegas, Nevada, June 24-27 2001

2. Quinlan, D., ”ROSE: Compiler Support for Object-Oriented Frameworks”, Parallel
Processing Letters, Vol. 10, also Proceedings of Conference on Parallel Compilers
(CPC2000), Aussois, France, January 2000.

3. Quinlan, D. Schordan, M. Philip, B. Kowarschik, M. ”Parallel Object-Oriented
Framework Optimization”, (submitted to) Special Issue of Concurrency: Prac-
tice and Experience, also in Proceedings of Conference on Parallel Compilers
(CPC2001), Edinburgh, Scotland, June 2001.

4. Brown, D., Henshaw, W., Quinlan, D., ”OVERTURE: A Framework for Complex
Geometries”, Proceedings of the ISCOPE’S9 Conference, San Francisco, CA, Dec
7-10 1999.

5. ATLAS homepage, http: / /wv.net l ib .org/at las .
6. Edison Design Group, http: //m. edg . corn.

7. Bodin, F. et. al., "Sage++: An object-oriented toolkit and class library for building
fortran and C++ restructuring tools", Proceedings of the Second Annual Object-
Oriented Numerics Conference, 1994.

8. Broom, B., Cooper, K., Dongarra, J., Fowler, R., Gannon, D., Johnsson, L.,
Kennedy, K., Mellor-Crummey, J., Torczon, L., "Telescoping Languages: A Strat-
egy for Automatic Generation of Scientific Problem-Solving Systems from Anno-
tated Libraries", Journal of Parallel and Distributed Computing, 2000.

10. Ishikawa, Y., et. al., "Design and Implementation of Metalevel Architecture in
C++ - MPC++ Approach -", Proceedings of Reflection'96 Conference, April
1996, more info available at: http: / /@sum. rwcp. or. jp/mpc++/mpc++. html.

11. Chiba, S., "Macro Processing in Object-Oriented Languages", Proc. of
Technology of Object-Oriented Languages and Systems (TOOLS Pacific
'98), Australia, November, IEEE Press, 1998, more info available at:
http://ww.hlla.is.tsukuba.ac.jp/Nchiba/openc++.html.

12. Guyer, S.Z., Lin, C., "An Annotation Language for Optimizing Software Li-
braries", Proceedings of the Second Conference on Domain-Specific Languages,
October 1999.

13. Menon, V., Pingali, K., "High-Level Semantic Optimization of Numerical Codes",
Proceedings of the ACM/IEEE Supercomputing 1999 Conference (SC99), Port-
land, OR, 1999.

14. Bassetti, F., Davis, K., Quinlan, D., "Optimizing Transformations of Stencil Op-
erations for Parallel Object-Oriented Scientific Frameworks on Cache-Based Ar-
chitectures" Proceedings of the ISCOPE'98 Conference, Santa Fe, NM, 1998.

15. WeiB, C., Karl, W., Kowarschik, M., Rude, U., "Memory Characteristics of Itera-
tive Methods", Proceedings of the ACM/IEEE Supercomputing 1999 Conference
(SC99), Portland, OR, 1999.

16. Lemke, M., Quinlan, D., "P++, a C++ Virtual Shared Grids Based Program-
ming Environment for Architecture-Independent Development of Structured Grid
Applications", published as part of CONPAR/VAPP V, September 1992, Lyon,
fiance; also published in Lecture Notes in Computer Science, Springer Verlag,
September 1992.

17. Parsons, R., Quinlan, D., "A++/P++ Array Classes for Architecture Indepen-
dent Finite Difference Computations", Proceedings of the Second Annual Object-
Oriented Numerics Conference, pages 408-418, Sunriver, OR, April 1994.

9. Silber, G.-A., http: //www.ens-lyon.fr/-gsilber/nestor.

