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AMRH and the high energy Reinicke problem?

A. 1. Shestakov and J. A. Greenough

Lawrence Livermore National Laboratory
Livermore CA 94550

E-mail: shestakov1@llnl.gov, greenoughl@llnl.gov

We describe AMRH results on a version of the Reinicke problem speci-
fied by the V&V group of LLNL’s A-Div. The simulation models a point
explosion with heat conduction. The problem specification requires that
the heat conduction be replaced with diffusive radiation transport. The
matter and radiation energy densities are tightly coupled.

1. INTRODUCTION

We present results obtained with the AMRH code® on the high energy Reinicke
problem, as specified by the Validation and Verification (V&V) group of LLNL’s A
Division. Since the Reinicke problem has been previously described by Reinicke and
Meyer-ter-Vehn (RMV) [1], Shestakov [2], and Shestakov et al [3], our introduction
will be terse. Whenever possible, we use the same variable definitions as RMV and
use CGS units. Our methodology for comparison, location of shock and thermal
fronts, etc. is the same as [3], §2.1

As originally prescribed by RMV, the problem simulates a point explosion in an
ideal gas. Thus, the EOS is

p=(-1pe=(y—1)cpT,

where + is the specific heat ratio, p denotes pressure, p — density, e — specific internal
energy, T — temperature, and ¢, — the specific heat (¢, = de/dT).

The gas motion is governed by the Euler equations for hydrodynamics enhanced
by the addition of a diffusive flux of thermal energy. Specifically, the energy equa-
tion has the additional term: —V H where the heat flux

H=—xop"T'VT,

and xgq, a, and b are constants.

T This work was performed under the auspices of the U.S. Department of Energy by the Uni-
versity of California, Lawrence Livermore National Laboratory under contract number W-7405-
ENG-48.

1In Apr. 01, RAPTOR and AMRH were the names of the code and project respectively.
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2 SHESTAKOV & GREENOUGH

Because some codes do not have heat conduction packages, the V&V group mod-
ified RMV’s original formulation and modeled heat conduction using radiation dif-
fusion. To this end, the term —V H is replaced by the radiation-to-matter coupling
term

K=cpskp(B—-E,),

where c is the speed of light, kp is a coupling parameter, F, is the radiation energy
density, and the integrated Planck function,

B = (40/c)T*, (1)
where o is the Stefan-Boltzmann constant. The radiation field evolves per,
oE, =VD,VE, + K, (2)
where the radiation diffusion coefficient,
D, =c¢/3kg .

The above prescription reduces to RMV’s original formulation. First, consider
the matter energy balance equation,

pOe =pe, O,T = —K . (3)

Next, assume tight coupling between matter and radiation and a power law pre-
scription for the radiation mean-free-path, i.e.,

kp>1 and kKr=kgrop"T ", (4)

where kg, m, and n are constants. In this limit, £, — B. Hence, using (1), (2)
and (4) reduce to

O E, + pc,0;T = VD'VT (5)

where D' = (160 /3kr,0) p~ ™ T"+3. On the left-side of (5), using CGS units, the
first term is approximately 7.57 - 10715 8,(T*). Thus, if p = ¢, = O(1), and if T is
not too large, the first term may be neglected leaving the desired expression,

pey&T = VD'VT = V(x0 p* T°VT) ,

where xo = (160/3kR,0), @ = —m, and b = n + 3. We emphasize that the assump-
tion T' = O(1), which allowed us to neglect the first term on the left-side of (5), is
violated in the initial stages of the simulation at small r, since at t = 0, T' o §(r).
Thus, only after an initial transient should we expect the numerical solution to
approach the one derived by RMV.

We use parameter settings conveyed by J. Bolstad [4] of the V&V group. The
initial density satisfies,

pli=o = gor"
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where go and k are constants. The initial energy — all internal — is concentrated at
the center of a sphere,

(PE)t=0 = (pe)t=o0 = Eod(r) .
Outside of the central region, the gas is cold, i.e., p = T = 0. The remaining
constants are,

7:7/57 CV:]./("}/—].), a:_2a b:63 gOZXOZ]-' (6)

The problem is then completely determined once k and & are specified.
RMYV show that if k is given by,

k=(1-6b)/(2b—2a+1),

then, the problem may be redefined as a system of ODEs for the reduced (nondi-
mensional) variables,

£ =r/(t) (7)
U(§) = u(r;t)/(ar/t) (8)
0() = TT(r,t)/(ar/t)® (9)
G(&) = p(r,t)/ (90") 5 (10)

where the constant { depends on a certain integral of the reduced equations [1],
a=2/(k+5), I'=c¢/(v-1),

and u is the physical velocity.
For comparison with integrations of the reduced variables, it is useful to combine
the physical parameters into one nondimensional value

A= (2x0/T"* gt ) - (Eo/g0 )"~ "/?

which characterizes the solution. For large A, one obtains the “large £” or “super-
sonic” case which we have simulated. This regime is characterized by two expanding
waves; a heat front at » = r(t) ahead of a shock at r = r4(¢). By self-similarity,
both r, and rs evolve as t®. Thus, the constant ratio

R=rp/rs (11)

is a metric which gauges the accuracy of the numerical solution.

Of course, R is not the only characteristic of interest. The shape of T'(r) depends
on the specific choice for v, a, and b. For the set of values discussed in [1], [2], and
[3], max(T") occurs at 7 = 0. For the present V&V specification, it arises at r = rs.

Unfortunately, we do not know of an apriori way to compute R for a given set
of physical parameters. Previous work [2] and [3], by trial and error, obtained
parameter settings yielding R ~ 2.0 and for those settings A = 3.3685 - 10!* For
the settings (6), in order to also obtain R ~ 2, we use,

& = 135.0,
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which yields,
A =1.042- 102

2. NUMERICAL RESULTS

We now present results from two AMRH simulations. Both discretize the domain
0 < r < 1.0 into N uniform cells. The simulations use N = 256 and 512. The
simulations run to

t = tmax = 0.06

Figure 1 displays the profiles at the final time. By inspection, we find r;, ~ 0.98 and
rs & 0.47. Qualitatively, the agreement between the N = 256 and 512 simulations
is good, although there are noticeable differences: The front ry for N = 512 is
slightly further out and at r = 0, Ts12 < Tas6. Since the densities are in good
agreement and since T « e, this is in line with the expectation that the ratio of
total internal energy to the total energy,

Re = (/pedV) / &

is approximately the same. For our simulations
Reg =0.63565, 0.63873

for N = 256, 512 resp.

Besides the differences in 7', Fig. 1 shows that the densities generally agree, expect
for their maxima; max(pssg) is 3.8% lower than the corresponding maximum for
N = 512. The other maxima are in closer agreement; max(uzs6) is within 0.3% of
max(us12) and max(Thse) is within 0.5% of max(Ts12). However, taking a cue from
the behavior of p for the original RMV parameters ([3], §2.1), we should not expect
good agreement since p is so peaked at r = r,.

Another noticeable feature in Fig. 1 is the “step” in u and p at r = 0.21 for the
N = 256 case. To a lesser extent, this error persists for N = 512 and is evidenced
by the slight wave in the u profile at r ~ 0.29. This glitch is a remnant of the
early transient, and goes away as the solution is refined, or, for a fixed mesh size,
as the problem evolves and more points are enveloped by the outgoing waves. As
a side comment, the early transient is unphysical. At early time, p has two local
maxima; one at r = 0 and another at » = r,. What happens is that p(t = 0),
which monotonically decreases away from the origin, must “flip over” to resemble
the self-similar result in which p monotonically increases away from r = 0. This
transition occurs gradually. When the “shock” first forms, it arises a few cells away
from r = 0 and at that time, max(p) still occurs at the origin.

We now display plots evidencing the self-similarity of the numerical solution.
Because of the early transients, it makes no sense to analyze the solution too early
in time. One must wait for numerical self-similarity to establish itself. We note
that the waiting time depends on the resolution. If properly scaled, the numerical
solution with h = 1/256 is nearly identical to the one with h = 1/512. Proper
scaling requires that the time steps evolve “proportionate” time steps, e.g., limiting



HIGH ENERGY REINICKE PROBLEM 5
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FIG. 1. Line plots of p, T, and u at final time. Curves are normalized to the respective

maxima of the results for N = 512.

At with a small Courant number, and comparing when the two solutions have
enveloped the same number of cells.

Figure 2 which displays the ratio R — see (11) — shows that for N = 512, R
appears to be stabilizing at R ~ 2.08 The N = 256 case appears to be still
increasing at ¢ = tmax; the run concludes with R = 2.045 yielding approximately
a 2% discrepancy. One should not expect too much accuracy in the definition of
R since it depends on how rg and r, are defined. Numerically, these values are
subject to interpretation errors of O(h), see [3], §2.1

We next compute three quantities that display self-similarity of the numerical
solution. Recalling (8), (9), and (10), we plot max(u, T, p) taking care to scale the
variables in order to obtain values that should be time-independent. Figures 3, 4,
and 5 resp. display the scaled velocity, temperature, and density. For the scaling,
the variables are evaluated at r = r; which we define as the position where p attains
its maximum.

Figures 3, 4, and 5 further attest to the establishment of self-similarity, albeit
showing how long it takes for it to develop. For example, although Figs. 3 and 4
imply that by ¢t = 0.03 and N = 512, both » and T have attained self-similarity
(since the scaled maxima vary only in the third decimal digit), Fig. 5 implies that
even at t = 0.06, the scaled maximum of p still varies its second digit. However,
care should be exercised before judging. Since, p is so highly peaked at r = ry, it
takes a long time before we can trust more than two digits of max(p).

Lastly, we derive an estimate for ( — see (7). First, using the Fig. 2 result,
R = 2.08, and recalling RMV’s convention that £ = 1 at r = r,, (7) shows that
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rheat/rshock vs. time
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FIG. 2. Ratio R=r7p/rs vs. t
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FIG. 3. Normalized maximum velocity max(u) / (ars/t) vs. t.
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max(T)/(alpha*rshock/time)**2 vs. time
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FIG. 4. Normalized maximum temperature max(T) / (ars/t)? vs. t.

max(rho)/rshock**kappa vs. time
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FIG. 5. Normalized maximum density max(p) /r¥ vs. t.
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& =R =208 at r = rp. This in turn yields,

¢=319

3. CONCLUSION

Using the AMRH code in 1D, spherical coordinates, we have simulated a high-
energy Reinicke problem for two discretizations. We demonstrated that as time
evolves, the numerical solution approaches self-similarity. The simulation was run
using the code’s hydrodynamic module and radiation diffusion modules. The latter,
developed by L. Howell of LLNL [5], was run in backward Euler, fully implicit mode.
The radiation module, which couples the radiation diffusion and matter energy
balance equations, for each time cycle, solves a nonlinear system of equations. The
module solves for the radiation energy density E, and specific internal energy e.
For this problem, because of the ideal gas EOS, e ~ T'. Thus, the nonlinearities
are due to the dependencies B o« T* and kg o T~". The code uses CGS units.
For the simulation, we set the coupling parameter kp = 10'°. For the Rosseland
opacity kg, defined in (4), we used kg = 160/3, m =2, and n = 3.
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