
U.S. D~ ~artment of Energy

Livermore
National
Laboratory

UCRL-ID-146558

The Advantages of High
Order Schemes and How
to Confirm These
Advantages

L. Jameson

November 26, 2001

Approved for public release; further dissemination unlimited



DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use wo.uld not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising orproduct endorsement purposes.

This work was performed under the auspices of the U. S. Department of Energy by the University of
California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

This report has been reproduced directly from the best available copy.

Available electronically at http://www.doe.govlbridge

Available for a processing fee to U.S. Department of Energy
and its contractors in paper from

U.S. Department of Energy
Office of Scientific and Technical Information

P.O. Box 62
Oak Ridge, TN 37831-0062
Telephone: (865) 576-8401
Facsimile: (865) 576-5728

E-mail: reports @ adonis.osti.gov

Available for the sale to the public from
U.S. Department of Commerce

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900

E-mail: orders @ntis.fedworld.gov
Online ordering: http://www.ntis.gov/ordering.htm

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library

http://www.l!nl.gov/tid/Library.html



The Advantages of High Order Schemes
and How to Confirm These Advantages

Leland Jameson
Lawrence Livermore National Laboratory

ABSTRACT
This manuscript is meant to give a short summary of the advantages of

high order schemes and suitable test problems which can properly illustrate
these advantages.

1 The Advantages of High Order Schemes

The advantages of high order schemes are well-documented in the scientific
literature in both the theoretical form and in computational form. It is really
the theory that one should focus on since the whole story in its unpolluted
form lies there. If one needs computational evidence, then such evidence is
copious.

The classic reference is the paper by Kreiss and Oliger [15]. However, here
the simplest exposition of the key issues will be given. It is the truncation
error of the differentiation operator which holds the key to the advantages
of high order schemes when applied to hyperbolic systems. For non-spectral
operators, this truncation error has an upper bound of the form, see [9],

where c is a constant that will depend on the exact scheme in use, Ax de-
notes the distance between adjacent grid points, p denotes the order of the
derivative, and k denotes the Fourier wave number. That is, if one were to
differentiate f(x) = sin(kx) then the truncation error for differentiation 
bounded above by the above expression. Now, since,

where L denotes the length of the interval and where N denotes the number
of grid points in this interval, we can let L = 1, and replace (Ax)p with



(1/N) p. Next, we can now solve equation 1 for N. Beginning with

E = (1/N)Pkp+l, (3)

where we let c = 1 for simplicity, we then get,

E1/p = (1/N)k(p+I) (4)

and

and finally,

EUp
(1IN)- (5)

k(p+l)/p
N - -- (6)E1/p

Now, for hyperbolic systems, the floating point operations (flops) scale as,

flops = const * Otime * Osp~ce * Nd+l, (7)

where d is the dimension of the calculation, Otime is the order of the tempo-
ral discretization, Ospace is the order of the spatial discretization, and where
const is aconstant that will depend on the scheme used but will not de-
viate much from .5. By definition p = O~pa~ and for hyperbolic equations
Oti,~ = O~pace is roughly the best choice. Into this expression for flops we
can substitute the above expression for N to get,

flops = const ¯ p2 .
k(d+l)(p+l)/P

E(d+l)/p
(8)

Now, let’s see what this expression produces for a few values of the parame-
ters. Let d = 3 and let’s require that the error in the derivative be E = 10-4.

For a first order scheme, p = 1 we see that this expression becomes,

flops@=l)=lOs*ks, (9)

and if we let p = 4 we find that the flops scale as,

flops@ = 4) = 16 ¯ 104 ¯ k5. (lo)

Recall, k is the wavenumber. For flows that contain structure, such as tur-
bulent flows or any calculation where, say, vortices are present, there will
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be significant energy in the high values of k. Thus, one can see that the
rate of growth of the flops is very different. Further, the constant in front of
the expression is also very different. This is really the whole story. With a
low order scheme, one quickly reaches the limit of the computer. With the
high order scheme, one can obtain far more modes before the limit of the
computer is reached.

2 Designing Problems to Evaluate Schemes

First and foremost, if one wants conclusive evidence of the differences between
schemes, one must design problems that have exact solutions. Without exact
solutions one can not have clear evidence of the advantages of high order
schemes. It should be noted, that if the flow does not contain structure, then
one does not expect to see any advantage of high order schemes. In fact, for
problems that are essentially piecewise linear with only a small amount of
low order structure in, say, the expansion wave, then one will not see any
advantage of high order schemes. This can easily be seen from the derivative.
If one differentiates data that essentially lies on a line, then one is wasting
flops if the differentiation operator is designed to approximate any polynomial
higher than a line.

2.1 The Role of AMR
Adaptive Mesh Refinement schemes can reduce work in a computation when
the flow variables contain structure that is localized in a small fraction of
the computational domain throughout the duration of the computation. If a
significant fraction of the domain is filled with structure, then it is not cost
effective for adaptive gridding and a uniform grid calculation is preferable.
AMR can be a good approach when this criteria is met. Exact estimates of
what constitutes a small fraction of the domain for various orders of AMR
is discussed in [14].

2.2 The Value of Convergence Tests

Numerical calculations are discrete versions of continuous systems. As the
number of degrees of freedom increases, this discrete version must approach



the continuous system it is intended to model. A poorly designed scheme,
however, might diverge, or even worse, it might converge to the wrong answer.
Thus, a first necessary, though not sufficient condition, is that a numerical
calculation converge. Of course, in general we will not have an exact solution,
but at least the distance between solutions should decrease as the grid is
refined:

Isolution(N) _ soIution(2N)l > Isolution(2N) - solution(4N)l , (11)

where solution(N) denotes the values of one of the flow variables when there
are N grid points in the domain, and Ifl denotes a suitable distance measure.

If the calculation converges, then one accepts the calculation at the finest
grid point density as the "solution". Without convergence there is no clear
concept of what the "solution" is and the calculation does not yield reliable
information.

2.3 Suitable Test Problems

Here we outline test problems that will yield conclusive information on the
value of high order schemes. First of all, for non-linear hyperbolic systems,
the derivative is the key numerical operation.

2.3.1 Linear Convection

So, in order to isolate this operation we first suggest,

Ut = Ux, (12)

with periodic boundary conditions and with a given single mode as the initial
condition:

U(x,O) = sin(kx). (13)

This equation is simple and perfect for seeing the value of high order schemes.
However, some might insist it is of no value because it is not non-linear. But,
if one writes the Euler equations in characteristic variables, and one looks
at the local linearization of this system, then along each eigenvector of the
linearized system, one obtains linear convection. Hence, this simple equation
is an essential and necessary first test problem. If one’s scheme does not
perform well on this problem, then there is no need to go further.



2.3.2 Burgers’ Equation

Ok, then the second suggestion is Burgers’ equation,

(14)

with period boundary conditions and an initial condition that is a sine wave
shifted up in order to produce a moving shock,

U(x, O) 1/3 + 2/3 * si n(x). (15)

This equation has an exact solution and one can even obtain a shock by
setting e = 0. The two equations alone are sufficient to obtain conclusive
evidence of the value of high order schemes. Once one starts testing schemes
on calculations that do not have exact solutions, then it becomes very difficult
to understand what is numerically produced and what is physical.

2.3.3 RM and RT calculations

This is not the regime to test schemes. In other words, the physics is too
complicated for one to be able to draw any conclusions about the scheme
itself. As stated above, one needs calculations that have exact solutions if
one wants to separate the physics from the numerics. RM and RT calculations
should be done only after one has a clear understand of the numerical issues.

However, if one does attempt to evaluate schemes using these physical
setups one should do the following in order to show the advantage of high
order schemes. First, the interface between the materials should have many
modes on it and not just one. With a single mode the small structure is
limited to a small fraction of the domain and does not clearly show the
advantage of high order schemes. Second, the calculation should be run for
a long time until the domain is almost full. A principle advantage of high
order schemes comes with long-time integration as showed by Kreiss and
Oliger cited above. Third, the calculation should be physically symmetric.
It will be very difficult to decipher numerical artifacts from physical ones,
but loss of symmetry will be one clear sign that a scheme has broken down.
Finally, convergence tests must be done. This final point can not be over
emphasized.

¯



3 Conclusion

This document is intended to give a guide to the value of high order schemes
and how to clearly show this value. As with physical experiments, if the
experiment is not clearly thought out then one will never be able to isolate
the phenomenon of interest. Certainly this is true of laser experiments and
also of numerical experiments.

In the bibliography many references have been given that illucidate high
order schemes.
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