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ABSTRACT 

Given an unknown but detected release of a toxic agent, the current NARAC capability for 
reconstructing source characteristics is a highly manual procedure that often relies on analyst 
judgement and requires many hours of computations for a refined analysis. There is no 
automated, optimization approach to estimating the source characteristics. A fast running, 
prototype atmospheric inversion model has been developed for use as a test bed for the 
evaluation of source inversion schemes. The model was applied to a simple puff release scenario 
to test the relationship between the amount of sampled data obtained and the accuracy of the 
determination of the inverted source parameters. The initial inversion scheme chosen for the test 
bed model utilizes the Marquardt method coupled to a Gaussian puff atmospheric dispersion 
model driven by a COAMPS model wind field. The inversion scheme results are used in 
conjunction with a sensor realization probability model for a sensor realization scenario 
consisting of lo00 possible sensor realizations. The results of the initial test calculations indicate 
that the inversion procedure produces good results for the four source parameters, location (x, y), 
release time, and strength along with reasonably well defined maximum probabilities for the 
sensor realization scenarios. The model runs relatively fast, taking -100 seconds per inversion on 
a Sparc 10 workstation. 



I. INTRODUCTION 

Given an unknown but detected release of a hazardous material, the current N W C  
capability for reconstructing the material source using downwind sensors is a highly manual 
procedure that often relies on analyst judgement and requires several hours of computations for a 
refined analysis. There is no automated, optimization approach to estimating the source 
characteristics from observational data. Delays in source characterization can degrade the ability 
of the modeling system to provide adequate forward-time concentration predictions. 

Optimal inversion of observational data to determine source characteristics has been 
extensively treated in the scientific literature (Bevington and Robinson, 1992 [BR]; Lloyd, 1984; 
Barker et al., 1995; Flesch et al., 1995, Kasibhatla, 2000). There are many optimal inversion 
schemes which could be used to augment the current NARAC capabilities for agent source 
characterization. Two representative schemes which appear to be particularly suitable for 
NARAC applications are the Marquardt Non Linear Least Squares method (Edwards et al., 
1992) and the Bayesian Probability Update Method (Barker et al. 1995). These are both forward- 
time schemes. 

With the Marquardt method, the error cost functional is minimized by setting its first 
derivative with respect to the assumed source properties to zero and then iteratively solving for 
corrections to the assumed source properties. This method requires derivatives of the dispersion 
model with respect to the assumed source parameters, and this is usually done numerically by 
performing many individual parameter model sensitivity runs over the space of input parameters. 

The Bayesian method is based on a set of probabilities of possible model states determined 
prior to observational data collection (priors). Once observational data is obtained, the method 
provides a prescription to calculate a new set of probabilities taking into account the observed 
data. Each new set of data leads to an updated probability set. The method requires many 
forward runs of the dispersion model to determine state probabilities. 

A promising approach to determine feasible source properties which can then be used as the 
starting points for forward dispersion schemes has been considered by Flesch et al. (1995). The 
method utilizes a "backward" dispersion model, starting from the observation point, to determine 
areas where the presently observed pollutant particles may have originated. This method can be 
computationally intensive when large numbers of sensors are involved, and is therefore most 
promising for a limited number of sensors. 

Other major factors that are important to consider in the data inversion methodology are the 
characterization and incorporation of the effects of meteorological uncertainties on mean wind 
fields and turbulent fluctuations in sensor concentration observations. Mean wind field forecasts 
on a regional scale can vary dramatically due to uncertainties in the initial and boundary 
conditions (Leach and Chin, 2000) and mean wind forecast uncertainties must be characterized 
in order to compare forecasts with observations. In addition, estimates of turbulent concentration 
fluctuations (given the mean wind) must be made in order to compare ensemble-mean, model- 
predicted air concentration fields to sensor measurements which will likely be individual 
realizations of the possible concentration fields. Methods for estimating concentration 
fluctuations have been developed (e.g.,Yee et al., 1998) and need to be incorporated in the data 
inversion schemes. 



The major purpose of this report is to describe a fast running, prototype atmospheric 
inversion model that will be used to evaluate source inversion schemes. The model will be 
applied to a simple puff release scenario to test the relationship between the amount of data 
obtained and the accuracy of the determination of the inverted source parameters. The initial 
inversion scheme chosen for the test bed model uses the Marquardt method coupled to a 
Ga spheric dispersion model, INPUFF (Peterson and Lavdas, 1986). - 

II. INVERSION METHODOLOGY 

Following BR we can write a probability function which relates the probability Pi of an 
observation yi about the actual value yo at location xi. Assuming that the sensor observations are 
drawn from a Gaussian distribution with a mean value of yo and a standard deviation oi, the 
probability density function is given by 

If it can also be assumed that the value of yo can be estimated via an atmospheric dispersion 
model as, 

yo = f(xi,ti,a,. . . .. . ... . .. . ... a,), (2) 

where xi / ti are the location/time of the observation, and the a’s are various source parameters 
which include location and strength, then the probability of the particular combination of sensor 
reading and model realization can be expressed by Eq. 1. It may not always be possible to 
estimate the actual mean value of a set of observations, yo, with the estimated mean value from a 
simple dispersion model and in that case a different form of Eq. 1 must be utilized. However, for 
the purposes of the test calculations to be performed in this paper, the above assumption will be 
made. When there are multiple sensor readings for different locations and times, the probability 
density of the realization encompassing all the sensor readings is 

This function is known as the probability function or likelihood firnction (BR). In order to 
maximize the likelihood function with respect to the parameters a,..a,, it is necessary to minimize 
the exponential term in Eq. 3; 

This can be accomplished via a manual grid search procedure or an automated grid search 
method. One automated method utilizes a Taylor expansion of the X2 function about an initial set 
of parameters and then solves for the increments to the initial set to minimize the function 
(linearization of the fitting function). Another automated method utilizes a gradient search 
method (steepest descent). All initial parameters are given an increment based on the gradient of 
the X’ function at the initial guess point. The Marquardt scheme combines both of the above 



approaches in a way that uses the gradient method when far from the minimum of the X2 
function and the linearized fitting method when close to the minimum. 

The Marquardt scheme requires an initial guess for the model parameters which is reasonably 
close to the true parameters so that the iterative minimization procedure is convergent. This 
initial guess can be determined using a manual grid search method. In particular, when the 
source location coordinates are included in the model parameter set to be determined, a 
‘backtrack’ dispersion model has been developed which provides a considerable reduction in the 
initial guess grid search. Assuming a particular release time value, the backtrack/grid search 
technique estimates source location by calculating a backwards trajectory, from the sensor, for 
each non-zero concentration sample and then calculates the average or concentration weighted 
average (centroid) location. Sample calculations, to be discussed later, show that the ‘backtrack’ 
method is very efficient at providing starting parameter locations for the Marquardt inversion 
scheme. 

For the calculations to be described in this report it was decided to use the log of the 
concentration (yi, yo) as the primary concentration variable. This was done to prevent the highest 
observed concentrations from totally dominating the X2 function and to avoid negative 
concentrations in the distribution of sensor readings. 

III. INPUFF MODEL 
The M U F F  ategrated PUFF, Petersen and Lavdas, 1986) dispersion model is a fast 

running semi-analytic model designed to simulate the dispersion from semi-instantaneous 
sources over a spatially and temporally variable wind field. The dispersion scheme is based on 
the Gaussian puff assumptions (Pasquill and Smith, 1983, Turner, 1994). The instantaneous 
concentration downwind from a release height , H, is given by the expression: 

C(x,y,z,H) = QJ [(27~)~o~oo,] exp[- (X-U~)~/~O,~]  
exp[-y2/20i] { e~p[-(z+H)~/2o~~] + e~p[-(z-H)~/20,~] } , 

where C is the downwind concentration, Q, is the total mass of the release, the 0’s define the 
plume spread, and u is the horizontal velocity. The coordinates x, y, and z define the downwind 
distance, the crosswind distance, and the altitude above ground. For the problems considered 
here ox = oy, and oy is a function of the downwind distance, the meteorological stability 
conditions, and the release height. A continuous release is represented by a series of 
instantaneous puffs. The INPUFF model has the following capabilities; 

a. Single or multiple point sources at up to lo00 locations, 
b. Up to 144 meteorological periods of the same time length, 
c. Wind fields for each meteorological period for up to 100 user-defmed grid locations, 

The most recent release of the INPUFF model allows the above numerical limits to be changed 
via input file specification. The model also has the following limitations: 

a. Wind direction constant with height, 
b. No consideration of chemical reactions, 
c. No explicit treatment of complex terrain other than implied in the wind field calculations. 

The INPUFF model has many input parameters relating to different atmospheric conditions and 
source configurations. For the calculations presented here a relatively simple set of input 
parameters (described below) was chosen for the evaluation of the prototype inversion model. 



IV. TEST SCENARIO 

A test scenario, based on a puff release of mawmu ikom the hait Lake city utah area, was 
used to evaluate the inversion model. In the test scenario a set of sensors are uniformly 
distributed in the test area. Sensor readings are generated from assumed source parameters and 
INPUFF simulations. The inversion model is then used to calculate the source parameters from 
the sensor readings. The inverted source properties are then compared to the actual values. The 
inversion scheme results will be used in conjunction with a sensor realization probability model 
for a sensor realization scenario consisting of lo00 possible sensor reading realizations. An 
hourly wind field, for use by the dispersion model, was generated by the LLNL version of the 
Naval Research COAMPS regional prognostic model (Hodur, 1997) for a 40 km x 40 km 
domain surrounding Salt Lake City Utah. The resolution of the wind grid was 4 km (EW) x 4 km 
(NS). Inspection of the COAMPS meteorology indicated a wind flow approximately west to east. 
The source was located on the west side of the domain approximately mid way between the north 
and south sides of the grid. The sensor readings (truth) were generated by calculation of the time 
variation of the concentration at each sensor using the dispersion model with the actual source 
parameters. A fixed sensor integration time of five minutes was chosen for the test scenario, 
providing twelve sensor readings per hour. 

The source Parameters selected for the test scenario are: 
a. Source horizontal location (x-y) (km), x = 2 km, y = 20 krr 
b. Source release start time (t) (sec), t = 3600s. 
c. Source strength (Q) (g/s),  Q = 100 pg/s. 
d. Puff duration = 6s (single puff). 

Auxiliary parameters selected for the INPUFF model are: 
a. Source release height = lm. 
b. Air Temperature = 296 K. 
c. Stability Class = 3 ( P-G Class C, particular relation for o vs. 
downwind distance). 
d. Mixing height = lo00 m. 

a. x = 3, 11, 19,27 km, 
b. y = 12,20,28 km. 

Sensor placement (12 sensors at 8 km intervals) for the test runs was; 

Figure 1. shows the wind vector field over the 40 km x 40 km domain superimposed on a map of 
the one hour integrated pollutant concentrations calculated by the INPUFF model for a hi- 
resolution sensor field spacing of x = 1 km and y = 1 km (used for plotting the figure, not for 
generating hypothetical sensor readings for the inversion model). 

6 



V. PROBABILITY OF INDIVIDUAL AND CUMULATIW SENSOR READING 
REALIZATIONS 

Although an inversion model can determine the source parameters for a set of sensor 
readings, the uncertainty in these sensor readings will cause uncertainty in the evaluation of the 
source parameter set. Uncertainties in the evaluation of the source parameter set can also be 
caused by stochastic uncertainties in the physical properties in the dispersion model, an example 

exercise, this study will be concerned with uncertainty in sensor readings since this can be 
readily expressed in an analytic form. The procedure is as follows: the non-zero “truth” 
concentrations are perturbed with random errors to provide a set of simulated observations, C,. 
The inversion technique uses these observations to estimate the source properties; it does not 
know about the “truth” sensor readings. A realization is defined as the set of non zero sensor 
readings (both spatially and temporally) where each individual sensor reading includes a random 
perturbation from the “truth” value. We assume the perturbed sensor readings follow a log 
normal probability distribution about the “truth” concentration with an assumed standard 
deviation of a. Each perturbed sensor reading will then have a probability based on a log normal 
distribution. The probability of the realization is the product of the individual sensor probabilities 
divided by the product of the probability of the realization where each sensor reads the “truth” 
run values. An inversion (Section II. above ) is performed for each realization (lo00 realizations 
are used to determine the source parameter probability distribution). Calculations will be 
presented for two values of a (2, 4) to illustrate how the uncertainty in the sensor readings 
translates to uncertainty in the inverted source properties. 

of which would be the uncertainty in the atmospheric turbulence parameterization. As a first 

Actual sensor perturbations can be generated in two ways. The method actually used for the 
calculations presented here (Sample 1) consists of a set of sensor realizations generated using a 
normal random number generator. With this method, each set of sensor readings, as well as the 
distribution of realizations, obeys a normal frequency distribution. An alternative method 
(Sample 2) would utilize a random number generator to determine a perturbation to the actual 
sensor reading and then assign a probability, based on the log normal distribution, to the 
individual perturbed sensor reading (Iman and Shortencarier, 1984). The first method 
automatically takes the sensor reading probabilities into account while the second method would 
provide more of the realizations in the wings of the probability distribution. 

In order to calculate the probability of the source location at any particular x-y point, the x-y 
plane is divided into squares 0.1 km on a side, centered on the true source location. The number 
of sensor realizations for which the source location occurs in a particular x-y square is tabulated. 
For the Sample 1 method, the number of source locations in each square divided by the total 
number of sensor realizations (normalization factor) is interpreted as the probability of the source 
location in that square. Using the Sample 2 method, the realization probabilities for each source 
location within a particular x-y square would be summed to obtain the cumulative probability for 
the source location in the square. This probability is normalized by dividing by the probability of 
the “truth value” sensor realization. Since the major concern is the relative probabilities square to 
square, the normalization factors are of minor consequence. The estimated release time and 
source strength were obtained in the Sample 1 method by calculating the mean values in the x-y 
square where the source location occurred most often. The same quantities could be obtained in 
the Sample 2 method by calculating the probability weighted mean value for release time and 
source strength in the x-y square h rce location probability. 



VI. RESULTS AND DISCUSSION 

An inversion calculation begins with a modified grid search to determine an initial guess for 
the four source variables (x, y, t, Q) which is then provided to the inversion algorithm. 
Themodified grid search is done in the following manner. First, a set of t and Q values are 
chosen within the expected range of the actual release values. Second, the backtrack method is 
used to determine the source location (x, y) for each t, Q value pair. The INPUFF model is then 
run in the forward direction for the assumed source and the X’ values are then determined for 
each t, Q value pair. The t, Q value pair and associated x, y source location with the minimum X2 
is used as the initial guess for the inversion algorithm. The inversion scenario described above 
was calculated for two values of the log normal sensor reading variation parameter, a = 2 and 4. 
There were 12 non-zero sensor readings obtained for the sensor array over the one hour test 
period for any particular sensor realization. The summary of the inversion results is given in 
Table 1. The “truth values” of the source parameters are shown along with a) the inverted x and 
y values of the 100 meter square box where the inversion source occurs most often, b) the 
inverted release time value in the 10 second interval which occurs most often in the x-y box 
with the maximum source locations, and c) the inverted source strength value in the 10pgh 
interval which occurs most often in the x - y box with the maximum source locations, for each a 
value and each of the backtrack methodologies (CEN and AV). The figures shown in 
parentheses indicate the maximum probability associated with the inverted source properties. 
Figure 2a shows the source location points for the lo00 realizations in the x-y plane for the 
a = 2, Sample 1 methodology. The “+” signs are the locations obtained using the concentration 
weighted average backtrack method (CEN) and the “x” signs are the locations using the straight 
average backtrack method (AV). Figure 2b shows the results for the a = 4 case. These results 
show a relatively tight clustering of source locations about the actual point (x = 2 km, y = 20 
km). Also secondary, clustering can be seen at x - 2.1 km, and y - 20.3 km. The clustering is, as 
expected, tighter for the a = 2 case than for the a = 4 case because of the narrower sensor 
perturbation range. This can be clarified by examination of the probability histograms in the x-y 
plane for squares of lOOm per side centered about the actual source point. These histograms 
(number of times predicted source was in each square) are shown in Figures 3a (AV) and 
3b (CEN) for the a = 2 case and Figures 3c (AV) and 3d (CEN) for the a = 4 case. Contour 
plots of these histograms are shown in Figures 4a (AV) and 4b (CEN) for the a = 2 case and 
Figures 4c (AV) and 4d (CEN) for the a = 4 case. For both a cases, CEN source locations 
produce a double peaked probability distribution while the AV source locations produce a single 
peaked probability distribution. For the a = 2, AV case the peak probability of 0.341 occurs in 
the box centered at x = 2.0 km, y = 20 km, with a half width of - 1 km and the 90 percent 
probability contour enclosed within the area x = 1.8 - 2.2 km, y = 19.8 - 20.3 km. For the a = 2, 
CEN case a double probability peak occurs. The maximum peak probability of 0.233 occurs in 
the box centered at x = 2.0 km, y = 20 km, while a secondary probability peak of value 0.1 19 
occurs at x = 2.1 km, y = 20.3 km. The 90 percent probability contour is enclosed within the area 
x = 1.8 - 2.2 km, y = 19.8 - 20.4 km. For the a = 4, AV case the peak probability of 0.104 
occurs in the box centered at x = 2.0 km, y = 20 km, with a half width of - 3 km and the 
90 percent probability contour enclosed within the area x = 1.7 - 2.3 km, y = 19.8 - 20.3 km. 
For the a = 4, CEN case the maximum peak probability of 0.085 occurs in the box centered at 
x = 2.0 km, y = 20.1 km, while the secondary probability peak of value 0.072 occurs at 
x = 2.1 km, y = 20.3 km. The 90 percent probability contour is enclosed within the area 



x = 1.75 - 2.3 km, y = 19.8 - 20.5 km. The reason for the double peaked probability distribution 
for the CEN backtrack method initial guess points in both the a = 2 and a = 4 cases is probably 
due to a secondary minimum in the X2 function. The outlying CEN initial guess point 
distribution is apparently forcing the inversion program to choose this secondary minimum quite 
often. 

The procedure for finding the most probable release time and source strength is to determine 
the maximum likelihood of these quantities for all inversions which occur within the x-y square 
having the highest location probability. This is done by selecting bins in t and Q and plotting the 
histograms of the numbers of source location points with t and Q values in each bin of the t and 
Q range located in this x-y square. Bin sizes were chosen at 10 seconds in time and 10 pg/s in Q. 
Examples of these histograms are shown in figures 5a (t)  and 5b (Q) for the a = 2, AV case. For 
the a = 2, AV and CEN cases, the most likely release time was between 3595 and 3605 seconds 
compared to the actual value of 3600 seconds, with maximum probabilities of -0.3. For the 
a = 4, AV and CEN cases, the most likely release time was also between 3595 and 3605 
seconds with maximum probabilities of -0.27. For the a = 2, AV and CEN cases, the most 
likely source strength was between 95 and 105 pg/s compared to the actual value of 100 pg/s 
with maximum probabilities of 0.18 and 0.27 respectively. For the a = 4, AV and CEN cases, 
the most likely source strength was between 105 and 115 pg/s (compared to the actual value of 
100 pg/s) with maximum probabilities of -0.15. 

The results of the initial test calculations (Table 1) indicate that the inversion procedure for 
the initial test case produces good results with reasonably well defined maximum probabilities 
for the four source properties (x, y, t, and Q) in a lo00 sensor realization scenario. The technique 
finds the source location, release time, and strength within -50 m, -f10 s, and 4 1 0  pg/s for 
the most probable values and within - f300m, -&25 s, and 4 4 5  pg/s at the 90% confidence 
level. The model runs relatively fast, taking -100 seconds per inversion on a Sparc 10 
workstation. The results presented above were obtained using the Sample 1 (random normal) 
method. A test calculation using the Sample 2 method (Monte Carlo sampling) will be discussed 
in a future report. Sensitivity calculations for the above examples relating to number of sensors, 
placement of sensors, times of sensor readings, wind field variations, and source strength will 
also be considered in a future report. It should be stressed that these calculations represent an 
initial step to evaluate an inversion package consisting of a Marquardt inversion model coupled 
to backtrack search and probability sampling algorithms and as such we chose to experiment 
with a simple puff release. More complex scenarios will have to deal with the effects of 
atmospheric turbulence on the statistics of the sensor readings, wind field uncertainty, non- 
Gaussian plume dispersion (Ermak and Nasstrom, 2o00), and rain out and regeneration effects 
of pollutants. The inclusion of these effects into a computationally efficient source inversion 
model may require a Bayesian approach to determine source properties. 

9 



Table 1. Results Of Inversion Calculations For 10oO Sensor Realizations 

True 2.0 20.0 3600 100 

a = 2 AV 1.95 - 2.05 (0.34)* 19.95 - 20.05 3595 -3605 (0.29) 95 - 105 (0.18) 

2 (0.30) 95 - 105 (0.27) 

a = 4 AV 1.95 - 2.05 (0.10) 19.95 - 20.05 3595 -3605 (0.27) 105 -1 15 (0.14) 

a = 4 CEN 1.95 - 2.05 (0.09) 20.05 - 20.15 3595 - 3605 (0.26) 105 -1 15 (0.16) 
~~ ~~ 

* The probability shown in the x column applies to the x-y square shown in the table. 
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APPENDIX A. Details of the Marquardt Scheme 

The Levenberg-Marquardt algorithm is a standard method for fitting equations to data when the 
dependence of the fitted equation on one or more coefficients is nonlinear (Bevington and 
Robinson, 1992). It combines, in a smoothly varying manner, the efficiency of expanding the 
error cost function x' as a quadratic functional in the vicinity of its minimum with the more 
robust behavior of a steepest descent away from such a minimum. However, a numerical 
problem can occur when the fitted equation becomes independent of some parameters when 
another parameter approaches zero. As an example, for 

j o  ( x )  = a, + a,e-(i2r 

the value of ydx) becomes independent of a, as a,-*. This leaves a, completely unconstrained 
by a cost functional depending only on the evaluation of the fit, and can result in numerical 
overflow problems during the fitting process. As one solution to this problem, a minimum norm 
constraint on the coefficients can be added to the cost functional. 

Consider a variation of the fit about that given by the initial estimate of its coefficients, a, 

&O j ( x )  = jo(x)+-Su aa 
where j o ,  a, and Sa are considered to be column vectors of lengths N, M and M, respectively. 
Using Equation (21, we can write a modified x 2  as 

[ A *OSU w y-$,-x"a +(u+Sa)To(a+6u)  r( 1 x 2 =  y-y,-- 
au 

where, W is an NxN weight matrix, such as the inverse of the error covariance matrix of y, and 
o is a diagonal matrix of rank M determining both a small amplitude and relative scaling for the 
minimum norm constraint on the coefficients. Differentiating Equation (3) and equating the 
result to zero, we obtain 

--- 1 ax' --(y-yo)TWda+x &IT w- %n+o(u+Sa) 

1 =-[(y-yo)'w2 -- wa ] + ["' 0 w-+o $0 

2 aa 
Sa=O aa aa 

(4) 

Adopting the notation of Bevington and Robinson (1992), we can write 

a S a = j ?  
with, 



a=[- ay '  w-+a], 7)yo u d p = [ ( y - y o ) ' W - - ~ ]  &O aa aa aa 

Only the addition of the o terms differentiates these from the standard definitions of a and /3. 
Then, noting that the steepest descent method can be written as 

Sa = constant * 0 

where, A is a scalar. Defining 

a' = a + ildiag(a) 

(7) 

we arrive at the Levenberg-Marquardt solution 

a'Sa = p (9) 

but with the additional minimum norm constraint included. When A is large, a' becomes 
diagonally dominant and the algorithm tends towards the steepest descent method. When A is 
small, the algorithm tends towards the gradient expansion method. For a nominally small value 
of o , the additional norm constraint preventsa'from becoming singular in regions of the 
coefficient space in which Equation (2) becomes independent of one or more coefficients. 

As a further practical issue, the magnitude of the individual coefficients could vary by orders of 
magnitude. This provides the motivation for further scaling Equation (9) into 

where c is a diagonal MxM matrix whose elements c, are given by 

Thus c allows for numerically nonsingular scaling whether a single diagonal element of a is zero 
or in the degenerate case when all elements are zero. 

Bevington and Robinson ( 1992) attribute the following recipe to Marquardt ( 1963) 

1. Compute x2(a) .  
2. Start initially with A = 0.001. 
3. Compute Sa and x2(a +Sa) with this choice of A .  
4. If x Z ( u  + Sa) > x 2 ( u ) ,  increase A by a factor of 10 and repeat step 3. 
5. If x2(u +Sa) < ~ ' ( a ) ,  decrease A by a factor of 10, consider u'= CI +OU LO be the new 

starting point, and return to step 3, substituting a' for u . 

12 



This recipe essentially starts by trying to solve the problem by the merit expansion method 
and backtracks to using the less efficient steepest descent algorithm only when the initial attempt 
fails. Unfortunately, in highly nonlinear problems such as the fitting of coefficients within 
exponents, the initial attempts via gradient expansion may result in failure by numerical 
overflow. We have therefore adopted the much more conservative approach of starting with 
A=128, and increasing or decreasing A by factors of 2. We also take E’ to be the numerical 
resolution (e.g. O( lo-’? for double precision) and can use o = E’.’’ in implementing the minimum 
norm constraint. 

13 
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FIGURE CAPTIONS 

Figure 1. 

Figure 2a. 

Figure 2b. 

Figure 3a. 

Figure 3b. 

Figure 3c. 

Figure 3d. 

Figure 4a. 

Figure 4b. 

Figure 4c. 

Figure 4. 

Figure 5a. 

Figure 5b. 

The COAMPS model generated wind vector field over the 30 km x 20 km domain 
superimposed on a map of the one hour integrated pollutant concentrations for the 
actual source (x = 2 km, y = 20 km, t = 36OOs, Q = 100 pg/s) calculated by the 
INPUFF model for a hi-resolution sensor field spacing of x = 1 km and y = 1 km. 
The estimated source location pints (x,y) for lo00 concentration realizations with a 
= 2, Sample 1 methodology. The bb+” signs are the locations obtained using the 
concentration weighted average backtrack method (CEN) and the ‘Y’ signs are the 
locations using the straight average backtrack method (AV). 
The estimated source location pints (x,y) for lo00 concentration realizations with a 
= 4, Sample 1 methodology. The “+” signs are the locations obtained using the 
concentration weighted average backtrack method (CEN) and the ‘Y’ signs are the 
locations using the straight average backtrack method (AV). 
The AV source location probability histogram (number of source locations) in each 
0.1 kmsquareof~-yspaceforthea=2case. 
The CEN source location probability histogram (number of source locations) in eacn 
0.1 kmsquareof~-yspaceforthea=2case. 
The AV source location probability histogram (number of source locations) in each 
0.1 km square of x - y space for the a = 4 case. 
The CEN source location probability histogram (number of source locations) in each 
0.1 km square of x - y space for the a = 4 case. 
The AV source location probability histogram contour plot (number of source 
locations) in each 0.1 km square of x - y space for the a = 2 case. 
The CEN source location probability histogram contour plot (number of source 
locations) in each 0.1 km square of x - y space for the a = 2 case. 
The AV source location probability histogram contour plot (number of source 
locations) in each 0.1 km square of x - y space for the a = 4 case. 
The CEN source location probability histogram contour plot (number of source 
locations) in each 0.1 km square of x - y space for the a = 4 case. 
The release time probability histogram (numbers of source location points in each 
bin of the t range located in the x-y square having maximum location probability) for 
the a = 2 AV case. Bin size was chosen at 10 seconds in time. 
The source strength probability histogram (numbers of source location points in each 
bin of the Q range located in the x-y square having maximum location probability) 
for the a = 2 AV case. Bin size was chosen at 10 pgh in Q. 
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Figure 1. The COAMPS model generated wind vector field over the 30 km x 20 km domain 
superimposed on a map of the one hour integrated pollutant concentrations for the 
actual source (x = 2 km, y = 20 km, t = 3600s, Q = 100 cl.g/s) calculated by the 
INPUFF model for a hi-resolution sensor field spacing of x = 1 km and y = 1 km. 
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Figure 2a. The estimated source location points (x,y) for lo00 concentration realizations with a 
= 2, Sample 1 methodology. The “+” signs are the locations obtained using the 
concentration weighted average backtrack method (CEN) and the ‘Y’ signs are the 
locations using the straight average backtrack method (AV). 
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Figure 2b. The estimated source location points (x,y) for lo00 concentration realizations with a 
= 4, Sample 1 methodology. The “+” signs are the locations obtained using the 
concentration weighted average backtrack method (0 and the “x” signs are the 
locations using the straight average backtrack method (AV). 
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Figure 3a. The AV source location probability histogram (number of source locations) in each 
0.1 lunsquareof~-yspaceforthea=2case. 



Figtm 3b. The CEN source l d o n  probability histogram (number of some locations) in each 
0.1 Inn square of x - y  space for the a = 2 case. 
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Figure 3c. The AV source location probability histogram (number of source locations) in each 
0.1 km square of x - y space for the a = 4 case. 
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Figure 3d. The CEN source location probability histogram (number of source locations) in each 
0.1 km square of x - y  space for the a = 4 case. 
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Figure 4a. The AV source location probability histogram contour plot (number of source 
locations) in each 0.1 km square of x - y space for the a = 2 case. 
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Figure4b. The CEN source location probability histogram contour plot (number of source 
locations) in each 0.1 km square of x - y space for the a = 2 case. 
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Figure 4c. The A V  source location probability histogram contour plot (number of source 
locations) in each 0.1 km square of x - y space for the a = 4 case. 



-20.4000 

-20.3OOo 

-20.2ooo 

-20.1OOO 

-20.oooo 

- 19.9000 

0 0 0 0 0 0 0 0 0 0 0  1 1  9.8000 

T u ? u ? y q q o r y M q  
r F 4 r r F N m i N c 4 N  

8 8 8 8 8 8 8 8 8 8 0  0 

80.0000-90.0000 
I 70.0000-80.0000 
I 60.0000-70.0000 
I50.0000-60.0000 
140.0000-50.0000 
f# 30.0000-40.0000 
0 20.0000-30.0000 
I 10.0000-20.0000 
I 0.0000-1 o.oo00 

Figure4d. The CEN source location probability histogram contour plot (number of source 
locations) in each 0.1 km square of x - y space for the a = 4 case. 
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Figure 5a. The release time probability histogram (numbers of source location points in each 
bin of the t range located in the x-y square having maximum location probability) for 
the a = 2 AV case. Bin size was chosen at 10 seconds in time. 
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Figure 5b. The source strength probability histogram (numbers of source location points in each 
bin of the Q range located in the x-y square having maximum location probability) 
for the a = 2 AV case. Bin size was chosen at 10 pg/s in Q. 


