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1 Introduction 
Advances in data collection and storage capabilities during the past decades have 
led to an information overload in most sciences. Researchers working in domains 
as diverse as engineering, astronomy, biology, remote sensing, economics, and 
consumer transactions, face larger and larger observations and simulations on a 
daily basis. Such datasets, in contrast with smaller, more traditional datasets 
that have been studied extensively in the past, present new challenges in data 
analysis. Traditional statistical methods break down partly because of the in- 
crease in the number of observations, but mostly because of the increase in the 
number of variables associated with each observation. The dimension of the 
data, is the number of variables that are measured on each observation. 

High-dimensional datasets present many mathematical challenges as well as 
some opportunities, and are bound to give rise to new theoretical developments 
[ll]. One of the problems with high-dimensional datasets is that, in many cases, 
not all the measured variables are “important” for understanding the underlying 
phenomena of interest. While certain computationally expensive novel methods 
[4] can construct predictive models with high accuracy from high-dimensional 
data, it is still of interest in many applications to reduce the dimension of the 
original data prior to any modeling of the data. 

In mathematical terms, the problem we investigate can be stated as fol- 
lows: given the pdimensional random variable x = ( 2 1 ,  . . . , z ~ ) ~ ,  find a lower 
dimensional representation of it, s = (SI,. . . , s k ) T  with k 5 p ,  that captures 
the content in the original data, according to some criterion. The components 
of s are sometimes called the hidden components. Different fields use differ- 
ent names for the p multivariate vectors: the term “variable” is mostly used 
in statistics, while “feature” and “attribute” are alternatives commonly used in 
the computer science and machine learning literature. 

Throughout this paper, we assume that we have n observations, each being 
a realization of the pdimensional random variable x = (51,. . . , zp)T with mean 
E(x) = 1-1 = (PI,. . . , pp)T  and covariance matrix E{ (x - p)(x - 1 - 1 ) ~ )  = X p x p .  
We denote such an observation matrix by X = {x i , j  : 1 5 i 5 p , l  5 j 5 n}. 
If pi and C T ~  = & denote the mean and the standard deviation of the i th 
random variable, respectively, then we will often standardize the observations 
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i-,., by (s,,, -/ i i) /cfj ,  where Li, = S,  = l / n  E;=’=, si.,, and cf, = l / n  E;=’=, (s,,, - 

We distinguish two major types of cliniension reduction met hods: linear arid 
non-linear. Linear techniques result in each of the k 5 p components of the new 
variable being a linear combination of the original variables: 

S l y .  

.si = wl.l-rl + . . . iu,.psp, for i = 1,. . . . k ,  or (1) 

s = wx, (2) 

where WA. 
relationship as 

is the linear transformation weight matrix. Expressing the same 

x = As, (3) 
with A p x k r  we note that the new variables s are also called the hidden or the 
latent variables. In ternis of an n x p observation matrix X, we have 

S,,, = i i l , . ’ = ,  SI,, + . . . I ~ ~ , . ~ . Y ~ . ,  . for i = 1. . . . . k ,  and j = 1. . . . . 11,  (4) 

where j indicates the j t h  realization. or. cquivalcntly. 

S k  < I 1  = WL u p X p x r 1 .  (5) 

X p x r i  = A p x k S k  < J I .  (6 )  

Snch lincw t echniqiies are siniplrr and c>;isier to irriplcment t hari more recent 
met hods coiisidcring non-linear t rmsfornis. 

In this paper. w k  wvimv tratlitioiial a i d  currwit st ate-of-thc-art dimension 
rtduction mcthotls published in tho  statistics. signal prowssing and niacliinc 
learning litrraturc. Thew are ~iiiiii(~oiis hooks and articles [41. 17, 5 .  14, 19, 46, 
131 in t l i r  statistkal literaturr on tcdiriiqiic’s for ;inalyzirig riiii1tiv;iriate datasrts. 
=\clvanc~>s in cwnipiitrr scicwc.cI. riiadiiric. lwrning [43. 50. 44, 21. Earlier si1rvc.y 
papers. [7] I wirws-s sc.v(~al met hods, iric.liidiiig principal cwIiiponc’nt,s analysis, 
pro.jwt ion pursuit. pi incipal (’111 ves. self-organizing maps. as w ~ l l  as provides 
~iciiral wtn-oik inipltwicmt at ions of soul(’ of thr rwicwecl statistical ~notlcls. [22] 
siirveys r ( ~  trit  rrsiilts iri iritlepc~ritl(mt (winpoiiwt analysis, in the cwntest, of othcr 
dirrit~nsion rcdiictiori nirt hods. 

This si1rvc.y is organized as follows. Srct ions 2 ant1 3 revimv principal cwrnpo- 
ricrit aiialysis and fact or analysis. rcwpc~c’tivc~ly, t he two most widely used linrar 
diniension reduction met hods 1)ascd 0 1 1  sccwrid-order st at ist ics. For riorrrial vari- 
ables (with mean zero), t lie covariancc~ mat rix cant airis all the inforniation about 
the data. Secwitl-order niethods arc’ relativc1ly simple to cod(., as they require 
classical matrix nianipulations. However. many dat astits of interest arc riot re- 
alizat,ioIis from Gaussian distri1)ut ions. For t liosc. cases, higher-order dimension 
reduction rncthods, using inforniation not contained in thc covariance matrix, 
are more appropriatc.. Such a liwar higher-order rnethod, projection pursuit is 
I eviewed in Section 4. Sect ion 5 siiiiiiiiarizw another liighw-order linear method 
called independent component analysis. Xlthoiigh non-lincvir principal compo- 
ncrit analysis can be considercd as a spcc.ial case of independent cornponrnt 
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analysis, Section 5.1.4, it is reviewed separately in Section 6. It uses non-linear 
objective functions to determine the optimal weights, but the resulting compo- 
nents are still linear combinations of the original variables. Section 7 explains 
the method of random projections. Section 8 presents some extensions and 
non-linear dimension reduction techniques. 

2 Principal component analysis 
Principal component analysis (PCA) is the best, in the mean-square error sense, 
linear dimension reduction technique [25, 281. Being based on the covariance 
matrix of the variables, it is a second-order method. In various fields, it is also 
known as the singular value decomposition (SVD) , the Karhunen-Lohe trans- 
form, the Hotelling transform, and the empirical orthogonal function (EOF) 
method. 

In essence, PCA seeks to reduce the dimension of the data by finding a 
few orthogonal linear combinations (the PCs) of the original variables with the 
largest variance. The first PC, SI, is the linear combination with the largest 
variance. We have .SI = xTw1 , where the pdimensional coefficient vector w1 = 
( q , I , . .  . , ~ 1 , ~ ) ~  solves 

w1 = arg maxllw,,IIVar{xTw}. (7) 

The second P C  is the linear combination with the second largest variance and 
orthogonal to the first PC, and so on. There are as many PCs as the num- 
ber of the original variables. For many datasets, the first several PCs explain 
most of the variance, so that the rest can be disregarded with minimal loss of 
information. 

Since the variance depends on the scale of the variables, it is customary to 
first standardize each variable to have mean zero and standard deviation one. 
After the standardization, the original variables with possibly different units of 
measurement are all in comparable units. Assuming a standardized data with 
the empirical covariance matrix 

(8 )  

= UflUT, (9) 

1 xpxp = -XXT, 
71 

we can use the spectral decomposition theorem to write as 

where 11 = diag(A1,. . . , A,) is the diagonal matrix of the ordered eigenvalues 
A1 5 . . . 5 A,, and U is a p x p orthogonal matrix containing the eigenvectors. 
It can be shown [41] that the PCs are given by the p rows of the p x n matrix 
S ,  where 

Comparing (10) to (5), we see that the weight matrix W is given by UT. It 
can be shown [41] that the subspace spanned by the first k eigenvectors has the 
smallest mean square deviation from X among all subspaces of dimension k. 

s = UTX. (10) 
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As briefly indicated in Section 8.5, PCs can also be obtained by using neural 

Another property of the eigenvalue decomposition is that the total variation 
networks with specific architectures and learning algorithms. 

is equal to the sum of the eigenvalues of the covariance matrix, 

, = 1  i= I 1=1 

and that the fraction 
x. 

I =  1 

gives t,he cumulative proportion of the variance explained by the first I; PCs. 
By plotting the ciirriulative proportions in (12) as a fiinction of k, one can select 
the appropriate minibrr of PCs to keep in order to explain a given percentage of 
thr overall variation. Snch plots arc called scree diagram plot,s in the statistical 
literature [53]. The number of PCs to keep can also be detcrniincd by first fixing 
a t~hreshold Xo. t h rn  only keeping t he cigcnvertors such that, t,heir corresponding 
eigcnvalues are greater than A”. This lat ter nirthod was found preferable in 
[26, 271. where t h(> aiitlior also siiggwted keeping at least four variablrs. 

Although they 
arc’ uncorrrlatrd variables cmistriictctl as lincw conibiIiatioIis of tlie original 
variahlcs, and have sonic desirable propcrt icxs. t hey do not ricressarily correspond 
to nieaningful physical quantiticw. In SOIIW c.asc’s. sur11 loss of iIitwpretability is 
not s,itisfac.tory to the domain scientists. 

X i 1  altcrnativv n-ay to retliiw tlie dinitwsion of a dat<isct using PCA is siig- 
gcstctl in [41]. Iristclad of using the. PCs :is tho w n -  varia1)lvs. this Iricthod u s w  
thc information in the PCs to find important \.arial)lrs in thr’ original dat aset. 
X s  lwforr. oil(’ first ralrulatcs thci PC‘s. thcw studiw thr scrw plot to clcterniine 
thcl nurnl)c~r k of iinport ant viix ial)lw to krq) .  Scst , one cwnsidcrs tlie eigen- 
vector c.orrcisI)oIi(liIig to thcx sniall(~st c~igcmvaliit~ (thv Icast import ant PC). and 
discards thv v;irial)l(. that has t lit. Iargt’st (a1)solutc~ value) cwc+ficitwt in that vec- 
tor. Tlic~n. on(’ considws the‘ c4gcmw.toi c.orrcisl)oiitliiig to the sc~mnd smallest 
c~gcwvalut~. an(l (lis(.ards t lit. vai ial)l(i cant r i h t  ing t hc. largc.st (al)solut,r value) 
c w f i c i t m t  to that tigenvcctor. arno~ig the. varia1)los not discxdcd wr1it.r. The 
pi o ( w s  is rtycwtcd until only k v a r i a l h  rclrnain. 

Tht. intcrI)rc.tation of the PCs can be difficult at times. 

3 Factor analysis 
This srction follows [41]. Liktx PC‘X. factor analysis (FA) is also d linear nitthotl. 
based on the sworitl-ordcr data sunirnariw. First siiggtsttd by psychologists, 
FA assiinies that the ~neasiirt~l vitriahlw d~pcmd on soin(’ unknown, and often 
uxirncasural~lt~. (~)ninion factors. Typical c~sanipl~w inrliidr variables defined as 
various trst scores of individiials, as siic.11 s ( ’ o r ( ~  arc thoiight to l)c> related to a 
(~)ni inon “ixitt~lligc~~ic~~“ factor. Thc. goal of  FAA is to i i ncov(~  such relat ions, and 
thus can be iisc~l to rediic~. thr dinicnsion of dat ascts follo\ving thci factor model. 
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The zero-mean pdimensional random vector xpx 1 with covariance matrix 
satisfies the k-factor model if 

x = A f + u ,  (13) 

where h p x k  is a matrix of constants, and fkxl and upxl are the random com- 
mon factors and specific factors, respectively. In addition, the factors are all 
uncorrelated and the common factors are standardized to have variance one: 

E(f) = 0 ,  Var(f) = I, 
E(u) = 0 ,  C ~ v ( u i , u j )  = O for i # j ,  

Cov(f,u) = 0. 

Under these assumptions, the diagonal covariance matrix of u can be written 
as Cov(u) = * = diag(&~,.-- ,+, ,) .  

If the data covariance matris can be decomposed as 

= A A ~  + \E, (17) 

then it can be shown that the k-factor model holds. Since zi can be written as 

k 

xi = C A i j f j  +ui, i = 1 ,..., p ,  
j=  1 

its variance may be decomposed as 

k 

(Tji = Afj + +ii, (19) 
j=  1 

where the first part h: = Eftl ATj is called the communality and represents 
the variance of xi common to all variables, while the second part $ii is called 
the specific or unique variance and it is the contribution in the variability of 
xi due to its specific ui part, not shared by the other variables. The term A% 
measures the magnitude of the dependence of xi on the common factor fj. If 
several variables zi have high loadings X i j  on a given factor f j ,  the implication is 
that those variables measure the same unobservable quantity, and are therefore 
redundant. 

Unlike PCA, the factor model does not depend on the scale of the variables. 
However, the factor model also holds for orthogonal rotations of the factors. 
Given the orthogonal matrix G, given the model (13), the new model 

x = (hG)(GTf)  + U, (20) 

also holds, with new factors GTf and corresponding loadings AG. Therefore, 
the factors are generally rotated to satisfy some additional constraints, such as 

AT*-'A is diagonal, or (21) 
ATD-'h is diagonal, D = diag(a11,. . . , opPp), (22) 
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where the diagonal elenients are in decreasing order. There are techniques, 
such as the varirnax method, to rotate the factors to obtain a parsimonious 
representation with few significantly non-zero loadings (Le. sparse matrix A). 
As explained in [13], ICA (see Section 5) can be thought of as another fac- 
tor rotation method, where the goal is to find rotations that maximize certain 
independence criteria. 

In many cases, a k-order factor model in (17) provides a better explanation 
for the data than the alternative full covariance ~notlel Var(x) = C. In such 
cases, it is possible to derive paranieter estimates A and 9. 

Let X, R, and S denote the sample incan, covariance matrix, and correlation 
matrix, respect,ively, of the observed data matrix X. Then, starting with 

and using 

we obtain 

2 = AAT + *, 
k 

ir,, = A?, + G,,. 
J = 1  

TW) (lifferent possi1)ilities to (lcrivc. wt iniat ~s A  ant^ & for t lie niotlel pa- 
rainetrrs in (13)-(16) arc’ detailrd in Swtions 3.1 arid 3.2. 

3.1 Principal factor analysis 
Suppose thv (lata is standardizcd. so that its covariaxic.e matrix is cqual to the 
correlation matrix. To obtain cstiniatcs A and 8 for the standardized variables, 

of the niiiltipl[> (.orrelation corfficicnts of the it11 variable with all the ot,hrr 
varial)lrs, ant1 t he largwt coi rclat ion corfficient l)t.tv,-een t he it h variable and - 
one of thr otliw varia1)lw Scst. form the ?~,diiced ( ‘ 0 7 T d 1 L t j 0 7 1  .rricitrix R - \E, 
wlitrc. the tliagonal c~lcrnc~Ilts of 1 in R arc’ rt>pl;tc~1 1 ) ~  t l i r  elrrnents it;’ = 1 - i~,,. 
Then, clt~.ornpostl t lie r c ~ l i i c ~ ~ l  corrtht ion mat ris in t ernis of t hc> c+,tinvalucs 
( 1 1  2 . . . 2 (iP and orthoriorni;tl oigcwwtors 2 ( l l .  . . . . -,(p) as 

first tstimatci i1;l for i = 1,. . . .p .  c1oxIiI~loI1 estiniatw il; irirlu(1e the square 

I’ 

(26) T R - 8 = ( ~ , - , ( i ) - , ( ~ )  

r = l  

If thti first k c~igcIiviiliiw arc’ positivth. wtiniatc thr i t  h coliinin of A by 

( 2 7  
1/1 

J(i) = ( I ,  -,,,). i = 1,. . . . k .  

Equivalently, 
A = J?IA;”. 

whtw rl = ( - j ( i ) ,  . . . . -,(k)), and AI = tliag(ul.. . . , ( [ A ) .  The eigenvectors are 
orthogonal, so the cwnstr’aint in  (22) holds. 
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Finally, the specific variance estimates are updated as 

k 

i= 1 

The k-factor model is permissible if all the p terms in (29) are non-negative. 
In practice, the number of factors may be determined by looking at the 

eigenvalues ai of the reduced correlation matrix, and choosing k as the index 
where there is a sharp drop in the eigenvalue magnitudes. 

As its name suggests, principal factor analysis (PFA) is related to principal 
component analysis. When the specific variances are all zero, Q = 0, comparing 
Equations (17) and (26) to Section 2 indicates that PFA is equivalent to PCA. 

3.2 Maximum likelihood factor analysis 
If, in addition to the factor model specified in (13)-( 16), we also assume that the 
factors f and u are distributed as multivariate normal variables, then parameters 
of the model can also be estimated by maximizing the likelihood. In such cases, 
one can also test the hypothesis that the k-factor model describes the data more 
accurately than the unconstrained variance model. 

The log-likelihood function can be written as 

(30) 
1 1 I = -- n l o g l 2 n ~ l -  - n trX-'S, 
2 2 

and the goal is to maximize it with respect to the parameters A and \k, subject 
to the constraint in (22) on A. Under the factor model, X = AnT + Q. 

The optimization is carried out by noting that the function 

F(A,  Q) = F ( A ,  Q; S) = trX-'S - loglX-'SI - p (31) 

is a linear function of the log-likelihood I, with a masimum in I corresponding 
to a minimum in F. Also, in terms of the arithmetic mean a and the geometric 
mean g of the eigenvalues of X-lS, we have 

F = p(a  - logg - 1). (32) 

Minimizing F ( A ,  Q) proceeds in two stages: first, the minimization over A for 
a fixed \k has an analytical solution, then, the minimization over \k is carried 
out numerically. 

4 Projection pursuit 
Projection pursuit (PP) is a linear method that, unlike PCA and FA, can incor- 
porate higher than second-order information, and thus is useful for non-Gaussian 
datasets. It is more computationally intensive than second-order methods. 
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Given a projection index that defines the “i~iterestingncss” of a direction, PP 
looks for the directions that optimize that index. .As the Gaussian distribution is 
the least interesting distribution (having the least structure), projection indices 
iisually measure some aspect of non-Gaiissianity. If, however, one uses the 
second-order Inaxirnum variance, subject that the projections be orthogonal, 
as the projection index, PP yields the familiar PCX. IYriting the optimization 
criterion as 

Q(X,W) = I-ar{x‘w), (33) 
according to (7), the direction w1 of the first PC solves arg ~nasII,,lIIQ(x,w), 
and the corresponding first P C  is sl = xTw1. 

A commonly used higher-ordrr projection index is based 0 1 1  the negative 
Shannon entropy [20]. Given the random variable x with probability distribution 
j, its negative entropy is defined a s  

C2(X) = / f(x)logf(x)4x). (34) 

The Gaussian distribution rninirnizes this ~neasiire, so it, ~riakes sense to find 
tlircct,ions w that rnasiniize the cmtropy of tlw projected data Q(x, w) with 
respect to w, su1)jrc.t to liaving constant variance of xTw. 

Ot hcr projection indices incliide indiccxs 1);isc~l on higher-ordcr ciimulants 
and 011 the Fisher information [7. 221. Hou-wtr. all of these ni(’asiir(s depend on 
tlie unknown protxi1)ility (1istriI)iition of X”W. wliich can \)e (Iifficult to rstirnat,e. 
Xl t  crnativr indicm based on aI)I)rosiinatioIis. ; i r i t l  on diff(wnt mmiir(’s of non- 
normality have also been proposed in thc literature [22]. 

Thc. Fast ICX algorithni for incltpcwdmt corripownts ill Stiction 5.3 can also 
1 ) ~  ustd to find projection piirsuit dirc\ct ions. 

5 Independent component analysis 
This stirtion is based on [22]. ii rcwnt s u r v q  on iridq)cwlcrit cmriponcnt analysis 
(ICX). Alorv inforrriatioii (arid software) oil this ciiirciit Iy v c ~ y  popular nit~thotl 
(mi t)t. founcl at various w4)sitw. incliitling [ G .  24, 491. Books surrirnarizing thc. 
r c w I i t  adv-ancw in the throry and applic.ation of ICX inrliicle [l, 48, 15, 381. 

ICA is a 1iiglic.r-orc1c.r rncthod that swks lincvir projt>ctions, not ncwssarily 
ort hogorial to cw.h other. that i i w  as ncvirly statist icxlly inclcpericlent as possi- 
b l ~ .  Statistical irid[.I)r.ndrnt.e is R niudi stroiigrr rondit ion than unc.orrt’latdriess. 
IVliilt> the lat trr only involves t l i r  sc~o~itl-order statist its. t liv fornicr depends 011 
all thti 1iight.r-ordcr statistics. Forrrially, thc rantlorri vciri:il)lcs x = {SI, . . . , sP} 
R ~ P  uric.orrt~latrd. if for V i  # j. 1 5 i ,  j 5 p.  we h a v ~  

Cov(s,..r,) = E{(s, - p,)(s, - 1 1 , ) )  = E(s,.r,) - E(.r,)E(s,) = 0. (35) 

1x1 contrast, ixidrI)[’ntlenc.t~ rcyiiirc>s that the niu1tiv;iriattx pro1)at)ility density 
fiiiiction factorizes. and (’an 1 ) ~  writ tcm as 
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Independence always implies uncorrelatedness, but not vice versa in general. 
Only if the distribution f(q, . . . , zP) is multivariate normal, are the two equiv- 
alent. For Gaussian distributions, the PCs are independent components. Fol- 
lowing [22], the noise-free ICA model for the p-dimensional random vector x 
seeks to estimate the components of the k-dimensional vector s and the p x k 
full column rank mixing matrix A in (3), 

(xi,.  . . , z ~ ) ~  = Apxk(S1, .  . . , ~ k ) ~  (37) 

such that the components of s are as independent as possible, according to some 
definition of independence. At least one of the hidden independent components 
si has to be non-Gaussian to ensure the identifiability of the model [22]. The 
noisy ICA contains an additive random noise component, 

but estimation of such models is still an open research issue [22]. In this survey, 
we only consider the noiseless model as specified in (37). 

There are overcomplete versions of ICA, where the number k of ICs is larger 
than the number of original variables p [22]. In this paper, we will assume that 
there are as many independent components as there are original variables, i.e. 
k = p .  In contrast with PCA, the goal of ICA is not necessarily dimension 
reduction. To find k < p independent components, one needs to first reduce the 
dimension of the original data p to k, by a method such as PCA. 

As the problem is stated, there is no order among the ICs. Once they are 
estimated, they can be ordered according to the norms of the columns of the 
mixing matrix (similar to the ordering in PCA), or according to some non- 
Gaussianity measure (similar to ordering in PP). 

ICA can be considered a generalization of the PCA and the PP concepts. 
While PCA seeks uncorrelated variables, ICA seeks independent variables. The 
noise-free ICA is a special case of PP, with independence being the “interest- 
ingness” in the projection pursuit index definition. The noisy ICA model is 
equivalent to the FA model in (13) assuming non-Gaussian data. 

ICA has been applied to many different problems, including exploratory data 
analysis, blind source separation, blind deconvolution, and feature extraction. 
In the feature extraction context, the columns of the matrix A represent features 
in the data, and the components si give the coefficient of the ith feature in the 
data. Several authors used ICA to extract meaningful features from natural 
images [22]. 

Estimation of the model in (37) consists of two steps: specifying the ob- 
jective function (also called the contrast, the loss function, the cost function), 
and the algorithm to optimize the objective function. Objective functions can 
be categorized into two groups: “multi-unit” contrast functions that estimate 
all p independent components at once, and “one-unit” contrast functions that 
estimate a single independent component at  a time [22]. They are detailed in 
Section 5.1 and in Section 5.2, respectively. Section 5.3 lists several optimization 
algorithms. 
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5.1 Multi-unit objective functions 
There are many different ways to specify objective functions. This section lists 
several possibilities. It has been shown, that despite their different formulations, 
they all closely related, arid under certain conditions, sorne are equivalent [22]. 

Under certain conditions (the distribution of the independent components 
is known with sufficient accuracy), the mutual information method is essen- 
tially equivalent to maximum likelihood principle, and so is the non-linear PCA 
method. Under the Sam’ conditions, cumulant-based methods are approxima- 
tions to the mutual information. 

Curnulant and general contrast-based methods, however, can be used for any 
non-Gaussian data, without knon-ing the underlying distributions. 

5.1.1 

This method specifies the likelihood of the noisc-free ICX rnotlel, and uses the 
Iriasirniim likelihood principle to estimate the pararneters. Under some condi- 
tions, it is equivalerit t o  the “infoniax” rietwork entropy maximization concept 
iri the neural rietwork literatiire. 

The adxintagcs of  this method iriclutlc. the asymptotic cficiency of niaximuni 
likelihood est ilnatcs unt1t.r rclgularity conditions. Howevc~, it, requires knowledge 
of the tlistri1)ution of thc indepc~nderit conipon(wt.s, it is stnsitive to outliers, and 
it is cornput;itionally iritensivc. which niakc it iindrsira1)le in many practical 
sit iintioiis. 

Maximum likelihood and network entropy 

5.1.2 Mutual information and Kullback-Leibler divergence 

llutiial inforinat ion I iii(xasiir(’s thtk tlcpcwdrnc~~ x n o ~ i g  I I I  rando~n variables g1 
i l S  

111 

I(!/l.-.-.!/m) = C“!/J -H(Y). (39) 
r = l  

xli(~re H is thc  tlifftmmtial c’ritropy. H(y) = -Q(y) in (31). Thc rnutual iri- 
forrnation is always riori-ricgativv, arid is wro if and orily if tlic variables are 
statistically iIidtycwlcnt. It t1ic.i (.fore makes smsc to find thr varia1)lcs that 
rriininiizcl thv niut ual inforniat ion aniong the cwrriporicIit s. 

l I u t  iial inforni;ition is also qiia1 t o  thr ~~iilll)ack-Lci~)lm tlivw grncr 

bc>twccri thrjoint clwisity f (y )  ;ind the factoriztd j ( y )  = f~ (!/I) . . . f , l l ( y , l l ) .  The 
Iiiill1)ac.k-Ltii1)lc.r t1ivergc~ric.c. iii(’asiirw a .bclos(w(ss‘q of two distrihitions. If the 
cwiriporicnts are iridcpend(~1it. tlic artiial dcnsity f(y) factorizes just likc f(y),  
and results in zoro divcrgence. 

lliitual informat ion is hard to estimate. iInposing dific.iilties on using it as 
i i r i  objwtivc fiirict ion. A s  suniniariztd in [22]. wvckral api)rosiniations, 1)ased 011 
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polynomials, on higher-order cumulants, and on the maximum entropy principle, 
have been proposed. 

5.1.3 Non-linear cross-correlations 

This principle is based on canceling non-linear cross-correlations of the form 
E{gl(yj)g2(yj)}, where g1 and g 2  are non-linearities specified by the user. As- 
suming that yi and y j  are independent, such cross-correlations are zero. Of- 
tentimes, there are no explicit objective functions associated with the chosen 
cross-correlation, so that they are only implicitly specified. 

5.1.4 Non-Linear PCA 
This method indicates the strong connection between ICA and non-linear PCA. 
By introducing non-linearities g based on the probability densities of the inde- 
pendent components into the PCA objective function in (7), we obtain the ICA 
model 

w1 = arg max~~,=,~~var{g(x*w)). (41) 
As with the non-linear cross-correlation method, there might not exist explicit 
contrast functions. 

5.1.5 Higher-order cumulant tensors 

The ICA model can also be estimated by solving for the eigenvectors of eigen- 
matrices corresponding to the linear operator T defined by the fourth-order 
cumulant as 

T ( K ~ ~ )  = C c u m ( z , , z j , s r ; , s r ) ~ k r .  (42) 
k, l  

The linear operator T maps the space of k x k matrices to itself, and has k2 
eigenvalues corresponding to eigenmatrices. This procedure does not need to 
know the probability densities of the independent components, but suffers from 
suboptimal statistical properties characteristic to cumulant-based estimators. 

5.2 One-unit objective functions 
One-unit contrast functions seek a single vector w such that the linear combi- 
nation xTw is equal to one of the independent components si. It is desirable 
when not all the PCs are needed, it can be used iteratively to find more PCs, 
and it tends to result in computationally simple solutions. 

The contrast functions in this section are closely related. Both cumulants 
and general contrast functions can be used to approximate the negentropy. The. 
objective function based on the kurtosis (fourth-order cumulant) is a special 
case of general contrast functions. 
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5.2.1 Negentropy 

Differential entropy is not invariant under scale transforrnations. The negen- 
t,ropy, or negative normalized c>ritropy 

J(Y)  = H(Ygau.i,) - H(Y) (43) 

where H is the tlifferential entropy, H(y) = -Q(y) in (34): and ygauss is a 
Gaussian random vector with the same covariance matrix as y, is a linearly 
invariant version of the entropy. It is non-negative, arid zero if and only if y 
is Gaussian. Finding the direction of masiniurn negentropy is equivalent to 
finding the representation with minimum Inutual information. The directions 
that rnasirnize the negentropy ( x i  also be foiind by using differential entropy 
as a projection index in PP. 

Negcnt ropy is difficult to (1st irriat e. Xpprosirnat ions 1)ased on higher-order 
curnulants are explaincd in 5.2.2. arid ones based on general contrast functions 
in 5.2.3. 

5.2.2 Higher-order cumulants 

01ic higher-or(1t.r cuinulant oft (’11 used as a ~~i(wsiire of Iion-Gaussianity is the 
fourth-order curnularit . also c.allrd t l iv  kurtosis. By cldinitiori. the kurtosis 
kiirt (s) of a ranclorxi variable .r is 

kurt(.r) = E(.r’) - 3[E(.r2)]’. (44) 

The kurtosis is zero for a Gaussiari varial)l(>. it is positive for heavy-tailed super- 
Gaussian (list ri1)utioiis. arid it is iityyitivc for light-tailrtl suh-Gaussian (listribti- 
t ions. InclcpcwlcIit cwniponmt s ( x i i  be tlerivcd hy Inasiniizing t hr rnocluliis of 
tho kiirt osis. 

C‘ii~riulant-l~;ts(’(1 cvtiiiiatoi s (’it11 1x1 poor in tcwns of rohistIirss and asyrnp- 
tot ic vai ianw. They only c*oIisitl(ir tlic tails of tho distri1)ution. and art’ scnsitive 
to outlicw. 

5.2.3 General contrast functions 

Iri contrast with thv conti ast fiiiict ions introtluc.c~d cwrlic.r, gmcml contmst func- 
t ions a 1  (’ forrriulatcd to havc good statistic;il propcirtirs n-ithoiit requiring knowl- 
edgr of thr distri1)ut ions, and to allow sirnple inttxrprctation and algorithmic ini- 
plcmrrit ation. Such contrast furic.tioris J r~ieasiire riori-Gaussianity of t,lic stan- 
tlartlized rando~n variahlt. !J by cwrnparing it to a st;imlartl Gaussian variable v 
via ii sinooth Iiori-quadrat ic. ( x v ~ ~ i  fiirictiori G by 

J<;(.Y) = IE,[G(!/)] - Ev[G(v)II”, (45) 

w l i c r ~  1) is iisually taken to IN.  1 or 2. Taking G(y) = y ’ ,  .J<; is simply the 
kurtosis. For siiitahle c-hoiws of G. siic*h as  

G(y) = log c.osli(ril u )  or G(y) = c3p-<12u2/2), (46) 
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with constants a1 , a2 2 1, estimators based on optimizing generalized contrast 
functions have superior statistical properties than cumulant-based estimators. 
Being the log-density of a super-Gaussian distribution, GI is related to maxi- 
mum likelihood estimation. 

5.3 Optimization algorithms 
Most optimization algorithms either require that the data be sphered, or they 
converge better for sphered data. Sphering is a linear transformation that maps 
x into a new variable v with unit covariance matrix: 

v = Qx, E(vvT) = I. (47) 

v = Bs. (48) 

In terms of v, the ICA model in (37) can be written as 

Assuming unit-variance independent components, we have I = E(vvT) = BE(ssT)BT = 
BBT, and therefore B is orthogonal. The problem then translates to finding an 
appropriate orthogonal matrix B from the sphered v. Once such a B is found, 
the independent components are obtained via 

(49) T i = B  V. 

Several algorithms have been proposed to estimate independent compo- 
nents. As [22] summarizes, there are two major types: adaptive and batch-mode 
(block) algorithms. 

Adaptive methods use stochastic gradient-type algorithms. Likelihood or 
other multi-unit contrast functions are optimized using gradient ascent of the 
objective function. One-unit implementations use straightforward stochastic 
gradient methods that. optimize negentropy or approximations of it. 

Examples of adaptive algorithms include the Jutten-Herault algorithm, which 
is based on canceling non-linear cross-correlations and converges only under 
harsh restrictions; other algorithms based on non-linear decorrelations that are 
more stable and computationally tractable than the Jutten-Herault method; al- 
gorithms for maximum likelihood estimation; non-linear PCA algorithms; neural 
one-unit learning rules; and exploratory projection pursuit algorithms. 

Batch-mode algorithms are much more computationally efficient than adap- 
tive algorithms, and are more desirable in many practical situations where there 
is no need for adaptation. The FastICA is such a batch-mode algorithm using 
fixed-point iteration. It was introduced in [23] using the kurtosis, but was 
subsequently extended to general contrast functions in [21]. A hIATLAB im- 
plementation is available from [24]. It can also be used for projection pursuit 
analysis described in Section 4. 

6 Non-linear principal component analysis 
Non-linear PCA introduces non-linearity in the objective function, but the re- 
sulting components are still linear combinations of the original variables. This 
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method can also be thought of as a special case of independent component anal- 
ysis, Section 5.1.4. As indicated in [31], there are different formulations of the 
non-linear PCA. 

A non-linear PCX criterion for the data vector x = (TI,. . . , s,,)‘ searches 
for the components s = ( S I ,  . . . , .sp)’ in the form of s = W‘x by miriiniizing 

J(W) = E{\\x - Wg(W’x)((‘} (50) 

with respect, to the p x p  weight rnatris W [31], where g(y) denotes the component- 
wise application of the non-linear function g ( )  to the elements of the vector y. 
Commonly used such Iion-linear functions are odd functions like g(y) = tanh(y) 

The opt,irnization in (50) can be carried out (>ither hy the stochastic gradient 
clrsceiit algorithm with the learning pararncter c and the 1 W  update matrix of 
w l)elo\v, 

or by an  approximate r(viirsiv(> least sqiiarrs (RLS) algorithm [31]. The RLS 
nicthod c-onvcrgcs faster t han the c.orrt.spoIi(liIig gradient clescent method. has 
good final accuracy. but slightly highcir c.oniputationa1 load. 

Brfore applying the algorithnis. the data needs t o  he pre-w-hitcnrd by v = 
Vx, wliere E{vv“} = I. By dcnotiiig 

and g ( g )  = .lp. 

I W  = r[x - Wg(W’Tx)]g(x‘W), (51) 

y = W’v = W7’Vx = Bx. 

-1w = r[v - Wg(y)]g(y’j. 

(52) 

thcx optimization in (51) ( x i  lw u-ritteii a s  

(53) 

wlicw. after (wnvergenw. y c.ontains tlic soiiglit s vector. 
Xssurning that t he (wnpon(wts of s d l  11;ivt~ vari;iric.c’ tyiial to one, the final 

y (IstiInates are stan(inr(Iizc>(i to ~iavc. ~ { y y ’ }  = I. rtmilting in the niatris W 
1)cing ortliogonal ( ~ { y y ” }  = W’”E{VV“}W = I ) .  ~ r i d ~ i  this condition, it can 
lw shown [31] that 

P 

J(W) = E { ~ ~ v - W g ( W ’ r v ) ~ ~ 2 }  = E{IIY-dY)I12} = C E{[Y~-!I(!/~)I~}- (54) 

A s  indicated in Scctioii 8.5. [37] proposcvl a nc~ural iic>twoik aic.hitrc*ture with 
iioIi-liricar activation finict ions in t hci hiddm layus to cwt i m i t  e non-liIirar PCAs. 

, = I  

7 Random projections 
The‘ nirt hod of random projtvt ions is ii siniplr ycit powc’rfiil dirnrnsion rcdiiction 
tc~linique that iisw ramlorn projection niatriccs to projrct the data into lower 
dim.iisiona1 spaces [47. 32. 33. 351. The. original data X E 72” is transformed to 
thc lower ciiriic~nsional S E xk .  with k << p .  via 

S = RX. (55) 



where the columns of R are realizations of independent and identically dis- 
tributed (i.i.d.) zero-mean normal variables, scaled to have unit length. The 
method was proposed in the context of clustering text documents, where the 
initial dimension p can be on the order of 6000, and the final dimension IC is still 
relatively large, on the order of 100. Under such circumstances, even PCA, the 
simplest alternative linear dimension reduction technique, can be computation- 
ally too expensive. Random projections are applied as a data pre-processing 
step, then, the resulting lower dimensional data is clustered. It has been shown 
empirically that results with the random projection method are comparable 
with results obtained with PCA, and take a fraction of the time PCA requires 
[33,35]. To reduce the computational burden of the random projection method, 
at a slight loss in accuracy, the random normal projection matrix R may be re- 
placed by thresholding its values to -1 and +1, or by matrices whose rows have 
a fixed number of Is (at random locations) and the rest Os [35]. 

If the similarity between two vectors is measured by their inner product 
(giving the cosine of their angle for unit-length vectors), [33] showed that if the 
dimension of the reduced space d is large, random projection matrices preserve 
the similarity measure: on the average, the distortion of the inner products is 
zero, and its variance is at  most the inverse of twice d. 

8 Non-linear methods and extensions 

8.1 Non-linear independent component analysis 
Non-linear methods, such as principal curves, self organizing maps and topo- 
graphic maps, can, in principle, be incorporated into ICA. 

Given the pdimensional zero-mean non-Gaussian variable x, the non-linear 
ICA model replaces the linear transformation in (3) by 

(21,. . . , ZP)T = f ( S 1 , .  . . , s k y ,  (56) 
where f is an unknown real-valued pcomponent vector function. In general, 

The identifiability and other properties of the general non-linear ICA model 
makes its estimation difficult. A few publications considering special cases are 
mentioned in [22]. An overview of the problem, along with a maximum likeli- 
hood and a Bayesian ensemble learning method for estimation can be found in 

k = p .  

[301. 

8.2 Principal curves 
Principal curves are smooth curves that pass through the “middle” of multi- 
dimensional data sets [18, 40, 71. Linear principal curves are in fact principal 
components, while non-linear principal curves generalize the concept. 

Given the pdimensional random vector y = (y1,. . . , yp) with density g(y ) ,  
and the smooth curve f(s) = (fl (A), . . . , fp(X)) E R p  parameterized by the real- 
valued A, define the projection index &(y) to be value of X corresponding to the 
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point on f ( s )  that is closest (in Euclidean distance) to y. The set of principal 
curves is defined in [lS] as the curves that (lo not intersect themselves and are 
self-consistent. with respect to the data. By definition. a curve is self-consistent 
if each point f ( X )  is the mean of all points in the support of g that are projected 
on A. 

It was shown in [lS] that a curve f is a principal ciirve if and only if it solves 
E[ylXf(y) = XI = f ( X ) .  (57) 

N 

where y,  is tlie ith instance of the ydirnensional vector, and the composition 
of funct,ions f (Xf(y,) gives the ydiniensional coordinatcs of the projection of yi 
onto thc ciirve f .  

To estimate f and A, [lS] proposed an iterative algorithni. It starts with 
f(X) = E ( y )  + dX,  where d is the first eigrnvrc-tor of the covariance matrix of 
y and X = Xf(y). Then it iterates thr two steps 

1. For a fixed A. niiniiriize Elly - f(X)ll‘ by setting f,(X) = E(!j,IXf(y) = A) 
for (w.h j 

2. Fix f arid set X = Xf(y) for cw.h y 

until the change in Elly - fxl]’’ is lrss than a thrc&ol(l. 
An alternative formulation of thc principal (’iirws rnc~tliod. along with a 

gcmcmlizcd ELI algorithni for its wtiriiation u n t l t ~  Gaussian distrihtion of g ( ) ,  
is prescwtttl in [52]. 

In grri~ral. for tht. niodel y = f ( X )  + E .  wlit~rt~ f is srnootli and E(€) = 0, 
f is not iie( (warily a pi-incipd c i i r v ~ .  Eswpt for a fmv spwial cascs, it is not 
k ~ i o w n  in grric~al for what typv of distributions (lo print ipa1 ciirvm exist, how 
i n m y  principal mrvcs thcre arc. and what thrir propc’rtiw i.irc [7]. 

Thv c.onc.q)t of prinripal ciirv(~s riin 1)c t > s t  cwd(~1 to 1iiglic.r dinicwsional prin- 
ciplt. siirfaws. Init t hri est iiiiat ion procrdiirc~ gvt s inor(’ winplicat wl. 

8.3 Multidimensional scaling 
Givm T I  itciiis in <i yclirntwsional space and a11 I I  x I I  matrix of proximity nic’a- 
siires among t he it ~n i s ,  rriiiltitlirnc.nsio~i~i1 scaling (LIDS) pi odiicrs a k-dinit~nsional, 
k 5 p .  icI)rcsciIitatioIi of the itcins such that thv clistanc.cs miorig the point,s in 
thr n ~ w  s p a c ~ ’  reflrrt thc prosinlitits in  the. (lata [S, 7. -111. The proximity 
niwsiirw the ((1is)similarities miong tlic itenis. and in gcmwal, it is a distance 
ni(>asiir(’: the inore similar two it rnis are. thc. srria1lt.r t heir (listanre is. Popular 
clistanrr nieasiires iricliitlc thc. Euclidtwi (list iiiic~ (L’ iior111). tlie niarihattan 
c1istanc.r (L1. a1)soliite norm). and th t  niasirnurri ~ i o i n i .  Rcsults of &IDS are 
inclctc’r~ninatc with rcyrc t  to translation. rotat ion, aiid rrflt~ctiori. 

AIDS has bcwi typically uscd to transform the data into two or three tli- 
~iictiisio~is. arid visualizing the rcwilt to i i ~ i c o v ~ r  lii(l(1cvi structure in the data. .A 



rule of thumb to determine the maximum number of k, is to ensure that there 
are at least twice as many pairs of items then the number of parameters to be 
estimated, resulting in p 2 4k + 1 [7]. 

Given the n items {xi};==, E RP and a symmetric distance matrix A = 
{&j, i, j = 1, . . . , n}, the result of a k-dimensional MDS will be the set of points 
{yi};=, E Rk such that the distances dij = d(yi,yj) are as close as possible to 
a function f of the corresponding proximities f(&j). 

In [41], MDS methods that incorporate the given distances &j into their 
calculations are called metric methods, while the ones that only use the rank 
ordering of the distances are called non-metric methods. In contrast, [7] states 
that depending on whether f is linear or non-linear, MDS is called either metric 
or non-metric, correspondingly. 

Following [7], the steps for the most general estimation procedure are as 
follows. First, define the stress as an objective function to be minimized by f 

Ci,j[f(Sij) - dij12 J scale factor ' stressf(A, X, f) = (59) 

where the scale factor is usually based on Ci,j[f(Sij)]' or on 
a given X = {xi}:==,, find f that minimizes (59), 

dij. Nest, for 

stress(A, X, f) = minj stressj(A, X, f), 

stress(A, X, f) = minx stress(A, X, f). 

(60) 

then determine the optimal X by 

(61) 

The special case of using Euclidean distance and f as the identity in (59) 
leads to the principal coordinates of X in k dimensions as the solution, which 
are equivalent to the first k principal components of X (without re-scaling to 
correlations) [-Ill. 

An alternative to &IDS is FastMap [12], a computationally efficient algo- 
rithm that maps high-dimensional data into lower-dimensional spaces, while 
preserving distances between objects. 

8.4 Topologically continuous maps 
There are several methods based on finding a continuous map to transform a 
high-dimensional data into a lower-dimensional lattice (latent) space of fised 
dimension [7]. Such techniques could be called self-organizing maps, but that 
name is most often associated with one particular such method, namely, Koho- 
nen's self-organizing maps. To avoid confusion, we follow the review [7], and 
refer to these methods collectively as methods that use topologically continuous 
maps. 
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8.4.1 Kohonen’s self-organizing maps 

Given the data vector { tn}f=, E R”, Kohonen’s self-organizing maps (KSOhI) 
E361 learn, in  an unsupervised way, a map hetween the data space and a 2- 
dirnensional lattice. The method can be estentled to L-dimensional topological 
arrangement s as well. Let d f ,  and dn denote distances (typically Euclidean) 
in the lattice and in the data space, respectively, and define a neighborhood 
fiirictiori h,, on t,hr lattice space, siich that it is symmetric, has values in the 
[O, 11 interval, h,, = 1 for any node i in the lattice, and the further node j is from 
i in thc lattice, thc srrialler IL,, is. The neighborhood of node i consists of the 
 iod des for which h ,, greater than a threshold. Typical neighborhood function is 
11,) = tisp( -d fA( i ,  j ) / 2 / 0 2 ) ,  whcw n specifies the range of the neighborhood. 

Kohonen’s rule uses an initially random set of reference vectors { p, };El 
in the data space 72”. then updatcs them iteratively according to the data 
distri\)ution such that the final refercwce vector will be drnse in regions of R” 
where t lie data is comnion. Kohontw’s rule iterates the following procedure over 
all thc data points until (.o~iv(~rgeriw o(~i i rs .  

0 For a given data t , , ,  find the dosest, vector p,. to it in the lattiw space: 

i’ = arg I l l a S , E , ~ t t i ( r ~ ~ l l ) ( p ~ .  t, ,),  (62)  

0 Thc~i, ;it iteration f arid lrarriing rat(’ o( ‘ )  E [O. 11. upclatt> thr rc>ft.rexice 
I t )  vwtor by nioving it a t1istwnc.c p = ( k ( ‘ ) h , . ,  towards t:  

p y v  = p, o l d  + o(‘)I,;!;(t,, - ppI‘1) = (1 - p)pp’(l + pt,,. (63) 

Altlioiigh IiSOlIs ar(’ useful in many applications. t h y  h a v ~  s(3veral draw- 
I)iicks: tlirre is 110 implirit crit(>iid that t h y  tiy to optiniize. thcw are no rules 
to optinially s c k t  o(‘)  ;inti ] I ( ‘ ) .  arid thew is 110 proof that, t h y  cwnvergc. in 
gc~rlc~ral. 

8.4.2 Density networks 

Density wtwoiks [7] assiinii’ it proh1)ility t1istril)utiori for thc data givcvi the pa- 
rmiet(’is, as ~ w l l  as prioi clistrilmtioris foi thr p a r a m ~ t t n .  thcri apply Baycsian 
lwrning tcdiriiqiic~s to riiockl tht’ data in tc’rnis of latcrit va r i a lh .  

Gr~ic’r atiw topographic mapping (GTl I )  is a spc>c.ial dmsity rictwork 1)asrd 
o ~ i  c.onstraincd Gaussian niisturcs that iism the c.si,ec.tation-rnasilliizatiori (Ehl) 
algorithm to cxstirriate thci paraiiirttrs by Iriasiriiizing the likelihood fiinction. It 
was introdiic.ec1 in [3]. arid, iinlikti the IiSOlIs in Srction 8.4.1. it provides a 
rigorous trcatnicnt of SOlIs uiitlcr wrtain assumptions. 

8.5 Neural networks 
iYcvira1 networks ( N S s )  nioclc~l the stit of output variables { !j, };=, in terms of 
t h c k  inpiit vxia1)lcs x = {J-,}~=~ its 

!jJ ! / , ( x - w ) 3  (6-1) 
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where the functions y j  (x, w) specify the network architecture, and the weights w 
are determined by training (learning) the NN using a set of known examples and 
an error function [2]. Many, traditional and more recent, linear and non-linear, 
dimension reduction techniques can be implemented using neural networks with 
different architectures and learning algorithms [2, 46, 40, 51, 71. 

The simplest NN has three layers: the input layer, one hidden (bottleneck) 
layer, and the output layer. First, to obtain the data at node h of the hidden 
layer, the inputs x i  are combined through weights Wih along with a thresh- 
old (bias) term ah, then they are passed through the corresponding activation 
function f j h .  In the second step, the output is obtained in a similar way from 
the data on the hidden nodes, using the weights W h j ,  the threshold a j ,  and a 
possibly different output function do: 

The first part of the network reduces the input data into a lower-dimensional 
space, while the second decodes the reduced data into the original domain. 
Frequently used activation and output functions include the linear (identity) 
function, sigmoidal (S-shaped) functions such as the logistic function, and the 
Heaviside thresholding function [2, 531. NNs with a single hidden layer net- 
works and the threshold activation function are also called perceptrons. Net- 
works that try to learn the identity mapping, i.e. the outputs y j  are identical 
to the inputs zi, are called auto-associative (auto-encoders, bottlenecks, p-k-p 
networks). Hetero-associative neura,l nets have different number of input- and 
output layers, and are used, for example, in classification. 

As summarized in [7], there are many types of NN architectures that can 
extract principal components. hilore complete details can be found in [9]. For ex- 
ample, a linear, one hidden layer auto-associative perceptron with p input units, 
k < p hidden units, and p output units, can be trained with back-propagation to 
find a basis of the subspace spanned by the first k PCs, if the error metric used 
is the minimum squared sum of differences between the input and the output 
units. Other networks, based on Oja's rule and various de-correlating devices 
can also be used to find principal components. 

By adding two more hidden layers with nonlinear activation functions, one 
between the input and the bottleneck, the other between the bottleneck and the 
output layer, the PCA network can be generalized to obtain non-linear principal 
components. Starting from the feed-forward neural network implementation of 
PCA [40, 71, [37] extended the idea to include non-linear activation functions 
in the hidden layers. In this framework, the non-linear PCA network can be 
thought of as an auto-associative neural network with five layers: input (l), 
hidden (2), bottleneck (3), hidden (4), and output (5). If Xf : R p  + Rk denotes 
the function modeled by layers (l), (2), and, (3), and f : Rk + R p  denotes 
the function modeled by layers (3), (4), and (5), it can be shown [do] that the 
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weights of the non-linear PCA network are determined such that 

N 

IIiinf.sf I  I X ,  - f(~f(x,) I  1’- 
I =  1 

where x2 denotes the ith instance of the pdirnensional vector x. Note the close 
connection to principal surfaces (58) in Section 8.2. Both lead to PCA in case 
of linear sf and f. 

The thesis of [5 11 compares principle component analysis, vector quantiza- 
tion, and five layer neural networks, for reducing the dimension of iniages. It also 
provides a C software package called NeuralCam iniplcrrierit,ing those methods. 

8.6 Vector quantization 
A s  explained in [;i 11, [29] introthiced a hybrid non-linear tlinierision reduction 
t diniqiie 1)asc~l on cmInbiniIig vector quantization for first clustering t he data, 
then applying loc.al PCX on the resulting I-oronoi cell clusters. On the im- 
age' data set iisctl in [51]. tiotli non-linear techIiiqiies (vector quantization, VQ, 
and non-linear PCA using five layer riciiral network irnplenicntation, NLPCX) 
out pc3rforrncd t he linear PCX. Xrnong tlir Iion-linear trc.hniqiic.s, \‘Q acliicwd 
brtt,rr rrsults than SLPCA. 

8.7 Genetic and evolutionary algorithms 
Grwet ic and cw)lutioIiary algorithIns (GEXs) are opt iriiization tcchicliiw basc~l 
on Darwinian tliwry of clvolution that iisc natural sclwtiori arid genetics to find 
tlic bcwt solutioii a~ i io~ig  rncwiI)t.1rs of a cwrnpt.ting popiilatiou [ 161. Thcw are 
n i~ r iy  refw(wws dwc.ril)irig how GEXs can IF iisod in tliriimsioIi I (duct ion. In 
w s ( w w .  givm ii .sot of ciindidatv solutions. iiii ol)jrc.tivc> fiirictiori to (>valuate t hc. 
fit iiws of cantlidatcxs. and the valiics for thv paraiiict (w of t lit> c.lioscw algorithni, 
GEXs scwrli t l i t  c.aiiditl;ite spac~x for tlic iriwi1)ci- with t liv optimil fitwss. For 
cxarnpl(~. [45] lis(’ GXs iri c.orril)i~iatiori x-itli a k-iicvirtst nc4glil)or (kiln) c.1assifit.r 
to r ~ l i i w  t l i r  clirricwsion of a fwtiirc st>t : starting with a poplation of rantlorn 
transfoririatioxi iriatiices { W k x p } ( ’ ) .  tlicy i i s ~  GXs to firid t l ir  traIisforinatioxi 
W k ,’ sudi that t hc. kriii classifier using the I ~ ( Y  ftiat i i r ~ s  SI. ,, = W k  ,,X, ,, 
rlassifit’s t l i r  training data niost accw-atdy. 

8.8 Regression 
Rtyqwsiori riict hods (’an be used for diiricwsiori rrc1iic.t ion whcn t hc. goal is to 
niodrl a rcspoiisc’ variahlc y in tcvris of ii set of x, varia1)lcs. The regression 
fiiriction (‘an be liwar. or non-lincwr. TraditioIially. the. x, varia1)lcs have 1)een 
cdc t l  t 1 1 t h  iridq)cwdmt. or c.splaiiat ory variables in st at ist i c y  wliik y was t,he 
rwponscx, or the dtycndwt varia1)lo. In this rcypssiori cwritcst,, it, is gc~ierally 
assunlcYl that tlw XIS \V(W’ cart~flllly seltY.tec1, unc.orrclattd, axid rclrvant to ex- 
plaining tl ir  variation in y .  In c.urrrIit (lata iriiriirig applications, however, those 
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assumptions rarely hold. Variable selection, or dimension reduction, is therefore 
needed for such cases. 

A well-known statistical variable selection method is step-wise regression, 
where different models are fit using different subsets of the explanatory variables. 
The results are then compared by calculating various goodness-of-fit measures, 
and the subset with the best measure is chosen as the explanatory variables with 
the reduced dimension. A similar approach, selecting the most relevant features 
by evaluating random subsets of the original features, is called the wrapper 
method in the machine learning community [34]. 

Dimension reduction methods related to regression include projection pur- 
suit regression [20, 71, generalized linear [42, 101 and additive [19] models, neural 
network models, and sliced inverse regression and principal hessian directions 
[391. 

9 Summary 
In this paper, we described several dimension reduction methods. 
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