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1 Introduction

Advances in data collection and storage capabilities during the past decades have
led to an information overload in most sciences. Researchers working in domains
as diverse as engineering, astronomy, biology, remote sensing, economics, and
consumer transactions, face larger and larger observations and simulations on a
daily basis. Such datasets, in contrast with smaller, more traditional datasets
that have been studied extensively in the past, present new challenges in data
analysis. Traditional statistical methods break down partly because of the in-
crease in the number of observations, but mostly because of the increase in the
number of variables associated with each observation. The dimension of the
data is the number of variables that are measured on each observation.

High-dimensional datasets present many mathematical challenges as well as
some opportunities, and are bound to give rise to new theoretical developments
[11]. One of the problems with high-dimensional datasets is that, in many cases,
not all the measured variables are “important” for understanding the underlying
phenomena of interest. While certain computationally expensive novel methods
[4] can construct predictive models with high accuracy from high-dimensional
data, it is still of interest in many applications to reduce the dimension of the
original data prior to any modeling of the data.

In mathematical terms, the problem we investigate can be stated as fol-
lows: given the p-dimensional random variable x = (zi,...,zp)7, find a lower
dimensional representation of it, s = (s;,...,s:)7 with k < p, that captures
the content in the original data, according to some criterion. The components
of s are sometimes called the hidden components. Different fields use differ-
ent names for the p multivariate vectors: the term “variable” is mostly used
in statistics, while “feature” and “attribute” are alternatives commonly used in
the computer science and machine learning literature.

Throughout this paper, we assume that we have n observations, each being
a realization of the p-dimensional random variable x = (z,...,z,)7 with mean
E(x) = p = (u1,---,4p)7 and covariance matrix E{(x — p)(x — )T} = Zpxp-
We denote such an observation matrix by X = {z;; : 1 <7 < p,1 <j <n}
If p; and o; = \/%(;,) denote the mean and the standard deviation of the ith
random variable, respectively, then we will often standardize the observations



r,; by (r,, —fi;)/Ji, where i, = ¥, = 1/n Z;;l ri . and &, = 1/n Z;;l (x,,, —
x,)%.

We distinguish two major types of dimension reduction methods: linear and
non-linear. Linear techniques result in each of the £ < p components of the new
variable being a linear combination of the original variables:

si=w r1+...wpr,, for i=1,....k, or (1)

s = Wx, (2)

where Wy, is the linear transformation weight matrix. Expressing the same
relationship as
X = As, (3)

with A,x, we note that the new variables s are also called the hidden or the
latent variables. In terms of an n x p observation matrix X, we have

S, =w Xn,+ .o wpX,,. for i=1....k. and j=1.....n, (4
where j indicates the jth realization. or. equivalently,

Sken = Wi pXpxn. (5)

Xpxn = Ap«tSkan- (6)

Such linear techniques are simpler and easier to implement than more recent
methods considering non-linear transforms.

In this paper. we review traditional and current state-of-the-art dimension
reduction methods published in the statistics. signal processing and machine
learning literature. There are numerous books and articles [41. 17, 5, 14, 19, 46,
13} in the statistical literature on techniques for analyzing multivariate datasets.
Advances in computer science, machine learning [43, 50. 44, 2]. Earlier survey
papers. [7] reviews several methods, including principal components analysis,
projection pursuit. principal curves. self-organizing maps, as well as provides
neural network implementations of some of the reviewed statistical models. [22]
surveys recent results in independent component analysis, in the context of other
dimension reduction methods.

This survey is organized as follows. Sections 2 and 3 review principal compo-
nent analysis and factor analysis. respectively, the two most widely used linear
dimension reduction methods based on second-order statistics. For normal vari-
ables (with mean zero), the covariance matrix contains all the information about
the data. Second-order methods are relatively simple to code, as they require
classical matrix manipulations. However, many datasets of interest are not re-
alizations from Gaussian distributions. For those cases, higher-order dimension
reduction methods, using information not contained in the covariance matrix,
are more appropriate. Such a linear higher-order method, projection pursuit is
1eviewed in Section 4. Section 5 summarizes another higher-order linear method
called independent component analysis. Although non-linear principal compo-
nent analysis can be considered as a special case of independent component



analysis, Section 5.1.4, it is reviewed separately in Section 6. It uses non-linear
objective functions to determine the optimal weights, but the resulting compo-
nents are still linear combinations of the original variables. Section 7 explains
the method of random projections. Section 8 presents some extensions and
non-linear dimension reduction techniques.

2 Principal component analysis

Principal component analysis (PCA) is the best, in the mean-square error sense,
linear dimension reduction technique [25, 28]. Being based on the covariance
matrix of the variables, it is a second-order method. In various fields, it is also
known as the singular value decomposition (SVD), the Karhunen-Logve trans-
form, the Hotelling transform, and the empirical orthogonal function (EOF)
method.

In essence, PCA seeks to reduce the dimension of the data by finding a
few orthogonal linear combinations (the PCs) of the original variables with the
largest variance. The first PC, s;, is the linear combination with the largest
variance. We have s; = xTw;, where the p-dimensional coefficient vector w; =
(wi.1,..-,w1 )T solves

W) = arg maxllw:IHVar{xTw}. (7N

The second PC is the linear combination with the second largest variance and
orthogonal to the first PC, and so on. There are as many PCs as the num-
ber of the original variables. For many datasets, the first several PCs explain
most of the variance, so that the rest can be disregarded with minimal loss of
information.

Since the variance depends on the scale of the variables, it is customary to
first standardize each variable to have mean zero and standard deviation one.
After the standardization, the original variables with possibly different units of
measurement are all in comparable units. Assuming a standardized data with
the empirical covariance matrix

Epxp = 71—LxxT, (8)

we can use the spectral decomposition theorem to write X as
¥ = UAUT, (9)
where A = diag(A1,...,Ap) is the diagonal matrix of the ordered eigenvalues

A1 £...< Ay, and U is a p X p orthogonal matrix containing the eigenvectors.
It can be shown [41] that the PCs are given by the p rows of the p x n matrix
S, where

S =UTX. (10)

Comparing (10) to (5), we see that the weight matrix W is given by U7. It
can be shown [41] that the subspace spanned by the first & eigenvectors has the
smallest mean square deviation from X among all subspaces of dimension k.



As briefly indicated in Section 8.5, PCs can also be obtained by using neural
networks with specific architectures and learning algorithms.

Another property of the eigenvalue decomposition is that the total variation
is equal to the sum of the eigenvalues of the covariance matrix,

p p p
D> Var(PCi) = A, = trace(E), (11)

1=1 i=1 =1

and that the fraction

r
Z A, [trace(3) (12)
=1

gives the cumulative proportion of the variance explained by the first & PCs.

By plotting the cumulative proportions in (12) as a function of k, one can select

the appropriate number of PCs to keep in order to explain a given percentage of

the overall variation. Such plots are called scree diagram plots in the statistical
literature [53]. The number of PCs to keep can also be determined by first fixing

a threshold Ag. then only keeping the eigenvectors such that their corresponding

eigenvalues are greater than Ap. This latter method was found preferable in

[26, 27], where the author also suggested keeping at least four variables.

The interpretation of the PCs can be difficult at times. Although they
are uncorrelated variables constructed as linear combinations of the original
variables, and have some desirable properties. they do not necessarily correspond
to meaningful physical quantities. In some cases, such loss of interpretability is
not satisfactory to the domain scientists.

An alternative way to reduce the dimension of a dataset using PCA is sug-
gested in [41]. Instead of using the PCs as the new variables. this method uses
the information in the PCs to find important variables in the original dataset.
As before. one first calculates the PCs. then studies the sceree plot to determine
the number & of important vaiiables to keep. Next, one considers the eigen-
vector corresponding to the smallest eigenvalue (the least important PC), and
discards the variable that has the largest (absolute value) coefficient in that vec-
tor. Then. one considers the cigenvector corresponding to the second smallest
cigenvalue, and discards the vaiiable contributing the largest (absolute value)
coefficient to that eigenvector. among the variables not discarded earlier. The
process is repeated until only A variables remain.

3 Factor analysis

This section follows [41]. Like PCA. factor analysis (FA) is also a linear method.
based on the second-order data summaries. First suggested by psychologists,
FA assumes that the measured variables depend on some unknown, and often
unmeasurable, common factors. Typical examples include variables defined as
various test scores of individuals, as such scores are thought to be related to a
common “intelligence™ factor. The goal of FA is to uncover such relations, and
thus can be used to reduce the dimension of datasets following the factor model.



The zero-mean p-dimensional random vector x,y; with covariance matrix 3
satisfies the k-factor model if

x = Af + 1, (13)

where A, is a matrix of constants, and fix; and u,x; are the random com-
mon factors and specific factors, respectively. In addition, the factors are all
uncorrelated and the common factors are standardized to have variance one:

E(f) =0, Var(f)=1, (14)
E(u) =0, Cov(u;,u;)=0 for i#j, (15)
Cov(f,u) = 0. (16)

Under these assumptions, the diagonal covariance matrix of u can be written
as Cov(u) = ¥ = diag(v11,- -, ¥pp)-
If the data covariance matrix can be decomposed as

T=AAT + ¥, (17)
then it can be shown that the k-factor model holds. Since z; can be written as
k
zi=Y Mjfj+w, i=1,...,p, (18)
j=1

its variance may be decomposed as
k
gis = Y N+ Y, (19)
j=1

where the first part h? = ij:l A3, is called the communality and represents
the variance of x; common to all variables, while the second part ;; is called
the specific or unique variance and it is the contribution in the variability of
z; due to its specific u; part, not shared by the other variables. The term Xg’j
measures the magnitude of the dependence of z; on the common factor f;. If
several variables x; have high loadings A;; on a given factor f;, the implication is
that those variables measure the same unobservable quantity, and are therefore
redundant.

Unlike PCA, the factor model does not depend on the scale of the variables.
However, the factor model also holds for orthogonal rotations of the factors.
Given the orthogonal matrix G, given the model (13), the new model

x = (AG)(GTE) + u, (20)

also holds, with new factors GTf and corresponding loadings AG. Therefore,
the factors are generally rotated to satisfy some additional constraints, such as

AT® A is diagonal, or (21)
ATD™!A is diagonal, D = diag(o11,---,0pp), (22)



where the diagonal elements are in decreasing order. There are techniques,
such as the varimax method, to rotate the factors to obtain a parsimonious
representation with few significantly non-zero loadings (i.e. sparse matrix A).
As explained in [13}, ICA (see Section 5) can be thought of as another fac-
tor rotation method, where the goal is to find rotations that maximize certain
independence criteria.

In many cases, a k-order factor model in (17) provides a better explanation
for the data than the alternative full covariance model Var(x) = ¥. In such
cases, it is possible to derive parameter estimates A and ¥.

Let X, R, and S denote the sample mean, covariance matrix, and correlation
matrix, respectively, of the observed data matrix X. Then, starting with

0w =5, I1=1,....p (23)
and using ) L R
$=AAT + ¥, (24)
we obtain .
G =X, U (25)
=1

Two different possibilities to derive estimates A and ¥ for the model pa-
rameters in (13)-(16) are detailed in Sections 3.1 and 3.2.

3.1 Principal factor analysis

Suppose the data is standardized. so that its covariance matrix is equal to the
correlation matrix. To obtain estimates A and ¥ for the sfall(lar(liZO(l variables,
first estimate h? for i = 1,....p. Common estimates h? include the square
of the multiple correlation coefficients of the ith variable with all the other
variables, and the largest coirelation coefficient between the ith variable and
one of the other variables. Next. form the reduced correlation matriz R — ¥,
where the diagonal elements of 1 in R are replaced by the elements iz;’ =1—1d,,.
Then. decompose the reduced correlation matrix in terms of the eigenvalues

a, > ... 2> a, and orthonormal eigenvectors y(1)... .. Yp) a8
p
3 T .
R-%=> a4 (26)
=1

If the first & eigenvalues are positive. estimate the /ith column of A by

Ay =aP5,. i=1o. ik (27)
Equivalently,
2 2
A=T;A)" (28)
where T'y = (4. - -7). and Ay = diag(ay.....a;). The eigenvectors are

orthogonal, so the constraint in (22) holds.



Finally, the specific variance estimates are updated as
k
Pu=1-Y N, i=1,...,p. (29)
i=1

The k-factor model is permissible if all the p terms in (29) are non-negative.
In practice, the number of factors may be determined by looking at the
eigenvalues a; of the reduced correlation matrix, and choosing k as the index
where there is a sharp drop in the eigenvalue magnitudes.
As its name suggests, principal factor analysis (PFA) is related to principal
component analysis. When the specific variances are all zero, ¥ = 0, comparing
Equations (17) and (26) to Section 2 indicates that PFA is equivalent to PCA.

3.2 Maximum likelihood factor analysis

If, in addition to the factor model specified in (13)-(16), we also assume that the
factors f and u are distributed as multivariate normal variables, then parameters
of the model can also be estimated by maximizing the likelihood. In such cases,
one can also test the hypothesis that the k-factor model describes the data more
accurately than the unconstrained variance model.

The log-likelihood function can be written as

1 1
l= —5 " log|2nX| — 5N tro!s, (30)
and the goal is to maximize it with respect to the parameters A and ¥, subject
to the constraint in (22) on A. Under the factor model, & = AAT 4 ¥.

The optimization is carried out by noting that the function

F(A,¥)=F(A,¥;S) =trZ7!S —log|Z=~!S] - p (31)

is a linear function of the log-likelihood I/, with a maximum in ! corresponding
to a minimum in F. Also, in terms of the arithmetic mean a and the geometric
mean g of the eigenvalues of ¥~1S, we have

F = p(a—logg — 1). (32)

Minimizing F(A, ¥) proceeds in two stages: first, the minimization over A for
a fixed ¥ has an analytical solution, then, the minimization over ¥ is carried
out numerically.

4 Projection pursuit

Projection pursuit (PP) is a linear method that, unlike PCA and FA, can incor-
porate higher than second-order information, and thus is useful for non-Gaussian
datasets. It is more computationally intensive than second-order methods.



Given a projection index that defines the “interestingness” of a direction, PP
looks for the directions that optimize that index. As the Gaussian distribution is
the least interesting distribution (having the least structure), projection indices
usually measure some aspect of non-Gaussianity. If, however, one uses the
second-order maximum variance, subject that the projections be orthogonal,
as the projection index, PP yiclds the familiar PCA. Writing the optimization
criterion as

Q(x,w) = Var{x"w}, (33)
according to (7), the direction w, of the first PC solves arg max|jy=jQ(x, W),
and the corresponding first PC is 5, = x7w.

A commonly used higher-order projection index is based on the negative
Shannon entropy [20]. Given the random variable x with probability distribution
f. its negative entropy is defined as

Q(x) = / F()log s (x)d(x). (34)

The Gaussian distribution minimizes this measure, so it makes sense to find
directions w that maximize the entropy of the projected data Q(x,w) with
respect to w, subject to having constant variance of x7 w.

Other projection indices include indices based on higher-order cumulants
and on the Fisher information [7. 22]. However. all of these measures depend on
the unknown probability distribution of x” w, which can be difficult to estimate.
Alternative indices based on approximations, and on different measures of non-
normality have also been proposed in the literature [22].

The FastICA algorithm for independent components in Section 5.3 can also
be used to find projection pursuit directions.

5 Independent component analysis

This section is based on [22]. a recent survey on independent component analysis
(ICA). More information (and software) on this cuirently very popular method
can be found at various websites. including [6. 24, 49]. Books suminarizing the
recent advances in the theory and application of ICA include [1, 48, 15, 38].

ICA is a higher-order method that secks linear projections, not necessarily
orthogonal to each other. that are as nearly statistically independent as possi-
ble. Statistical independence 1s a much stronger condition than uncorrelatdness.
While the latter only involves the second-order statistics, the former depends on
all the higher-order statistics. Formally, the random variables x = {r,..., 1}
are uncorrelated. if for Vi # j.1 < i, j < p. we have

Cov(r,..r)) =E{(x, — p,)(r, — p;)} = E(r,r;) — E(r,)E(r,) = 0. (35)

In contrast, independence requires that the multivariate probability density
function factorizes, and can be written as

f(-l'lw--a-rp)=fl(-1'l)---fp(-rp)~ (36)



Independence always implies uncorrelatedness, but not vice versa in general.
Only if the distribution f(z1,...,z,) is multivariate normal, are the two equiv-
alent. For Gaussian distributions, the PCs are independent components. Fol-
lowing [22], the noise-free ICA model for the p-dimensional random vector x
seeks to estimate the components of the k-dimensional vector s and the p X k
full column rank mixing matrix A in (3),

(:cl,...,:z:p)T=Apxk(sl,...,sk)T (37)

such that the components of s are as independent as possible, according to some
definition of independence. At least one of the hidden independent components
s; has to be non-Gaussian to ensure the identifiability of the model [22]. The
noisy ICA contains an additive random noise component,

(:1:1,...,:1:,,)T =Apxk(sl,...,sk)T+ (ul,...,up)T (38)

but estimation of such models is still an open research issue [22]. In this survey,
we only consider the noiseless model as specified in (37).

There are overcomplete versions of ICA, where the number & of ICs is larger
than the number of original variables p [22]. In this paper, we will assume that
there are as many independent components as there are original variables, i.e.
k = p. In contrast with PCA, the goal of ICA is not necessarily dimension
reduction. To find k£ < p independent components, one needs to first reduce the
dimension of the original data p to k, by a method such as PCA.

As the problem is stated, there is no order among the ICs. Once they are
estimated, they can be ordered according to the norms of the columns of the
mixing matrix (similar to the ordering in PCA), or according to some non-
Gaussianity measure (similar to ordering in PP).

ICA can be considered a generalization of the PCA and the PP concepts.
While PCA seeks uncorrelated variables, ICA seeks independent variables. The
noise-free ICA is a special case of PP, with independence being the “interest-
ingness” in the projection pursuit index definition. The noisy ICA model is
equivalent to the FA model in (13) assuming non-Gaussian data.

ICA has been applied to many different problems, including exploratory data
analysis, blind source separation, blind deconvolution, and feature extraction.
In the feature extraction context, the columns of the matrix A represent features
in the data, and the components s; give the coefficient of the ith feature in the
data. Several authors used ICA to extract meaningful features from natural
images [22].

Estimation of the model in (37) consists of two steps: specifying the ob-
jective function (also called the contrast, the loss function, the cost function),
and the algorithm to optimize the objective function. Objective functions can
be categorized into two groups: “multi-unit” contrast functions that estimate
all p independent components at once, and “one-unit” contrast functions that
estimate a single independent component at a time [22]. They are detailed in
Section 5.1 and in Section 5.2, respectively. Section 5.3 lists several optimization
algorithms.



5.1 Multi-unit objective functions

There are mauy different ways to specify objective functions. This section lists
several possibilities. It has been shown, that despite their different formulations,
they all closely related, and under certain conditions, some are equivalent [22].

Under certain conditions (the distribution of the independent components
is known with sufficient accuracy), the mutual information method is essen-
tially equivalent to maximum likelihood principle, and so is the non-linear PCA
method. Under the same conditions, cumulant-based methods are approxima-
tions to the mutual information.

Cumulant and general contrast-based methods, however, can be used for any
non-Gaussian data, without knowing the underlying distributions.

5.1.1 Maximum likelihood and network entropy

This method specifies the likelihood of the noise-free ICA model, and uses the
maximum likelihood principle to estimate the parameters. Under some condi-
tions, it is equivalent to the “infomax” network entropy maximization concept
in the neural network literature.

The advantages of this method include the asymptotic efficiency of maximum
likelihood estimates under regularity conditions. However, it requires knowledge
of the distribution of the independent components, it is sensitive to outliers, and
it is computationally intensive, which make it undesirable in many practical
situations.

5.1.2 Mutual information and Kullback-Leibler divergence
Mutual information I measures the dependence among m random variables y,

as
m

Iwree e go) = S H(y) — H(y). (39)
=1
where H is the differential entropy. H(y) = —Q(y) in (34). The mutual in-

formation is always non-negative, and is zero if and only if the variables are
statistically independent. It therefore makes sense to find the variables that
minimize the mutual information among the components.

Mutual information is also equal to the Kullback-Leibler divergence

fily)
Faly)

S(frs fo) = / fiy)log Y] 4y (40)

between the joint density f(y) and the factorized f(y) = fityr) ... fm(ym). The
Kullback-Leibler divergence measures a “closeness™ of two distributions. If the
components are independent, the actual density f(y) factorizes just like f (¥).
and results in zero divergence.

Mutual information is hard to estimate, imposing difficulties on using it as
an objective function. As summarized in [22]. several approximations, based on

10



polynomials, on higher-order cumulants, and on the maximum entropy principle,
have been proposed.

5.1.3 Non-linear cross-correlations

This principle is based on canceling non-linear cross-correlations of the form
E{91(yi)g92(y;)}, where g; and g are non-linearities specified by the user. As-
suming that y; and y; are independent, such cross-correlations are zero. Of-
tentimes, there are no explicit objective functions associated with the chosen
cross-correlation, so that they are only implicitly specified.

5.1.4 Non-Linear PCA

This method indicates the strong connection between ICA and non-linear PCA.
By introducing non-linearities g based on the probability densities of the inde-
pendent components into the PCA objective function in (7), we obtain the ICA
model

W = arg max”w:mVar{g(xTw)}. (41)

As with the non-linear cross-correlation method, there might not exist explicit
contrast functions.

5.1.5 Higher-order cumulant tensors

The ICA model can also be estimated by solving for the eigenvectors of eigen-
matrices corresponding to the linear operator 7' defined by the fourth-order
cumulant as
T(Kij) = Zcum(ml,zj,xk,xl)K“. (42)
k,l

The linear operator T' maps the space of k x k matrices to itself, and has k>
eigenvalues corresponding to eigenmatrices. This procedure does not need to
know the probability densities of the independent components, but suffers from
suboptimal statistical properties characteristic to cumulant-based estimators.

5.2 One-unit objective functions

One-unit contrast functions seek a single vector w such that the linear combi-
nation x7w is equal to one of the independent components s;. It is desirable
when not all the PCs are needed, it can be used iteratively to find more PCs,
and it tends to result in computationally simple solutions.

The contrast functions in this section are closely related. Both cumulants
and general contrast functions can be used to approximate the negentropy. The’
objective function based on the kurtosis (fourth-order cumulant) is a special
case of general contrast functions.

11



5.2.1 Negentropy

Differential entropy is not invariant under scale transformations. The negen-
tropy, or negative normalized entropy

J(y) = H(Ygams) — H(y) (43)

where H is the differential entropy, H(y) = —Q(y) in (34), and ygauss is a
Gaussian random vector with the same covariance matrix as y, is a linearly
invariant version of the entropy. It is non-negative, and zero if and only if y
is Gaussian. Finding the direction of maximum negentropy is equivalent to
finding the representation with minimum mutual information. The directions
that maximize the negentropy can also be found by using differential entropy
as a projection index in PP.

Negentropy is difficult to estimate. Approximations based on higher-order
cumulants are explained in 5.2.2. and ones based on general contrast functions
in 5.2.3.

5.2.2 Higher-order cumulants

One higher-order cumulant often used as a measure of non-Gaussianity is the
fourth-order cumulant, also called the kurtosis. By definition, the kurtosis
kurt(r) of a random variable r is

kurt(r) = E(r') = 3[E()]°. (44)

The kurtosis is zero for a Gaussian variable. it is positive for heavy-tailed super-
Gaussian distributions. and it is negative for light-tailed sub-Gaussian distribu-
tions. Independent components can be derived by maximizing the modulus of
the kurtosis.

Cumulant-based estimators can be poor in terms of robustness and asymp-
totic variance. They only consider the tails of the distribution. and are sensitive
to outliers.

5.2.3 General contrast functions

In contrast with the contrast functions introduced earlier, general contrast func-
tions are formulated to have good statistical properties without requiring knowl-
edge of the distributions, and to allow simple interpretation and algorithmic im-
plementation. Such contrast functions .J measure non-Gaussianity of the stan-
dardized random variable y by comparing it to a standard Gaussian variable v
via a smooth non-quadratic even function G by

J(:’(y) = IEU[G(.I/)] - E,,[G(I/)]Ip, (45)

where p is usually taken to be 1 or 2. Taking G(y) = y', J is simply the
kurtosis. For suitable choices of G, such as

G(y) = log cosh(au) or G(y) = exp(—azu®/2), (46)

12



with constants a;,as > 1, estimators based on optimizing generalized contrast
functions have superior statistical properties than cumulant-based estimators.
Being the log-density of a super-Gaussian distribution, G, is related to maxi-
mum likelihood estimation.

5.3 Optimization algorithms

Most optimization algorithms either require that the data be sphered, or they
converge better for sphered data. Sphering is a linear transformation that maps
x into a new variable v with unit covariance matrix:

v=Qx, E(vwi)=1 (47)
In terms of v, the ICA model in (37) can be written as
v = Bs. (48)

Assuming unit-variance independent components, we have I = E(vvT) = BE(ssT)B? =

BBT7, and therefore B is orthogonal. The problem then translates to finding an
appropriate orthogonal matrix B from the sphered v. Once such a B is found,
the independent components are obtained via

§=BTv. (49)

Several algorithms have been proposed to estimate independent compo-
nents. As [22] summarizes, there are two major types: adaptive and batch-mode
(block) algorithms.

Adaptive methods use stochastic gradient-type algorithms. Likelihood or
other multi-unit contrast functions are optimized using gradient ascent of the
objective function. One-unit implementations use straightforward stochastic
gradient methods that optimize negentropy or approximations of it.

Examples of adaptive algorithms include the Jutten-Herault algorithm, which
is based on canceling non-linear cross-correlations and converges only under
harsh restrictions; other algorithms based on non-linear decorrelations that are
more stable and computationally tractable than the Jutten-Herault method; al-
gorithms for maximum likelihood estimation; non-linear PCA algorithms; neural
one-unit learning rules; and exploratory projection pursuit algorithms.

Batch-mode algorithms are much more computationally efficient than adap-
tive algorithms, and are more desirable in many practical situations where there
is no need for adaptation. The FastICA is such a batch-mode algorithm using
fixed-point iteration. It was introduced in [23] using the kurtosis, but was
subsequently extended to general contrast functions in [21]. A MATLAB im-
plementation is available from [24]. It can also be used for projection pursuit
analysis described in Section 4.

6 Non-linear principal component analysis

Non-linear PCA introduces non-linearity in the objective function, but the re-
sulting components are still linear combinations of the original variables. This
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method can also be thought of as a special case of independent component anal-
ysis, Section 5.1.4. As indicated in [31], there are different formulations of the
non-linear PCA.

A non-linear PCA criterion for the data vector x = (ry,...,rp)7 searches
for the components s = (s1,...,5,)7 in the form of s = WTx by minimizing

J(W) = E{|jx - Wg(WTx)||*} (50)

with respect to the pxp weight matrix W [31], where g(y) denotes the component-
wise application of the non-linear function g() to the elements of the vector y.
Commonly used such non-linear functions are odd functions like g(y) = tanh(y)
and g(y) = y>.

The optimization in (50) can be carried out either by the stochastic gradient
descent algorithm with the learning parameter ¢ and the AW update matrix of
W below,

AW = ¢[x — Wg(WTx)g(xT W), (51)
or by an approximate recursive least squares (RLS) algorithm [31]. The RLS
method converges faster than the corresponding gradient descent method. has
good final accuracy. but slightly higher computational load.

Before applying the algorithms. the data needs to be pre-whitened by v =
Vx, where E{vvT} = I. By denoting

y =W'v = WT'Vx = Bx. (52)
the optimization in (51) can be written as
AW = cfv — Wg(y)lg(y"). (53)

where. after convergence. y contains the sought s vector.

Assuming that the components of s all have variance equal to one, the final
y estimates are standardized to have E{ny} = I. resulting in the matrix W
being orthogonal (E{yy’} = WT E{vvT}W = I). Unde1 this condition, it can
be shown [31] that

P
J(W) = E{|lv—=Wg(W'V)|I’} = E{lly—gWII’} = Y _ E{ly.—9(w.)]*}. (54)

=1

As indicated in Section 8.5, [37] proposed a neural network aichitecture with
non-linear activation functions in the hidden layvers to estimate non-linear PCAs.

7 Random projections

The method of random projections is a simple yvet powerful dimension reduction
technique that uses random projection matrices to project the data into lower
dimensional spaces [47. 32, 33. 35]. The original data X € R? is transformed to
the lower dimensional 8 € R¥, with k < p. via

S = RX. (55)
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where the columns of R are realizations of independent and identically dis-
tributed (i.i.d.) zero-mean normal variables, scaled to have unit length. The
method was proposed in the context of clustering text documents, where the
initial dimension p can be on the order of 6000, and the final dimension k is still
relatively large, on the order of 100. Under such circumstances, even PCA, the
simplest alternative linear dimension reduction technique, can be computation-
ally too expensive. Random projections are applied as a data pre-processing
step, then, the resulting lower dimensional data is clustered. It has been shown
empirically that results with the random projection method are comparable
with results obtained with PCA, and take a fraction of the time PCA requires
[33, 35]. To reduce the computational burden of the random projection method,
at a slight loss in accuracy, the random normal projection matrix R may be re-
placed by thresholding its values to -1 and +1, or by matrices whose rows have
a fixed number of 1s (at random locations) and the rest Os [35].

If the similarity between two vectors is measured by their inner product
(giving the cosine of their angle for unit-length vectors), [33] showed that if the
dimension of the reduced space d is large, random projection matrices preserve
the similarity measure: on the average, the distortion of the inner products is
zero, and its variance is at most the inverse of twice d.

8 Non-linear methods and extensions

8.1 Non-linear independent component analysis

Non-linear methods, such as principal curves, self organizing maps and topo-
graphic maps, can, in principle, be incorporated into ICA.

Given the p-dimensional zero-mean non-Gaussian variable x, the non-linear
ICA model replaces the linear transformation in (3) by

(Z1ye-z)T =£(s1,5.-2,88)7, (56)

where f is an unknown real-valued p-component vector function. In general,
k=p.

The identifiability and other properties of the general non-linear ICA model
makes its estimation difficult. A few publications considering special cases are
mentioned in [22]. An overview of the problem, along with a maximum likeli-
hood and a Bayesian ensemble learning method for estimation can be found in
[30].

8.2 Principal curves

Principal curves are smooth curves that pass through the “middle” of multi-
dimensional data sets [18, 40, 7]. Linear principal curves are in fact principal
components, while non-linear principal curves generalize the concept.

Given the p-dimensional random vector y = (y1,...,¥p) with density g(y),
and the smooth curve f(s) = (fi(A),..., fp(A)) € R? parameterized by the real-
valued A, define the projection index Ag(y) to be value of A corresponding to the

15



point on f(s) that is closest (in Euclidean distance) to y. The set of principal
curves is defined in [18] as the curves that do not intersect themselves and are
self-consistent with respect to the data. By definition, a curve is self-consistent
if each point £(X) is the mean of all points in the support of g that are projected
on A.

Ely|Ae(y) = Al = £(A). (57)
It was shown in [18] that a curve f is a principal curve if and only if it solves
N
ming Y |ly, — €Ae(y)II7 (58)
=1

where y, is the ith instance of the p-dimensional vector, and the composition
of functions f(Ae(y,) gives the p-dimensional coordinates of the projection of y;
onto the curve f.

To estimate f and A, [18] proposed an iterative algorithm. It starts with
f(A) = E(y) + dA, where d is the first eigenvector of the covariance matrix of
y and A = Ag(y). Then it iterates the two steps

1. For a fixed A. minimize E|ly — f(A\)||? by setting £,(A) = E(y,|Ae(y) = A)
for each j

2. Fix f and set A = X\¢(y) for cach y

until the change in E||y — fi]|* is less than a threshold.

An alternative formulation of the principal curves method. along with a
generalized EM algorithm for its estimation under Gaussian distribution of g(),
is presented in [52].

In general, for the model y = f(A) + e. where f is smooth and E(e) = 0.
f is not necessarily a principal curve. Except for a few special cases, it is not
known in general for what type of distributions do principal curves exist, how
many principal curves there are. and what their properties are [7].

The concept of principal curves can be extended to higher dimensional prin-
ciple surfaces, but the estimation procedure gets more complicated.

8.3 Multidimensional scaling

Given n items in a p-dimensional space and an n x n matrix of proximity mea-
sures among the items, multidimensional scaling (MDS) produces a k-dimensional,
k < p, 1epresentation of the items such that the distances among the points in
the new space reflect the proximities in the data [8, 7. 41]. The proximity
measures the (dis)similarities among the items. and in general, it is a distance
measure: the more similar two items are. the smaller their distance is. Popular
distance measures include the Euclidean distance (L, norm). the manhattan
distance (L;. absolute norm). and the maximum noim. Results of MDS are
indeterminate with respect to translation, rotation, and reflection.

MDS has been typically used to transform the data into two or three di-
mensions, and visualizing the result to uncover hidden structure in the data. A
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rule of thumb to determine the maximum number of k, is to ensure that there
are at least twice as many pairs of items then the number of parameters to be
estimated, resulting in p > 4k + 1 [7].

Given the n items {x;}2; € R? and a symmetric distance matrix A =
{6:j,4,5 = 1,...,n}, the result of a k-dimensional MDS will be the set of points
{yi}2, € R* such that the distances d;; = d(y;,y;) are as close as possible to
a function f of the corresponding proximities f(d;;).

In [41], MDS methods that incorporate the given distances d;; into their
calculations are called metric methods, while the ones that only use the rank
ordering of the distances are called non-metric methods. In contrast, [7] states
that depending on whether f is linear or non-linear, MDS is called either metric
or non-metric, correspondingly.

Following {7], the steps for the most general estimation procedure are as
follows. First, define the stress as an objective function to be minimized by f

L Giy) — dis)?

scale factor (59)

stressf (A, X, f) = \/Z'

where the scale factor is usually based on 3; ;[f(d:;)]* or on 3, ; d%;. Next, for
a given X = {x;}2.,, find f that minimizes (59),

stress(A, X, f) = miny stressf(A, X, f), (60)
then determine the optimal X by
stress(A, X, f) = minx stress(A, X, f). (61)

The special case of using Euclidean distance and f as the identity in (59)
leads to the principal coordinates of X in k dimensions as the solution, which
are equivalent to the first k principal components of X (without re-scaling to
correlations) [41].

An alternative to MDS is FastMap [12], a computationally efficient algo-
rithm that maps high-dimensional data into lower-dimensional spaces, while
preserving distances between objects.

8.4 Topologically continuous maps

There are several methods based on finding a continuous map to transform a
high-dimensional data into a lower-dimensional lattice (latent) space of fixed
dimension [7]. Such techniques could be called self-organizing maps, but that
name is most often associated with one particular such method, namely, Koho-
nen’s self-organizing maps. To avoid confusion, we follow the review [7], and
refer to these methods collectively as methods that use topologically continuous
maps.
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8.4.1 Kohonen’s self-organizing maps

Given the data vector {tn}_, € RP, Kohonen’s self-organizing maps (KSOM)
[36] leain, in an unsupervised way, a map between the data space and a 2-
dimensional lattice. The method can be extended to L-dimensional topological
arrangements as well. Let dy and dp denote distances (typically Euclidean)
in the lattice and in the data space, respectively, and define a neighborhood
function h,, on the lattice space, such that it is symmetric, has values in the
[0, 1] interval, h,, = 1 for any node i in the lattice, and the further node j is from
i in the lattice, the smaller £,; is. The neighborhood of node i consists of the
nodes for which h,, greater than a threshold. Typical neighborhood function is
h,, =exp(—di(i,j)/2/c?), where o specifies the range of the neighborhood.

Kohonen’s rule uses an initially random set of reference vectors {g,}2,
in the data space R, then updates them iteratively according to the data
distribution such that the final reference vector will be dense in regions of RP
where the data is common. Kohonen's rule iterates the following procedure over
all the data points until convergence occurs.

e For a given data t,,, find the closest vector u,. to it in the lattice space:
" = arg max, ¢ icedn (K2, tn)s (62)

e Then, at iteration t and learning rate a!'? € [0. 1], update the 1eference
vector by moving it a distance p = (1(”h§f), towards t:

p = a0 (e — M) = (1= ) b (63)

Although KSOAIs are useful in many applications. they have several draw-
backs: there is no implicit criteria that they tiy to optimize, there are no rules
to optimally sclect o' and 7Y, and there is no proof that they converge in
general.

8.4.2 Density networks

Density networks [7] assume a probability distribution for the data given the pa-
rameters, as well as prior distributions for the parameters, then apply Bayesian
learning techniques to model the data in terms of latent variables.

Generative topographic mapping (GTM) is a special density network based
on constrained Gaussian mixtures that uses the expectation-maximization (EM)
algorithm to estimate the parameters by maximizing the likelihood function. It
was introduced in [3]. and, unlike the KSOMs in Section 8.4.1. it provides a
rigorous treatment of SOMs under certain assumptions.

8.5 Neural networks

Neural networks (NNs) model the set of output variables {y, }3’21 in terms of
the input variables x = {u,}?_, as

Y, = y,(x.w), (64)
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where the functions y;(x, w) specify the network architecture, and the weights w
are determined by training (learning) the NN using a set of known examples and
an error function [2]. Many, traditional and more recent, linear and non-linear,
dimension reduction techniques can be implemented using neural networks with
different architectures and learning algorithms [2, 46, 40, 51, 7).

The simplest NN has three layers: the input layer, one hidden (bottleneck)
layer, and the output layer. First, to obtain the data at node h of the hidden
layer, the inputs z; are combined through weights w;, along with a thresh-
old (bias) term ¢y, then they are passed through the corresponding activation
function ¢,. In the second step, the output is obtained in a similar way from
the data on the hidden nodes, using the weights ws;, the threshold a;, and a
possibly different output function ¢,:

Yi = do (aj + ) whjdn(on + Zwihfb‘i)) . (65)
h i

The first part of the network reduces the input data into a lower-dimensional
space, while the second decodes the reduced data into the original domain.
Frequently used activation and output functions include the linear (identity)
function, sigmoidal (S-shaped) functions such as the logistic function, and the
Heaviside thresholding function [2, 53]. NNs with a single hidden layer net-
works and the threshold activation function are also called perceptrons. Net-
works that try to learn the identity mapping, i.e. the outputs y; are identical
to the inputs z;, are called auto-associative (auto-encoders, bottlenecks, p-k-p
networks). Hetero-associative neural nets have different number of input- and
output layers, and are used, for example, in classification.

As summarized in [7], there are many types of NN architectures that can
extract principal components. More complete details can be found in [9]. For ex-
ample, a linear, one hidden layer auto-associative perceptron with p input units,
k < p hidden units, and p output units, can be trained with back-propagation to
find a basis of the subspace spanned by the first & PCs, if the error metric used
is the minimum squared sum of differences between the input and the output
units. Other networks, based on Oja’s rule and various de-correlating devices
can also be used to find principal components.

By adding two more hidden layers with nonlinear activation functions, one
between the input and the bottleneck, the other between the bottleneck and the
output layer, the PCA network can be generalized to obtain non-linear principal
components. Starting from the feed-forward neural network implementation of
PCA [40, 7], [37] extended the idea to include non-linear activation functions
in the hidden layers. In this framework, the non-linear PCA network can be
thought of as an auto-associative neural network with five layers: input (1),
hidden (2), bottleneck (3), hidden (4), and output (5). If Af : R? — R* denotes
the function modeled by layers (1), (2), and, (3), and f : R* — RP denotes
the function modeled by layers (3), (4), and (5), it can be shown [40] that the
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weights of the non-linear PCA network are determined such that

N
ming, »_ |Ix, — £Ae(x,)][%, (66)

=1

where x, denotes the ith instance of the p-dimensional vector x. Note the close
connection to principal surfaces (58) in Section 8.2. Both lead to PCA in case
of linear s¢ and f.

The thesis of [51] compares principle component analysis, vector quantiza-
tion, and five layer neural networks, for reducing the dimension of images. It also
provides a C software package called NeuralCam implementing those methods.

8.6 Vector quantization

As explained in [51], [29] introduced a hybrid non-linear dimension reduction
technique based on combining vector quantization for first clustering the data,
then applyving local PCA on the resulting Voronoi cell clusters. On the im-
age data set used in [51]. both non-linear techniques (vector quantization, VQ,
and non-lincar PCA using five layer neural network implementation, NLPCA)
outperformed the lincar PCA. Among the non-linear techniques, VQ achieved
better results than NLPCA.

8.7 Genetic and evolutionary algorithms

Genetic and evolutionary algorithms (GEAs) are optimization techniques based
on Darwinian theory of evolution that use natural selection and genetics to find
the best solution among members of a competing population [16]. There are
many references desceribing how GEAs can be used in dimension 1eduction. In
essence, given a set of candidate solutions. an objective function to evaluate the
fitness of candidates, and the values for the parameters of the chosen algorithm,
GEAs search the candidate space for the member with the optimal fitness. For
example. [45] use GAs in combination with a k-nearest neighbor (knn) classifier
to reduce the dimension of a feature set: starting with a population of random
transformation matiices {Wgy,}'"'. they use GAs to find the transformation
Wi «p such that the knn classifier using the new features Sy, = Wi pXpxn
classifies the training data most accurately.

8.8 Regression

Regression methods can be used for dimension reduction when the goal is to
model a respouse variable y in terms of a set of x, variables. The regression
function can be linear. or non-linear. Traditionally. the x, variables have been
called the independent. or explanatory variables in statistics, while y was the
response, or the dependent variable. In this regression context, it is generally
assumed that the x,s were carefully selected, uncorrelated, and relevant to ex-
plaining the variation in y. In current data mining applications, however, those
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assumptions rarely hold. Variable selection, or dimension reduction, is therefore
needed for such cases.

A well-known statistical variable selection method is step-wise regression,
where different models are fit using different subsets of the explanatory variables.
The results are then compared by calculating various goodness-of-fit measures,
and the subset with the best measure is chosen as the explanatory variables with
the reduced dimension. A similar approach, selecting the most relevant features
by evaluating random subsets of the original features, is called the wrapper
method in the machine learning community [34].

Dimension reduction methods related to regression include projection pur-
suit regression [20, 7], generalized linear [42, 10] and additive [19] models, neural
network models, and sliced inverse regression and principal hessian directions

[39].

9 Summary

In this paper, we described several dimension reduction methods.
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