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Toward Strehl-Optimizing Adaptive Optics Controllers 

Donald Gavel*a, Donald Wibergtb 
aLawrence Livermore National Laboratory; bUniversity of California, Santa Cruz 

ABSTRACT 
A main objective of adaptive optics is to maximize closed-loop Strehl, or, equivalently, minimize the 
statistical mean-square wavefront residual. Most currently implemented A 0  wavefront reconstructors and 
closed-loop control laws do not take into account either the correlation of the Kolmogorov wavefronts over 
time or the modified statistics of the residual wavefront in closed loop. There have been a number of 
attempts in the past to generate “predictive” controllers, which utilize wind speed and Cn2 profiles and 
incorporate one or two previous time steps. We present here a general framework for a dynamic 
controller/reconstructor design where the goal is to maximize mean closed-loop Strehl ratio over time using 
all previous data and exploiting the spatial-temporal statistics of the Kolmogorov turbulence and 
measurement noise. 

Keywords: Adaptive optics, optimal control, predictive control 

1. INTRODUCTION 
We assume that the objective of an adaptive optics system is to maximize the Strehl ratio, or on-axis 
intensity of a point source relative to that of the diffraction-limit. Meeting this criterion will satisfy many 
of the stated objectives for diffraction-limited astronomical instruments. For example, maximizing Strehl 
also maximizes image resolution, detectablility of a dim object next to a bright one, contrast of structure in 
an extended object, and spectrograph spatial and wavelength resolution. Strehl ratio is intimately related to 
the mean square residual wavefront error, 6: via the Marechal approximation 

Mean square wavefront error is a function of both the atmosphere and the parameters of the A 0  system. 
Since the atmosphere is a stochastic process, so too is the wavefront error, thus we speak in terms of its 
average, or statistical expected value. One ought to be able to minimize the expected residual variance 
through optimal processing of the data coming from the A 0  wavefront sensor. Such an optimal processing 
algorithm would take into account prior knowledge of the statistics of the wavefront, i.e. the Kolmogorov 
turbulence spectrum, and also take into account the amplitude of wavefront sensor noise. 

Optimal statistical processing of A 0  data in a static wavefront has been approached in the past’-4. 
Accounting for the effects of closed-loop ~ p e r a t i o n ~ ‘ ~  is somewhat more difficult, since the correlation 
statistics of the residual wavefront are modified from the uncorrected Kolmogorov statistics by the action 
of the feedback control loop. Optimum processing has obvious advantages; in addition to maximizing 
Strehl, it also makes “optimum use of photons” in that it is the absolute best that the A 0  controller can 
accomplish given the finite flux of light from the guide star. Thus the greatest benefit of optimal wavefront 
control may be in low signal-to-noise conditions. 

Optimal processing also has its price. One must incorporate a considerable amount of prior information 
into the algorithm. We  will assume that wavefront statistics are Kolmogorov with a known transverse 
coherence length, ro, and outer scale Also we will assume the Taylor frozen-flow hypothesis and that 
we know the wind velocity vector, v. In a real implementation we might expect to have separate 
instruments to measure these parameters or, alternatively, use telemetry data from the A 0  system to 
provide estimates of these quantities or at least the  correlation functions needed by the algorithm which 
depend on these parameters. We will use simulations to explore the sensitivity of optimal solutions to 
deviation from the assumed parametric values. 
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2. WAVEFRONT STATISTICS 
The phase, ~ ( x ) ,  of a Kolmogorov wavefront is Gaussian distributed with point to point variations 
described by a structure function 

Dp(x - x’) = ([p(x)- p(x’)r) = 6 . 8 4 ~  - x’l/ro Y’’ 

@(x) = p(.)- jp(x’)wA (x’)dx’ 

(2) 

To define a statistical quantity that has a finite variance, we introduce the piston-removed phase, @(x) : 

(3) 
where W,(x), following the notation of Wallner’, is a weighting function that is zero outside the aperture. 
We normalize WA(x) such that its integral is unity, IW,,(x)d.x = 1.  

The piston-removed wavefront has the covariance function (equation 21 in Wallner) 

(@(x)4(x’))  = - T D , ( x - x ’ ) +  1 g(x)+ g(x’)-. 

where 

and 

The function g(x) and constant a are “generic” on an aperture in that the ( D / ~ o ) ~ ’ ~  dependence can be 
factored out. We’ve plotted g(x) for a circular filled aperture in Figure 1 and a =0.1498~6.88(0/r,)“’. 
Figure 2 shows the piston-removed variance (@(x)’) as a function of radial distance from the center of the 
aperture. Note that the piston-removed phase is not a spatially-stationary process; the statistics depend 
strongly on the position within the aperture. 
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Figure 1. g(x) from equation ( 5 )  Figure 2. Piston-removed wavefront variance 



3. THE CONDITIONAL MEAN WAVEFRONT AND THE SEPARATION PRINCIPLE 
To proceed toward developing a Strehl-optimal control law, we first describe the actions of the wavefront 
sensor and the deformable mirror. 

The wavefront sensor produces a vector of measurements, s, which, for the sake of discussion, we can say 
are the Hartmann slopes in x and y of the wavefront. These measurements are corrupted by noise, v, in a 
way that is consistent with the photon statistics and electronic read noise of the wavefront sensor camera. 
For simplicity, we assume that the wavefront sensor is linear in its response (in closed-loop operation 
where the wavefront sensor is operating on residuals, this is very nearly the case) 

s, = j @ ( X ) W S  (x)dx + V I  (7) 
where W,"(x) (again using Wallner's notation) is the kernel that, in the Hartmann sensor case, takes the 
subaperture average gradient of wavefront phase. 

The deformable mirror produces a wavefront correction 

(8) 

where a is a vector of DM actuator commands, r,(x) is the response of the mirror surface to each actuator, 
and n ,  is the total number of actuators. In general, the control law is the function a, = a , ( s )  which takes a set 
of wavefront sensor measurements and maps to a set of actuator commands. 

We wish to minimize the residual wavefront error&) = @ ( x ) -  Q0(x) in a mean-square sense. To restate this 
formally, the cost-function to be minimized is 

r=l 

Our approach to this problem is to separate it into two components through the introduction of an 
intermediate variable, the conditional mean wavefront. The first component is associated with optimal 
estimation of the wavefront phase given the measurements from equation (7) and the second is associated 
with the optimal control of the DM surface given the optimal wavefront phase estimate and the action of 
equation (8). While separation is not strictly necessary in deriving the optimal control for the single 
measurement (open-loop) case, we shall see it is quite valuable in simplifying the derivation of the optimal 
control in the multi-measurement (closed-loop) case in Section 4. 

The conditional mean wavefront, & x )  = (@(x) I s )  is defined via Bayes theorem 

where Ps(s )  is the joint probability distribution function for the measurement vector and P,&@,s) is the 
joint probability distribution for the wavefront phase and the measurement vector. The conditional mean 
has a number of useful properties for our purposes, most importantly the error in the conditional mean, 
i ( x )  = @(x)- i ( x )  is uncorrelated to the data, s5. As a consequence, it can easily be shown that the error in 
the conditional mean is unbiased (has zero mean itself), is uncorrelated to the conditional mean (which 
depends only on the data), and is uncorrelated to the controls a (since a depends only on the data). 



The cost function can now be written 

The cross term equals zero because the error in the conditional mean is uncorrelated to the actuator 
commands and also uncorrelated to the conditional mean. Define J ,  = ! ( $ ( X ) ' ) ~ ~ ( X ) ~ X  and 
J,. = I( [@,, (x) - &)rhA ( x ) ~ x .  J is minimized if J E  and J c  are separately minimized. 

Minimizing J E  is simply a matter of finding the conditional mean error variance, since J E  is its integral by 
definition. It might be instructive and intuitively appealing to show also that the conditional main is in fact 
the one estimate of $(x) that minizes the estimate's error variance. Let &(x,s) be any estimate of &x) given 
(only) the data, s. 4&,s) differs from &,s) by 6&x,s), i.e. & ( ~ , s )  = i(x,s)+ &(x,s). Then (dropping the x 
dependence; the integrals are over distributions): 

where the cross term is zero because the error in the conditional mean is zero-mean. Since the two 
remaining terms on the right hand side are positive, J ,  =($')< ((4-q$f)') for any & + O  and thus 
4, (s) = $(s) minimizes J E .  

3.1 Calculating the conditional mean 
To calculate the conditional mean given the data we exploit the well known fact' that for Gaussian 
distributed 4 and V, the conditional mean is a linear function of s 

n, 

i ( s )  = C k, (x)s i  = KS 
i=l  

We cross-correlate both sides with s and solve for the matrix K 

(&') = K(ss') 
(14) 

K = ( & T ) ( ~ ~ T ) - '  = (@')(ss')" 

where we can make the last step because 4s = 0 .  Working out these cross-correlations with the help of 

equation (7) we have 
( - )  



where 

3.2 Calculating the optimal control 
Minimizing Jc is the process of finding the vector of commands, a, that best fit the deformable mirror 
surface to the conditional mean wavefront, &), under the constraints of equation (8). The best-fit solution 
is found by substituting equation (8) into the expression for Jc, taking the partial derivative with respect to 
a and setting equal to zero. The result is 

where 

3.3 Combined optimal estimation and control 
Combining equations (15) through (18) yields the following expression for a: 

a = R-'AS-'s 
where 

which is exactly the same result as that of Wallner. The important difference is that through the use of the 
separation principle we are able to write the single-measurement solution in terms of the conditional mean 
wavefront (equation (15)). Using the conditional mean, we will be able to extend this approach to the 
repeated-measurement, closed loop, control case. 

4. THE CLOSED-LOOP CONDITIONAL MEAN WAVEFRONT WITH MOVING 
TURBULENCE 

Closed-loop adaptive optics systems measure and correct the wavefront on time scales that are short 
compared to the wavefront correlation time. For example, a typical A 0  system may sample every 
millisecond, and yet (assuming a Taylor frozen-flow model) it takes the wind clearing time, -D/v, for 
turbulence to blow across the aperture. For a typical wind speed of 10 d s e c  and a 10 meter aperture, the 
clearing time is an entire second, so wavefront phase at any point is actually measured 1000 times! We 
ought to be able to take advantage of the extra sample averaging to significantly improve performance, or, 
equivalently, significantly increase the limiting guide star magnitude. To do this, we need to condition the 
wavefront estimate on all of the previous data, not just the last measurement: 

In the closed-loop formulation, at any sample time we assume we have available to us the present value of 
the conditional mean wavefront and the task is to incorporate one new wavefront sensor measurement to 
revise the conditional mean. Furthermore, as time then progresses, we need to progress the conditional 
mean through time. Since the Taylor frozen-flow model is commonly used, and not a bad approximation, 
we incorporate it in our developments below. We introduce the following notation to describe the various 
stages of updating and progressing the conditional mean through time 



The + superscript indicates an updated conditional mean given the latest data at the time indicated by the 
subscript. The - superscript indicates a time-progressed conditional mean given data up to one sample 
previous. A diagram of this process is shown in Figure 3. This method of incorporating new data and 
progressing stochastic estimates through time was first presented by Kalman6. 

progress Update , Time 
progress 

new data new data 

Update - 
Figure 3. Incorporating new data to update an estimated wavefront over time 

There are some difficulties in formulating the optimal closed-loop control law for adaptive optics. First of 
all, the conditional mean is defined on a continuous domain (x within the aperture) which (in principle) 
means keeping track of an infinite number of data points, although in practice one would keep track of only 
a suitably large number of discrete sample points. Secondly, the recalculation of the conditional mean at 
each step will, as we shall see, require that the conditional mean error covariance C ( x , x ’ )  = (&(x)$(x’)) be 
available at each step. The covariance is bi-functional i.e. dependent on two points within the aperture. 
Furthermore, this bi-function must be inverted, that is, a Green’s function G(x,x’)must be found such that 
jG(x,  x“)C(x”, x’)dx‘ = 6 ( x ,  x’)  . Finally, parameters that determine wavefront prior statistics and dynamics, 

that is ro and the wind velocity(ies) are assumed known. It is not immediately obvious how the controller 
will degrade if these parameters are not known precisely, however we explore this issue in the example 
simulations. 

We justify the extra effort however by the following reasoning. The optimal stochastic control law is in 
itself interesting, if only for off-line simulation and analysis, since we can compare performance to that of 
the “non-optimal” control law actually implemented. It can tell us how much improvement might be 
possible. Secondly, we can gain insights into how sensitive the optimal controller is to prior knowledge of 
operating conditions and compare the degraded performance of the optimal controller to the simpler one. 
Finally, in light of future large aperture telescopes and laser guide star adaptive optics, the added benefit of 
multiple measurements of the wavefront may be enough to reduce the laser guide star power requirements 
and hence the cost of such systems. 

4.1. Updating the conditional mean with new data 
Given a new measurement of the wavefront, we must combine the information contained in that 
measurement with information we already have derived from previous measurements. The process of this 
“statistical addition” is outlined as follows: 1) extract the new information by subtracting from the 
measurement the predicted value of the measurement given the old data. Then 2 )  add the new information, 
with the proper scaling, into the wavefront estimate. 

Assume we have an estimate based on an old measurement 



we then take a new measurement and subtract from it the conditional mean of the new measurement to 
form a residual 

e, = s ,  - (st 1st-1) (24) 

We should note that since e, is an error in a conditional mean, it is uncorrelated to the measurements, 
(e,s: ) = 0 .  Using (14) we calculate the new conditional mean wavefront 

where the matrix inverse is simplified because the off-diagonal terms are zero. The first term is the old 
estimate, &, and the second term is the “statistical addition” of the new information, e,. Again, working 
out the cross-correlations we get 

Note that the elements of p,(x) and S, depend on the covariance of the prior wavefront estimate error and 
the covariance of the measurement noise. The covariance of the wavefront estimate error is updated by 
squaring and averaging (26) and using that fact (again) that the error in the conditional mean is uncorrelated 
to the prior data, (&(s, -G,)‘) = 0 : 

where &‘(x)=q$(x)-$:(x). The initial error covariance at t = 0 is simply the a-priori Kolmogorov wavefront 
covariance, (& (x)& (x$ = (q+k(x’)) . 

The update process (26) is inherently an iterative, closed-loop “null-seeking’’ control architecture, since it 
uses residuals, not direct wavefront measurements. The loop seeks to minimize the variance of these 
residuals. Figure 4 shows the loop architecture, which bears considerable resemblance to that of the 
traditional A 0  controller. There are some important differences however. First of all, the measured 
wavefront residual, that is, the difference between atmospheric phase and the correction put on the 
deformable mirror, is not exactly the same as the error in the conditional mean, since the shape on the 
mirror can not necessarily be made to exactly fit the conditional mean wavefront. So there is a correction 
term that takes into account the fitting error: 



Secondly, the “predictor” portion of the control loop, which bears some resemblance to the leaky integrator 
in standard A 0  control, is not simply a leaky integrator but a much more complicated operation that 
progresses the conditional mean through time, which we develop in the following section. 

Figure 4. Control loop architecture for the Strehl-Optimal controller. 

4.2. Progressing the conditional mean to the next time step 

4.2.1. Conditional mean wavefront progression under frozen flow 
Given the mean wavefront (x) conditioned on all the data up to time t- 1, how do we project ahead to get 
a new mean wavefront, conditioned on the same data but valid at the next sample time, & ( x ) ?  If, for 
example, the wavefront were unchanging over time, then & ( x ) =  $Ll ( x ) .  We will assume, more generally, 
that the wavefront is translating across the aperture with uniform wind velocity v: 

4r (x) = qt-1 (X - vt) (30) 

For the wavefront estimate then we would expect that that portion of the wavefront phase screen retained 
inside the aperture will simply be the same, albeit translated by vt and the portion of wavefront phase 
screen that is newly blown in will need to be estimated using previous data. A minor adjustment must be 
made for the fact that the two apertures will have different constant piston terms subtracted. 

Let the set A represent the portion of the atmosphere over the aperture at time t and A ’  the portion of the 
atmosphere that was over the aperture at time t-1. Define F(x,x’) as the operator that satisfies the integral 
equation 

(4t (x E A)@!-] (x“ E A’)) = IF(x,x’)(41-l (x’ E A’)$,-, (x” E A’))dx’ (31) 

(Note, in a descretization of the sets A and A ’, equation (3 1) is converted to a matrix equation, which can be 
solved by computing a matrix inverse.) Under frozen flow, F(x ,x ’ )  depends on only a single parameter, 
vlD, the wind velocity relative to the aperture size. Now define the quantity q ( x )  as 

X‘G A’ 



By analogy with (13) and (14), the second term on the right side of (32) is the mean of @,(.E A) 
conditioned on @,-, ( x ~  A’) and q, (x) is the error in this conditional mean. 

We need a method of calculating the new conditional mean wavefront in A conditioned on the data, 
{ S ~ . ~ , S ~ . ~ , . . . ) ,  given the old conditional mean wavefront in A ’  which is also conditioned on the same data, 
{ S ~ . ~ , S ~ . ~ , .  . . ). To begin to do this, we take the conditional mean of both sides of (32) with respect to the data 
and rearrange to get 

The first term is straightforward to calculate given d l ,  (x) and F(x,x’ ) .  The second term is problematic but 
it can be dealt with if we make a certain reasonable approximation, which we will describe below. 

4.2.2. The near-Markov approximation 
We now make a crucial approximation that shall be justified shortly. We assume that 

which we’ll dub the “near-Markov’’ approximation. It states that almost all the information needed to 
predict the wavefront phase on A is contained in the wavefront phase on A ’ and we can neglect the previous 
history of the phase screen that blew past the aperture at earlier times. A Markov process (by definition) 
would contain exactly all of the information [ref Pappoulis]. That this is not the case in frozen-flow 
Kolmogorov turbulence is illustrated in Figure 5 .  Notice that at time t, some points that were in the 
aperture at time t-1 have fallen out of the aperture set, off the downwind side. On the upwind side, a new 
phase point coming in at time t+l could possibly be better estimated if we didn’t neglect the phase 
estimates that fell off the downwind side. We give a compelling argument here however that, under 
reasonable wind conditions, these neglected points will contribute very little additional information to that 
contained in A ’ and therefore the near-Markov approximation is useful to work with. The advantage of this 
approximation is that we do not need to keep, in a growing memory, all the prior history of wavefront 
measurements in order to make a forward prediction, but need only retain the conditional mean wavefront 
on a finite aperture. 

To demonstrate the validity of the approximation, we consider the point in A that is estimated given data in 
A ’ .  In particular, consider one such point near the windward edge. One of the points in A” that has been 
neglected in the near-Markov approximation can also contribute some information about the new point in 
A, but this is only the new information that is not otherwise contained in A ’ .  
shorthand for @(x~ A ) )  

That is (letting 

These conditional means can be calculated generically for Kolmogorov turbulence on a circular aperture 
and the results are shown in Figure 6. It can be seen that for wind speeds that clear only a fraction of the 
aperture per sample time, the contribution of the neglected point is orders of magnitude below that of the 
leading edge point. In fact, additional calculations show clearly that most of the information that is used to 
form estimates of points in A comes only from points that are located along the leading edge of A I .  
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Figure 6. The contribution of the neglected point is 
negligible at low wind speeds 

4.2.3. Progressing the conditional mean with frozen flow under the near-Markov approximation 
Now, as a result of (31) and (32) we see that qr(x) is the error in a conditional mean and so is uncorrelated 
to the data it is conditioned on, that is, (qr@f..I) =((@, - (@,~@,~ i ) )@f~ l )=O.  Invoking the near-Markov 
approximation, we can state (qr@,-k) = ((@f -(@, l~,t_,,@f-2,...))@,r-k) = 0 for any k 2 1 as well. Since, according to 
(7), sCk is a linear combination of &k plus noise that is uncorrelated to 4, we can state that ( q r s r + )  = 0, and 
rewrite (33) 

It is also important to point out that ( q , g - k ) ~ O  because both $:, and A_, consist only of linear 
combinations of sr.k , k 2 1, plus measurement noise uncorrelated to 4. 

4.2.4. Wavefront cross-statistics for computing F(x,x’) 
To find the function F(xJ’)  satisfying (31) we need to know the correlation function for the wavefront 
within aperture A’ (the term inside the integral) and the cross-correlation function between the wavefronts 
in A and A’ (the left hand side term). The correlation function for piston-removed phases within an 
aperture was given by equations (2) through (6). For the piston-removed phases on different apertures, we 
have 

(@(x E A)@(x’E A’)) = --Dp 1 (x - x’l)+ g( lx  - c’l)+ g(x’  - c1)- a(lc - c’I) (38) 2 
where c and c’ are the center points of apertures A and A ’ respectively and a(x) is 

Once again, for Kolmogorov turbulence these functions are generic on an aperture, within a ( D I ’ ~ ~ ) ~ ’ ~  factor. 

4.2.5. Progressing the conditional mean error covariance 
Squaring (32), substituting (31) to work out the cross terms, we get the covariance of qr(x) in terms of the 
Kolmogorov wavefront covariance and the function F(xJ’) :  



Note that since F(x,x ' )  depends only on a single parameter, vlD, and the phase covariance depends only on 
rdD. Thus Q(x,x')  depends on both parameters, rdD and vlD. 

Combining (37) and (32) we see that the error in the conditional mean obeys 

Taking the mean square, setting the cross-term to zero since ( q , g - n )  E 0 ,  we get the equation for the 
progression of conditional mean error covariance 

5. SUMMARY OF PROCESSING STEPS 
To implement the Strehl-optimal control law, the conditional mean is updated and progressed according to 
equations (26), and (37) respectively, using the definitions in (27) and (31). Since these equations require 
the conditional mean error covariance at each step, the error covariance must be updated and progressed 
according to equations (28) and (42) respectively. To get the conditional mean residual, e, (for use in (26)) 
given the measurement from the wavefront sensor, we must apply the correction given by (29). Finally, 
given the conditional mean wavefront &x),  the closed-loop commands to the deformable mirror, a, are 
given by (17) and (1 8). 

6. SIMULATIONS 
The Strehl-optimizing controller was programmed for a simple example problem in order to compare its 
behavior to a "fixed matrix" integral controller and also to probe the degradation from optimal performance 
when the seeing parameters are not precisely known. The problem consists of a Kolmogorov phase screen 
blowing past a circular aperture. We choose ro = d and D/d = 7 ( D  is the aperture diameter and d is the 
Hartmann subaperture diameter and also the spacing between actuators). The wind speed is 0.1 d per 
sample and the Harmann slope measurement noise is 1 radian of phase I d ,  rms. We compared 6 simulation 
cases: 1) correction with the Strehl-optimizing closed-loop control law, 2) correction with a Strehl- 
optimizing closed-loop control law that assumes the wind velocity was 50% slower than reality, 3) 
correction with a Strehl-optimizing closed-loop control law that assumes the wind velocity was 50% faster 
than reality, 4) correction with an integral controller using Wallner's control matrix and unity feedback 
gain, 5) correction with an integral controller using Wallner's control matrix with feedback gain adjusted 
for maximum Strehl, and 6) uncorrected. Results are summarized in Table 1. We find that the closed-loop 
Strehl-optimizing controller performs better than the fixed-matrix integral controllers, even when the wind 
velocity is uncertain to +50%. 

Table 1 .  Simulation results 

Algorithm Time-average Strehl 
Optimal 0 502 
Optimal, Wind -50% 0 4.48 
Optimal, Wind +SO% 0 492 
Wallner, gain = 0 3 (optimized) 0 4.40 
Wallner, gain = 1 0 415 
Uncorrected 0 276 

7. CONCLUSION 
We have presented a method for determining the Strehl-optimizing closed-loop feedback control for 
adaptive optics. The approach is general, but we've worked out a specific solution for the case of frozen- 



flow Kolmogorov turbulence. A very mild approximation, the “near-Markov’’ approximation, allows us to 
formulate a control law where only the conditional mean wavefront on the finite aperture is needed to carry 
forward all the statistical information from the past history of wavefront measurements during closed loop 
operation. Some preliminary simulations have confirmed that improved Strehl performance over 
traditional integral feedback control methods can be expected. The controller has the desirable null- 
seeking, feedback control architecture, and has shown in simulations that it is somewhat robust to the 
seeing parameter assumptions made in its statistical formulation. 
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