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Spectral Partitioning In Diffraction Tomography * 

Sean K. Lehman, David H. Chambers, and James V. Candy 
Lawrence Livermore National Laboratory 

ABSTRACT 
The scattering mechanism of diffraction tomography is described by the integral form of the Helmholtz equation. 
The goal of diffraction tomography is to invert this equation in order to reconstruct the object function from the 
measured scattered fields. 

During the forward propagation process, the spatial spectrum of the object under investigation is ”smeared,” by 
a convolution in the spectral domain, across the propagating and evanescent regions of the received field. Hence, care 
must be taken in performing the reconstruction, as the object’s spectral information has been moved into regions 
where it may be considered to be noise rather than useful information. This will reduce the quality and resolution 
of the reconstruction. 

We show haw the object’s spectrum can be partitioned into resolvable and non-resolvable parts based upon the 
cutoff between the propagating and evanescent fields. Operating under the Born approximation, we develop a beam- 
forming on transmit approach to direct the energy into either the propagating or evanescent parts of the spectrum. 
In this manner, we may individually interrogate the propagating and evanescent regions of the object spectrum. 

Keywords: Diffraction Tomography, Evanescent Fields, Beam-Forming 

1. INTRODUCTION 
Most current diffraction tomography reconstruction techniques have been developed for the far-field, ignoring the 
near-field phenomenon of evanescent fields. These evanescent fields which decay exponentially as the distance from 
the Scattering object, carry high spatial frequency information. Thus, when operating in the near-field, they can be 
incorporated into a reconstruction algorithm to achieve higher resolution reconstructions. 

There exists a difficulty, however, in the forward scattering process which is described by a convolution in 
the spectral domain between the object and total field spectra. This convolution results in a “smearing” of the 
propagating and evanescent spectral components. We propose a method of circumventing this smearing by using a 
beam-forming transmitting array to direct the energy into the propagating part of the spectrum. 

In this paper, we consider the case of a wide-band planar scanning device such as encountered in a ground 
penetrating radar. We assume near-field operation as in the case of small, shallowly buried land mines, or objects 
concealed within a wall. In these cases the evanescent fields can be measured. 

In the next section, we develop a symbolic, operator notation to represent the forward scattering mechanism. 
We then use this to show how the object’s spectrum is convolved with the total field spectrum. In Section 3, we 
develop the beam-forming mechanism for isolating spectral components. Finally, in the last section, we show from 
both simulation and laboratory experiment that when operating in a near-field environment, the evanescent fields 
consist of approximately 25% of the backscattered energy. 

Note: Throughout this work, the volume under investigation lies in the region of z 2 0. The transmit/receive 
plane is I = a < 0. Thus 

1 % -  2’1 = -(a - 2 ‘ )  

for reflection mode. 
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2. SYMBOLIC DEVELOPMENT OF FORWARD SCATTERING PROCESS 
2.1. Introduction 
We begin with the integral form of the vector Helmholtz equation,' 

Escat(ri ,xo,w) = k&~)/&'s (r i  -r:,zo -z',w).E(r;,z',w) o(rL,z',w) 

where the total field is defined as the s u m  of the scattered field and the incident field, 

E(rl,z,w) E E i n e ( r l , Z , w )  + E 8 e a t ( r i , ~ , w ) ,  (3) 
c) 

o(r l , z ,w)  is the object function to be determined, and G (r l  - rL,zo - z',w) is the dyadic free-space Green's 
function. Note: We have explicitly separated the coordinate system into components lying in the measurement 
plane, r l ,  and perpendicular to it, x .  

Symbolically, Eqn. 2 is written as 

(4) [ 1 c) 
EScat(rl,a,u) = k&) G ( r i , x , w ) *  E(rl,z,u) o(ri,z,U) 

where the convolution operator, *, is over the three spatial dimensions, (r l ,  2). We apply a planar Fourier transform 
(P.F.T.) to Eqn. 4, to obtain, 

where the forward wave operator is defined as 

and the convolution operator, *, between the field E and the object 8 is over the two spatial frequency dimensions, 
k l .  

In the planar Fourier transform domain, the wave operator and field terms partition naturally into propagating 
and wanescent components based upon whether lkll less than or equal to, or greater than k&), respectively. This 
is shown in Figure 1. In the next section, we use this to mathematically partition Eqn. 4 into propagating and 
evanescent components. 

2.2. Partitioning the Spectra 
Dropping the arguments for convenience, we partition the wave operator and field spectral terms of Eqn. 4 into the 
sum of propagating and evanescent spectral components as follows: 

G = G<+G>, (7) 
L o t  = Eaeat< + fiscat,, (8) 

E = E<+E,, (9) 

where 

That is the u<'' and ">" subscripts indicate that lkll is less than or greater than the spectral cutoff of h ( w ) ,  
respectively. Note: For any field term lim I"> = 0, that is, the evanescent component vanishes as we move into the 

Z+W 

far-field. 



k 

Iy 
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Figure 1. Planar Fourier transform domain partitioning of the wave operator and field spectral components. 

The object, however, not being a field, does not have propagating and evanescent parts. It does have resolvable 
and Don-resolvable parts depending upon the wavenumber cutoff of the field measurement system. Thus we write: 

o =  & +  0, . (12) v v 
resolvable non-resolvable 

Combining the partitioned terms, the Helmholtz equation of Eqn. 5,  

Encat = e [ a * “ ,  
becomes: 

We further partition this into far-field and near-field terms using the 
- 

lim F> = O  
z-bm 

property of the field terms. This is shown in Figure 2. There are two physical effects occurring: 

A “smearing” of object spectral information due to the convolution with the field; 

A conversion between propagating and evanescent information via the wave operator. 

Reconstruction algorithms which take these effects into account will result in imaging enhancements and superres- 
olution. Most current technique only consider the 8< [E< * 6,  term which is the sole surviving term of Eqn. 14 
in the far-field. When operating in the near-field, however, these far-field algorithms would consider the evanescent 
terms as noise rather than as carrying useful information. There is a problem, however, in undoing the effects of 
the spectral convolution. The solution we propose in the next section is to beam-form the transmitted field so aa to 
direct the probing energy into the object’s resolvable and non-resolvable components individually. 

I 



Far-Field ( z  + 00) 

E:reot< = e< k< * (d< +d>)] 

= e< P<*d<] + G< [a<*6>] - - 
current techniques currently treated as noise 

E,,t< = 8< k< * (6, + n,)] + G< [8, * (0. + d>)] 

~ 1 ( )I [ ( )I, E*cat> = G> E < *  6<+6> +8> E>* O<+O> 

- 
currently ignored 

Figure 2. Partitioning of the Helmholtz equation into near- and far-field terms with further partitioning into 
propagating and evanescent components. 



3. BEAM-FORMING DEVELOPMENT OF GENERALIZED FOURIER DIFFRACTION 
THEOREM 

In this section, we develop a method of separating the propagating and evanescent components of the received 
spectrum by beam-forming on transmit. The mathematical development follows that of Deming and Devaney.a We 
begin with the integral form of the Helmholtz equation, 

where 

E ( r l , z , 4  - 1, o(rl,z,w) = 
€0 

e(rl ,z ,w) = a ' ( r l ,z ,w)+ i  , 411, z, 
W 

P = Po? 

r = r l + z B  = z C + y g + z i .  
h ( w )  = W d G G ,  

The dyadic Green's function satisfies 
tt * 

[(V x Vx) - k i (w) ]  G ( r l  - r1 ,z  - z',w) = I b ( r l -  ry) 6 ( z  - z'). 

The solution to Eqn. 21 given in terms of its P.F.T. for z < z' is1: 

i 1 [k;(w) 7 +k+(kl,w)k+(kl,w)] x 
CI 

2( 27r)n-lki (w) dkl y(ki ,  w )  
G (r l  -rL,z - z',w) = 

e-iks .(rl-rk) e-iT(kl,u)(z-z') 

where 

n = 3 (dimensionality), 
kl E k,C+ ku@, 

k+(ki,w) E k l  +T(kl,w)i, 

y(kl,w) = 4=, 
and the sign of Eqn. 26 is chosen so as to make Im{ y(kl,  w ) }  2 0. 

Substitute Eqn. 22 into Eqn. 15 and factor out k i (w)  

* E(rk, z', w )  o(rk, z', w). e- ik i4r i -r i )  e-iq(kl,u)(sg-z') 1 (27) 

* * 
In order to simplify the notation, define K (kl,w) E [k i (w)  I +k+(kl,w)k+(kl,~)], and substitute it into Eqn. 2 7  

Interchanging the C E k l  and dr' integrals, 



and performing a planar Fourier transform, 

Em&;, Z O , ~ )  

we obtain 

Using the planewave scattering matrix developed by Kerns,3 the measured scattered field is related to the 
measured voltage via the planar Fourier transform 

where Sol(kl,w) describes the scattering characteristics of the receiving antenna. Inverse planar Fourier transform- 
ing, we have 

Substituting Eqn. 31 into Eqn. 33, we find 

V(kl,zo,w) = Soi(ki,w) *fi:reot(kl,zo,w). (33) 

Before proceeding further, we invoke the Born approximation,'*' and replace the unknown total field, E(rL,z',w), 
within the integral with the known incident field, E&;, z', w). We then express Eqn. 34 as 

where the B superscript indicates we are operating under the Born approximation. In the forward model, we note 
the object ia multiplied by the incident field. This multiplication in the spatial domain results in a convolution in 
the planar spectral domain, hence the "smearing" of the spectral components. The goal in the next section is to use 
a beam-formed incident field which can limit the effects of this smearing. 

3.1. Development of the Transmitted Incident Field 
Let incident field be produced by an array of N transmitters at locations (rln,z8). Each transmitter produces a 
field given by233 

where C(w) is the time Fourier transform of the voltage wave form delivered to the antenna. The total incident field 
is given by beam-forming the fields from the individual transmitters: 

- N-1 

where the complex weight is defined as 

with w(rln)  and T(rin)  real. 
(39) 



Substitute Eqn. 38 into Eqn. 35, 

and interchange dkl and dr' integrals 

In order to reduce the notation, we make the following definitions, 

1. n=O 

and substitute them into Eqn. 41. Then the planar Fourier transform of the measured scattered voltage of Eqn. 41 
is expressed aa 

o(r;, w )  ei(ks-k;).r;eir(ks,k;,w)+'. I 
Separate the dr' integral of Eqn. 46 into its dry and dx' components, 

and identify the dr' integral as being the planar Fourier transform of the object: 

O ( k i -  ky,z',w). 
The result is the beam-formed Fourier Diffraction Theorem: 

We may now design transmitting array such that the spectrum of the weighting function, @(ki,w), is identically 
zero for either lkll > h ( w )  or lkll 5 h ( w ) ,  depending upon the spectral region we wish to probe. We note that 
for @(kl,w) c 1, Eqn. 49 reduces to the case of a single monostatic transmitter. 

Assuming we are now able to individually address the propagating and evanescent regions of the backscattered 
field, we consider in the next section the amount of energy scattered from each of the spectral regions. 



4. EVANESCENT FIELD CONTENT 
In order to quantify the evanescent portion of the backscattered field, we simulated and measured the field from 
a one-dimensional multi-monostatic scan of a small land mine shallowly buried in a sand box. The sandbox and 
exposed mine are shown in Figure 3. For the experiment, we scanned the buried mine with Lawrence Livermore 
National Laboratory’s Micropower Impulse Radar5-’ (MIR) . 

If the received field is u(z, a, t), its one-dimensional “planar” Fourier transform is given by 
.. 

U(k, , zo , t )  = dr u(z,zo,t) e’+’. (50) I 
~ ( k , , z o , w )  = J d t  ~ ( k , , % , t )  etut. 

We further decompose U(k,, .eo, t) into its narrow band spectral components via a temporal Fourier transform: 

(51) 

We computed total power aa 

the evanescent power via 

and the percentage of evanescent power as 

Figure 4 shows the two-dimensional finite difference time domain (FDTD) simulation of the buried land mine. The 
top left plot shows the transmitted time series, a derivative of a Gaussian which approximates the actual transmitted 
MIR pulse. The top right plot shows the magnitude of the pulse spectrum. The graph in the lower left shows the 
computational domain with an overlay of the measurement plane which was 7.5 cm above the surface of the sand. 
The graph in the lower right shows the “measured” backscattered field, u(z, ZO, t ) .  

Figure 5 shows the P.F.T. results. The graph in the upper left shows the received field, u(z,zo,t). The graph 
in the upper right shows the narrow band decomposed P.F.T. of Eqn. 51. The wedge indicated by the two diagonal 
linea represent the k, = rtko(w) cutoff. The graph at the bottom shows plots of the total power and evanescent 
power aa a function of temporal frequency. We computed the evanescent power to be approximately 35% of the total 
backscattered power. 

Figure 6 shows the measured results for the land mine and sandbox pictured in Figure 3. In this case, we found 
28% of the returned power to be evanescent. 

5. CONCLUSIONS 
Most diffraction tomography reconstruction techniques assume far-field operation and justifiably ignore the evanes- 
cent fields. When operating in near-field conditions, the far-field algorithms would consider the evanescent fields 
as noise and reduce performance. We showed that incorporating the evanescent fields into the reconstruction algo- 
rithms is difficult due to the spectral smearing of the object and field spectra. To reduce this effect, we proposed 
a beam-forming approach to individually address the propagating and evanescent parts of the backscattered spec- 
trum. Finally, using both a simulation and a laboratory experiment, we showed that when operating in a near-field 
environment, the evanescent power is approximately 28% of the returned power. 
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Figure 3. Sandbox and small land mine. 
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Figure 4. Simulated buried land mine. 
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Figure 5. Evanescent power content of simulated buried land mine. 35% of the backscattered power is evanescent. 
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Figure 6. Evanescent power content of buried land mine. 28% of the backscattered power is evanescent. 


