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This report describes a closed-form solution to the electrostatic
potential, and the electric field, between non-concentric cylinders, with
the inner cylinder charged and the outer cylinder grounded. This
problem is an abstraction of the situation of an electron beam within a
drift tube. Capacitive and surface current probes on the inner wall of
the outer cylinder are used to detect the asymmetry of the field when
the beam is off center. The solution of this problem allows for a
quantitative relationship between probe-array signals and beam
deflection. Probe-arrays of this type are called "beam bugs" at LLNL.
This problem was brought to my attention by the work of Tom
Fessenden as described in his reports [1] and [2]. Figure 13 shows a
schematic of the problem.

The solution described here is suggested by the analysis presented in
[3]. The essential point is that the 2D potential for a line source
decreases along a radius as the logarithm of the distance. The
non-concentric cylinder problem has a unique profile of this type for
each ray from (p, o) linking the inner cylinder at equipotential V5, and

the outer cylinder at equipotential O.

The solution will be illustrated with a specific example. Referring to
Figure 13, the following parameters are chosen:

Vy:=1 voltage of the inner cylinder

b=1 radius of the inner cylinder

rq:=23 radius of the outer cylinder

p = ~0.96  x coordinate of the center of the inner cylinder

Q
“

0.37 y coordinate of the center of the inner cylinder



The grid for Figures 1 through 12 in this report is set below.

Nx := 80 number of points along the x axis, index i =0, 1,..., N,-1
Ny := 80 number of points along the y axis, index j =0, 1,..., Ny— 1
i=0,1.Nx—1
2.5 'y .
AX = -2 X increment
23 Nx-—1
25 .
X, = -rq-—+ i-AXx X points, centered at x =0
i 153
j =0,1.Ny—1
2.5 | .
Ay = -2 y increment
23 Ny-—1
25 .
y; =T 1-—2—§ + j-Ay y points, centered at y = 0.

The radial coordinate [for each (i, j) pair] is

r, = J(xi)2+ (y,)’

1,]

and the normalized radial extent with respect to the inner cylinder
is

1
R = B\/(Xi —0) + (%= 0)°



The normalized radial extent to the outer cylinder, with respect
to the inner cylinder, and which intersects point (x, y) is

2 2
:=r1. % L Y _

T.
1] b r r
J(xi>2+(y,.>2 ! J(x.>2+(y.)2 !

The potential at each grid point (i, j) is

In(R, ) r
1] ln(T. ) i,j 1’1

1,)

where the & are unit step functions centered at 0. The step
functions cut off the solution within the inner cylinder and beyond
the outer one. It is convenient to define a negative potential, for
display purposes.

The electric field is E = -grad(V'), and the cartesian and cylindrical
components of this field are defined in the following way. First, the
partial derivatives of R with respect to x and y are shown as R,

and Ry respectively:

Also, the partials of T with respect to x and y are T, and Ty,
respectively:
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Now the cartesian components of the electric field can be given:

-V, [Rx., In(R )-Tx . r .

Ex, . = - |== - =] 2R  —1)o[1-=
PlIn(T ) \R T In(T ) 2 rq
Ey _— -V 2 . Ryi’j _ ln(Ri,j)°Tyi,j .(I)(R _ 1).(1) 1 — h
Pl In(T ) \ R, T In(T, ) L] rq

and the negatives of these components (useful for display) defined:

Exni,]. = -Exi’j and Eyni’j = —Eyi ].

The magnitude of the electric field, which is not necessarily in the
radial direction, is given by

— 2 2
Emi’j = \l(Exi’j) + (Eyi’j)
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The polar angle, that is to say the direction of the electric field at each
point in the (x, y) plane, with respect to center (0, 0) is

_ EYij\ | = Ex; | Ex ) EY,

fe. = atan + —|1- + (14 {1 —
i,j Ex, . 2 |Ex. I Ex. I |Ey. |
i, i, i,j i,j

when the arctangent function is restricted to the range of -x/2 to n/2.
The angle between 0 and 2n defined by point (x, y) is designated

ei ]_ = angle(xi ,yj)

b

The radial and azimuthal components of the field are given, respectively,
by:

Er. .
1,]

Em. .-cos(ee, . — 80
i,j i,j i,j

k6,

i,j

Em, .-sin(ee, . — 0,

i,j i,j i,j
The potential V must satisfy Laplace's equation, V2V =0 =V E,
between the cylinders. As it is easy to define and calculate the

Laplacian numerically, this will substitute for a result based on the
greater effort of differentiating E, and E,.

First, the partials of E, with respect to x at the edges of the grid are
defined:

Ex. . — Ex Ex —

. . Nx—1,]

dExO .= 1] 0.J and dEx S X J
;] AX NX—l:] AX

EXNx—Z,j

Then, the partials of E,, with respect to y at the edges of the grid are

defined:

dEyi o = i,1 i,0 and dEyi o = i,Ny—1 i,Ny—2
’ Ay , Ny Ay




Finally, the x partial of E,, and the y partial of E, are defined as second
order differences within the body of the grid:

for i=1,2.Nx—2 and j=1,2.Ny—2

dEx = By~ EX and dby. = By je1 7 B 50
L] 2-AX ) 2:Ay

Now the Laplacian is constructed for the grid
for i:=0,1.Nx—1 and j =0,1.Ny—1

dE. . := dEx, . + dEy, .

i,j i,j i,j

The results for this example follow as twelve figures. Both surface
and grey (color) scale contour plots are shown for each of:

V, potential,
V,, negative of the potential,

E., x component of the electric field, E = -grad(V),

E y component of the electric field,

xn hegative of E,

negative of E,,

o Mmagnitude of the electric field, v (JE‘X2 + Eyz),

r» radial field, with respect to center (0, 0),

Ey, azimuthal field, with respect to center (0, 0),

10 6, adisplay of spatial phase, the complex plane, note the 0-2x

jump along the +x axis (the same orientation for all plots),
11 6, the angle of the local field, note O-2x jump,

12 v E, the Laplacian, the divergence of E.

O oo~ O b W=

Note that Vv -E is zero between the cylinders, as should be the case.
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Figure 13 caption

Fessenden's electrostatic problem. A diagram of the geometry,
and the nomenclature used. The outer cylinder has radius r; and a
center at (x, y) = (0, 0). The inner cylinder has radius b and a center at
(x,¥) = (p, o). The radial extent from (0, 0) to point (x, y) is r(x, y),
and the radial extent from point (p, ¢) to point (x, y) is b*R(x, y, p, o,
b). R is normalized to 1 at the periphery of the inner cylinder, and is
designated by the function T(x, y, p, o, b, ry) for points (x, y) on the
periphery of the outer cylinder. The space between the cylinders must
satisfy Laplace's equation. The radial field E (@ r,) at the outer
cylinder would be what a capacitive probe senses, while the azimuthal
field E¢(@ r1) would be what a wall current probes senses [j(@ rq) =

conductivity * E4(@ rq)].

This work was performed under the auspices of the U. S. DOE by LLNL under contract
W-7405-Eng-48.
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R(Xr Y o, O, b) =1
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Figure 13, Fessenden’s electrostatic problem
Find V(x, y) between an inner cylinder at V=1,
and an outer cylinder at V = 0; also find the radial
and azimuthal components of the electric field,

E; and Eg, respectively.



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

