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Abstract. The rapid, Alfvhic, time scale of erupting solar-prominences 
has been an enigma ever since they where first identified. Investigators 
have proposed a variety of different mechanisms in an effort to account for 
the abrupt reconfiguration observed. No one mechanism clearly stands 
out as the single cause of these explosive events. Recent analysis has 
demonstrated that field lines in the solar atmosphere are metastable to 
ballooning type instabilities. It has been found previously that in ideal 
MHD plasmas marginally unstable ballooning modes inevitably become 
“explosive” evolving towards a finite time singularity via a nonlinear 3D 
instability called “Nonlinear Magnetohydrodynamic Detonation.” Thus, 
this mechanism is a good candidate to explain explosive events observed 
in the solar atmosphere of our star or in others. 

1. Introduction 

Coronal mass ejections, which typically release ergs of energy, and ener- 
getic solar flares are both closely correlated with solar prominence eruptions. 
The prominences (also known as filaments) associated with these events appear 
stable and quiescent for weeks generally lying directly above a magnetic neu- 
tral line, where the line-of-sight magnetic field changes direction. Eventually, 
the prominence violently erupts releasing energy (in the form of plasma heat- 
ing, particle acceleration, and increased radiation emission) and destroying the 
structure (Le. rapid bulk plasma motions) in period of a few hours (Alfvhic 
time-scales). During the eruption period, a coronal helmet streamer rises above 
the prominence and a two-ribbon chromospheric flare appears below. 

1.1. 

All to often in solar physics rapid time-scale events are interpreted as being 
the result of reconnection, which converts magnetic energy into thermal (and 
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Do Linear Instabilities Make Sense? 
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Flux compression 

Expanding flux tube 

Photos here 
Figure 1. A radiaby expanding flux tube is shown. Due to conser- 
vation of magnetic flux, the Alfv6n speed inside the tube shrinks as 
the expansion proceeds. This effect reduces the stabilizing influence 
of field line bending making it easier for the tube to expand further. 
As the tube expands magnetic flux is compressed on the leading edge 
while flux tubes on the sides of the expanding tube slide around the 
disturbance. 

nonthermal) energy. However, little direct evidence for fast reconnection exists. 
Due to the very large conductivity of the solar atmosphere (with Lundquist 
number S - 1012-’4), magnetic energy cannot easily dissipate even with the 
action of anomalous resistivity (Kulsrud 1998; Shibasaki 2001). 

A variety of linear instabilities have also been proposed as explosive eruption 
mechanisms (e.g. rtaadu 1972; Hood & Priest 1979; Hood 1986; Strauss & 
Longcope 1994). If one could somehow “turn off’ the flow of time, place the solar 
prominence is a highly stressed state, and then allow the flow of time to resume 
again, linear instabilities could then yield growth rates that are fast enough 
to explain prominence eruptions. However, solar plasmas (and most natural 
systems) don’t behave this way since they all start in a stable state and slowly 
evolve through marginal stability-slow growth by definition. Therefore, linear 
instabilities are incapable of producing explosive growth rates in real systems 
unless they are externally forced at fast (Alfv6nic) rates (Cowley & Artun, 1997). 

2. A Nonlinear Mechanism? 

A natural nonlinear mechanism that exhibits explosive behavior is called “Det- 
onation” (Hurricane, Fong, & Cowley 1997 hereinafter HFC). This explosive 
scenario can occur in an arbitrary equilibria which is locally near the marginal 
ballooning-Rayleigh-Taylor-Parker mode stability boundary. This novel mecha- 
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nism is referred to a s  “detonation,” since it is a magnetic analog to the metastable 
aspect of a chemical explosive. 

Instability is driven by density gradients opposing gravity while field-line 
bending provides some stabilization-diagrammatically this imbalance can be 
expressed as a simple dispersion relation 

where I’ is the growth rate, kll is the wavenumber along the field, OA is the 
Alfvbn speed, 7 is the polytropic index, a is the ion sound speed, R is the local 
radius of curvature, L, is the pressure gradient scale length, g is the acceleration 
due to gravity, H = p / p g  the atmospheric scale height, and L, is the density 
gradient scale length. From left to right, the physical meaning of the terms in 
Eq. (1) are field line bending, the Rayleigh-Taylor drive, Parker drive (Parker 
1967), and the ballooning (pressure) drive. All of these terms nearly balance 
around marginal stability. Expansion increases the cross-sectional area of the 
rising flux tube (see Figure 1) since it is moving from a region of high pressure 
to low pressure. From conservation of magnetic flux, the magnetic field strength 
in the tube is reduced (4  = B A  = const.). This nonlinear effect results in 
the weakening of the stabilizing field line bending term ( v ~ ,  is reduced). Thus, 
even if the system was marginally linearly stable it is nonlinearly metastable. 
Ultimately, the stabilizing contribution of magnetic field-line bending is rapidly 
reduced allowing the unstable drive terms to take over. 

3. Nonlinear Magnetohydrodynamic Detonation 

3.1. The Essential Physical Picture  

The assumptions of the model are that the equilibrium is locally near the 
marginal stability boundary and that the expected mode of instability has a 
fast variation in one direction (the “y” direction) across the magnetic field, B. 
It is shown that the plasma displacement, <, is largely radial across gradients in 
pressure and/or density (along x, being the magnetic flux function). 

A non-linear ballooning mode envelope equation, that describes in detail the 
behavior diagrammed in the previous section, can be obtained from the usual 
MHD equations via a lengthy multiple-scale ordering procedure assuming the 
system is close to marginal stability (see HFC) 

Eq. (2) gives the evolution of the scaled plasma displacement [(x, y, t )  = du/ay, 
across field-lines and in time. Equilibrium dependence only enters through the 
width of the linear growth rate (A) and the scaled viscosity (v). Here, viscos- 
ity due to charge-exchange interactions with neutrals, has been added to the 
ideal equation since it is the chief non-ideal effect in solar plasmas. Generally, 
instability described by Eq. (2) begins in a localized region. At low ampli- 
tude two nonlinear terms become important. One nonlinearity-the “explosive 
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Figure 2. A time evolution plot of the energies of the system, as pre- 
dicted by Detonation is shown. From the top down the curves are the 
nonlinear energy, the total energy, the linear energy, the viscous energy, 
the kinetic energy, and the quasi-linear energy. Positive (negative) sign 
indicates energy sources (sinks). The behavior is finite-time singular. 

nonlinearity”- causes the mode to grow explosively and narrow into finger-like 
structures across the field (fourth term on the right). The other nonlinearity-the 
“quasi-linear nonlinearity”- flattens the profiles and broadens the mode into the 
linearly stable region (third term on the right). The linearly stable region is in 
fact metastable due to the explosive nonlinearity. As the unstable fingers spread 
they destabilize the metastable region- thus “detonating” the plasma. 

Given an arbitrary equilibrium one can compute what regions in the equilib- 
ria are most susceptible to instability, the full three dimensional spatial structure 
of the linear and early nonlinear stage of the instability, and the expected time 
evolution. Mathematically, the total radial displacement is given by the form 
tz = t(z, y, t ) H ( l )  where H(1) gives the perturbation structure along a field line 
The eigenfunction, H(Z) obeys the linear ballooning equation, which is schemat- 
ically given in Eq. (l), but the actual form is a complex set of coupled second 
order linear differential equations along magnetic field lines (given explicitly in 
HFC). 

In order to solve the instability equations for realistic prominence equilibria, 
we have constructed initial states using a method presented in Fong, Hurricane, 
& Cowley (2001). Both normal polarity flux-rope and inverse polarity flux-rope 
solutions were found. By explicit solution of the ballooning equations, both 
normal and inverse flux-rope solutions were shown to be unstable in localized 
regions using common values for prominence parameters with -80% of the lin- 
ear instability forcing coming from the Rayleigh-Taylor drive and -20% of the 
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Photosphere 

Figure 3. The spatial structure, across field lines, predicted by det- 
onation evolve from usual ballooning mode characteristics (a) to very 
narrow finger-like structures (b). Surfaces of constant magnetic flux 
are shown. The magnetic field lines are normal to the page. In this 
case, the system was locally linearly unstable in a narrow radially lo- 
calized region. Nonlinearly, instability has spread both upward and 
towards the photosphere with the finger pointing upward. This figure 
corresponds to the cut across the flux tubes shown in Figure 1. 

forcing coming from the Parker drive. These slowly growing linear modes trigger 
the nonlinear detonation. 

4. Detonation Predictions 

A variational technique is elegant and instructive way of solving the nonlinear 
stability equation, Eq. (2), since a statement of energy conservation can be 
formed from the nonlinear equation by multiplying by 6 and integrating over z 
and y: 

d 
-(K + U) = -2F 
dt 
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1 aF" 1 
U = 1 dzdy [ -f (1 - $) t2 + ( + (=)' - --t3 

We choose a trial function that is a qualitative fit to both the linear and 
expected nonlinear behaviors: 

L 

M < = A(t)e-'(t)"2[1 - w(t)] w"(t) cos 
m=O 

(4) 

with (w(t)l < 1 and a(t) > 0. A(t) is the mode amplitude, while a(t) and w(t) 
are directly related to characteristic mode widths across the magnetic field. The 
choice of trial function allows us to obtain each term of the energy conservation 
statement in closed form: 

+---- 
A w - 1  1-w2 4a -+- 

8 a 2  (1 - w ~ ) ~  
1 ir2 

w2 I +-- + 

-+- 

( A  
w )ww(l+;w2) +4W2P2 ("'") ____ 1 - w2 +8 -+- A W - 1  1-w2 

1 + ;w2 3 b2 1+w2 -:e 2 a  [ (4 A + L) W-1 (1 + w2) + 47iw ( 1 - w2 )] + - 4 -tb2P2 a2 (-) 1-w2 ) 

(5) 

(7) 

where L = 47rA/3, Li is the dilogarithm function and P 2  is a Legendre polyno- 
mial of order 2. Eq. (6) is particularly useful as it specifies the three-dimensional 
parameter space boundary between stability, U(A, w, a) > 0, and instability, 
U(A,w,a) < 0 (Fong, Cowley, & Hurricane 1999). 
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We need to obtain equations for A(t ) ,  w( t ) ,  and a(t)  to complete the so- 
lution. Letting L = K - U ,  Euler-Lagrange evolution equations for A(t), w(t), 
and a(t)  are obtained from: 

Due to the complexity of Eqs. (5)-(7), the above equations of motion, 
Eqs. (8)-(10) are most easily obtained and solved with symbolic manipulation 
software. The beauty of this solution method is that we’ve bypassed many 
of the difficulties associated direct numerical integration of a nonlinear time 
dependent partial differential equation (e.g. artificial dissipation) that destroy 
fine scale spatial structure. The problem has been reduced to the solution of 
three nonlinear coupled ordinary differential equations. 

4.1. Energies 
The equations (8)-(10) have been solved numerically. A plot of the various 
terms that compose this energy conservation statement are shown in Figure 2 
as a function of time for a typical numerical integration. The behavior is finite 
time singular. Scaling analysis of the numerical results have shown that the 
kinetic energy of the system increases as - ( to  - t ) -5.5,  t o  being the detonation 
time-the value of which depends upon the equilibrium. 

4.2. Spatial Structure and Metastability 

Instability begins in a localized (in 5 and y) region where the configuration is 
closest to the marginal stability boundary. If the system has crossed the linear 
stability boundary, then the linear instability grows in the localized region and 
has the characteristics of a usual ballooning mode (Figure 3a). 

At nonlinear stages, the mode grows explosively and narrows into finger-like 
structures while simultaneously spreading into linearly stable regions. As the 
finger spreads into the linearly stable region it destabilizes the region nonlinearly 
(Figure 3b) since the linearly stable region is in fact only metastable. At the 
front of the fingers, strong gradients develop as the finger penetrates into the 
metastable region suggesting the possible formation of a localized shock. Of 
course the analysis behind the construction of nonlinear equation fails at large 
amplitudes, so further work is needed to understand the possible formation of 
shock-like fronts and the large amplitude evolution (direct 3D simulation would 
be useful for this). 

If the equilibrium is entirely linearly stable, then a field line must be dis- 
placed by an amount sufficient to overcome the stabilizing field line bending 
forces. Once sufficiently displaced, the nonlinear behavior is the same (i.e. also 
explosive) as that discussed above. 
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5. Conclusion & Speculative Remarks 

Explosive behavior in solar plasmas has been an anomaly in physics for decades. 
The particular class of instability chosen here-those driven by pressure or gravity- 
are fine perpendicular scale MHD instabilities. Note that even though they 
are fine scale they can, in the detonation scenario, have global consequences. 
Macroscopic instabilities, like the kink mode, are not known to have explosive 
behavior-indeed in some cylindrical situations simple pitchfork bifurcations oc- 
CUT (Rutherford, Furth, & Rosenbluth 1971). Detonation exhibits elements of 
both transcritical and pitchfork like bifurcation behaviors although the actual 
situation is more complex than these labels imply due to the three-dimensional 
spatial structure of the instability. 

Detonation demonstrates that explosive behavior is a natural and funda- 
mental part of MHD for arbitrarily configured plasma equilibria. This explosive 
property of MHD promises an exciting explanation for the explosive nature of 
solar filaments. 

Acknowledgments Work performed under the auspices of the U.S. Depart- 
ment of Energy by Lawrence Livermore National Laboratory under Contract 
W-7405-ENG-48. 

References 

Cowley, S.C. & Artun, M. 1997, Phys. Reports, 283, 185. 
Fong, B.H., Cowley, S.C., & Hurricane, O.A. 1999, Phys.Rev.Lett, 82, 4651. 
Fong, B.H., Hurricane, O.A., & Cowley, S.C. 2001, Solar Phys., 201, 93. 
Hood, A.W. & Priest, E.R. 1979, Solar Phys, 64, 303. 
Hood, A.W. 1986, Solar Phys., 100, 415. 
Hurricane, O.A., Fong, B.H., & Cowley, S.C. 1997, Phys. Plasmas, 4, 3565. 
Kulsrud, R.M. 1998, Phys. Plasmas, 5, 1599. 
Parker, E.N. 1967, ApJ, 149, 63. 
Raadu, M.A. 1972, Solar Phys., 22, 425. 
Rutherford, P.H., Furth, H.P., & Rosenbluth, M.N. 1971, in Plasma Physics 

and Controlled Nuclear Fusion Research (International Atomic Energy 
Agency, Vienna, Vol. .XI), 553. 

Shibasaki, K. 2001, ApJ, 557, 326. 
Strauss, H.R. & Longcope, D.W. 1994, Solar Phys., 149, 63. 


