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Background 

LLNL has a long history of R & D in ODE methods 
and software, and closely related areas, with emphasis on 
applications to PDEs. 

Popular Fortran solvers written at LLNL: 
a VODE: ODE initial value problems for stiff/nonstiff 

systems, with direct solution of linear systems 
[Brown, Byrne, Hindmarsh] 

solution of linear systems (GMRES iteration) 
[Brown, Byrne, Hindmarsh] 

a VODPK: Variant of VODE with preconditioned Krylov 

a NKSOL: Newton-Krylov (GMRES) solver for nonlin- 
ear algebraic systems [Brown & Saad] 

a DASPK: Differential-algebraic system solver (from 
DASSL) with direct and preconditioned Krylov solu- 
tion of linear systems [Brown, Hindmarsh, Petzold] 

Areas of special interest in recent years: 
a parallel solution of large problems 

sensitivity of solution w.r.t. model parameters 
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Background (cont .) 

Starting in 1993, the push to  solve large systems in par- 
allel motivated work to write or rewrite solvers in C. 

The first result: 

CVODE = C rewrite of VODE + VODPK, serial 
[Cohen & Hindmarsh, 19941 

Next result: 

PVODE = parallel extension of CVODE [1998] 

Current naming: One solver, CVODE, in two versions - 
serial and parallel 
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CVODE 

IVP: I j  = f ( t , y ) ,  y(t0) = Yo, Y E RN 

Methods: variable-order , variable-step 
0 BDF = Backward Differentiation Formulas (stiff) 

Implicit Adams (nonstiff) 

(Fixed-Leading Coeff. form) 

Nonlinear systems solved by: 
Newton (stiff) 

0 Functional Iteration (nonstiff) 

Linear systems solved by: 
0 Dense or band direct solver (serial version only) 

0 SPGMR = Scaled Preconditioned GMRES: 
unrestarted, matrix-free, left/right preconditioning, 
user routines for preconditioning setup/solve 

Code organization completely redone: 
0 Memory allocation 

0 Linear solver modules separate from core integrator 

0 Each linear solver has interface + generic solver 

Separate module of vector kernels (linear sums, dot 
products, norms, etc.) on vectors of type N-Vector 
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CVODE Organization 

CVDENSE CVBAND CVDIAG CVSPGMR 

Core Integrator CVode 

I I c . 1 DENSE 1 1 BAND I 
I I I I 

Generic Linear Solvers 
I ITERATIV 

NVECTOR 

SUNDIALS TY PS 

SUNDIALSMATH 
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The SUNDIALS NVECTOR Module 

Package includes three submodules: 

0 Generic NVECTOR 

NVECTOR-SERIAL 

a NVECTOR-PARALLEL 

The Generic NVECTOR module defines: 

0 a machine environment structure MJEnv 

0 a data-independent N-Vector type 

(in MJEnv) a set of operations 

0 a set of kernels = wrappers around actual kernels 
accessed through the operation set 

Each NVECTOR implementation (or any user-defined 
NVECTOR module) defines: 

0 content field of MJEnv 

0 content field of N-Vector 

0 set of implemented vector kernels 

0 function to construct M-Env and fill list of operations 
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NVECTOR (cont.) 

In NVECTOR-PARALLEL, 
e the M-Env content field includes 
- local vector length 
- global vector length 
- MPI communicator 

a the N-Vector content field includes 
- local vector length 
- global vector length 
- the local data array 

All N-vectors are distributed the same way. 

If neither package NVECTOR implementation is suitable, 
user can provide one. E.g. substitute a more complex 
data structure. 
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Parallel CVODE Usage 

Unlike the user of the Fortran solvers, the CVODE user 
calls several routines for various parts of solution process. 

Set local vector length 

machEnv = M_EnvIni tParal le l (  . . . ) :  
initialize NVECTOR-PARALLEL 

Set initial values of y (type N-Vector) 

mem = CVodeMalloc(. . . ) :  initialize CVODE 

CVSpgmr( . . . ) :  if Newton, specify SPGMR and 
preconditioner setup and solve routines 

f o r  ( t o u t = . . . )  i e r  = CVode( . . .  ) :  integrate 

CVodeFree: free CVODE memory 

Errors are controlled via user input tolerances: 

r t o l  = scalar relative tolerance 

at01 = absolute tolerance = scalar or vector 

Resulting error weights rtollyZl+atolz are also used 
to scale GMRES. 
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CVODE - Preconditioning 

Preconditioner P must approximate Newton matrix, yet 
be reasonably efficient to evaluate and solve. 

From linear multistep method, 

where jln = f (tn, yn) ( h  = stepsize, ,80 = BDF coeff.), 
the Newton matrix is I - y J,  J = d f /ay, y = hPo. 

Typical P is I - yJ with J - J ,  possibly a crude ap- 
proximation. 

yn = h,80zjn+ sum of known past values, 

Treatment of P is in two phases: 
evaluate and preprocess P (infrequently) 

0 solve systems Px = b (frequently) 
User can save J and reuse it when y changes (trading 
computation for storage), as directed by CVODE. 

The user must supply routines for setup and solve of P ,  
but the package offers help: 

Example illustrates operator-split preconditioner for 
reaction-diffusion systems 

0 BBD module supplied (parallel version) : Band-Block- 
Diagonal preconditioner 

Other linear solvers useful, given choice of J .  
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Parallel CVODE - BBD Preconditioner 

Directed at PDE-based problems, using Domain Decom- 
position 

Time-dependent PDE system, with spatial discretization, 
gives ODE system zj = f (t ,  y ) .  

Decompose domain into M non-overlapping subdomains. 

DD induces block form y = (yl, 7 y ~ ) ,  same for f - 

Use this distribution for CVODE on M processors. 

But f m ( t ,  y) depends on both ym and ghost cell data from 
other ym/,  typically in a local manner. 

Build preconditioner P by: 
a computing d f , / d y m  (ignore coupling) 

a replacing f by g z f (g = f allowed) 

E.g., g may have smaller set of ghost cell data. 

On processor m, use Jm = banded difference quotient 
approximation to  dgm/dym,  then 

P = diag[P1, , P M ]  , Pm = Im - yJm 

Solve Px = b by band LU and backsolve ops. on each 
processor (setup = evaluation + LU, solve = backsolve). 
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BBD Preconditioner (cont .) 

User supplies g as two routines: 

0 gcomm: inter-processor communication of data needed 
to evaluate gm 

0 glocal :  evaluate gm on processor m 

User also supplies: 

0 half-bandwidths ml ,mu of band matrix Jm 

0 half-bandwidths mldq,mudq for use in D.Q. algorithm 
(cost of Jm is mldq+mudq+2 evaluations of gm) 

(1) ml ,mu may be smaller than mldq,mudq - trading 
lower matrix costs for slower convergence. 

(2) Both pairs of half-bandwidths may be less than the 
true values for dgm/dym,  for efficiency. 

(3) Both pairs may depend on m. 
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CVODE - Fortran/C Interfaces 

Fortran applications are accommodated, via a set of 
interface routines. 

(Fortran user) ++ (interfaces) +--+ CVODE 

Cross-language calls go in both directions: 

Fortran Main --+ interfaces to solver routines 

Solver routines --+ interfaces to user’s f etc. 

For portability, all user routines have fixed names. 

Small examples are provided. 
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KINSOL 

Solves F(u)  = 0, F : R" -+ R", given a guess uo. 

C rewrite of Fortran NKSOL [Brown &z Saad] 

Method is Inexact Newton: 

Newton correction equation JAun = -F(un) is solved 
only approximately, with a preconditioned Krylov method. 

Krylov solver: SPGMR = Scaled Precond. GMRES 
restarts allowed 

0 preconditioning on the right: (JP-')(PA) = -F 

Krylov iteration requires matrix-vector products J(u)v, 
done by: 

user-supplied routine, or 

0 difference quotient [F(u + ov)  - F(u)]/a 

Choice of Newton strategies: 

0 Inexact Newton 

Inexact Newton with Linesearch/Backtrack 

(NKSOL also had a Dogleg Method; KINSOL does not.) 
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KINSOL (cont.) 

Optional inequality constraints: ui > o or uz < o 

Error controls: 

1. Newton stopping test: IJDFF(u~)JI < f tol  with input 
scaling DF for F and input tolerance f to l .  

2. Krylov stopping test: 1 1  JA,+FII < qklJFIJ with three 
choices: 

0 q k  = constant 

0 two 'forcing term' choices of Eisenstat/Walker [1996] 

3. For step control and choice of 0,  user must also supply 
Du = scaling for u. 
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KINSOL - BBD Preconditioner 

Package includes band-block-diagonal preconditioner 
module analogous to CVODE’s BBD. 

Defined via g ==: F: 
P = diag(P1, , P&r] , Pm = Jm E agm/aym 
Jm is banded, via difference quotients, with user-supplied 
half-bandwidths for D.Q. alg. and retained matrix. 
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KINSOL Code Organization 

Same basic organization as CVODE 
(only one linear solver choice at present) 

Shared modules: 

0 generic SPGMR solver 

0 NVECTOR module 

User supplies routines for: 

O F  

0 P setup and solve (optional) 

0 J v  product (optional) 

0 gcomm, @oca1 (for BBD preconditioner) 

Examples provided with user preconditioner and BBD 

Package of Fortran/C interfaces provided 
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IDA 

Solves Initial Value Problem for DAE system 
F ( t ,  Y1 Y ' )  = 0, 
F : R x R" x R" -+ RN, 
given yo, yb at t = to 

C rewrite of Fortran DASPK [Brown/Hindmarsh/Petzold] 

Met hod: Variable-order BDF, variable-coefficient 
(Fixed-Leading-Coefficient form) 

Newton corrections involve Newton matrix 

J = d F / d y  --I- adF/dy' 

a = ao/h (h  = stepsize, a0 =BDF coeff.) 

Linear systems solved by: 

0 direct solve (dense or banded, user or internal J )  
(serial version only) 

0 SPGMR = Scaled Precond. GMRES 
- restarts allowed 
- preconditioning on left: (P-' J )  ( A y )  = - P-lF 
- user routines for P setup & solve 

Optional inequality constraints: 
yz > o or yz < o or yz > o or yz < o - - 
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IDA - Initial Condition Calculation 

User input yo, yb may or may not be consistent (F = 0), 
but must be for integration to  succeed. 

Optional user-callable routine solves for consistent values, 
for two classes of problems: 

0 Semi-explicit index4 systems, differential components 

All of yb specified, yo unknown 

of yo known, algebraic components unknown 

IDA solves F(t0, yo, yb) = 0 for unknown components of 
yo and yh, using 

0 Newton iteration with Linesearch 

0 existing linear system solver machinery (+ tricks) 
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IDA - BBD Preconditioner 
~ 

Package includes Band-Block-Diagonal preconditioner 
module analogous to  CVODE’s BBD. 

Defined via G F=: F :  

P = diag[P1, , P M ]  

Jm is banded, via difference quotients, with 
half-bandwidths for D.Q. alg. and retained 

user-supplied 
matrix. 
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IDA - Code Organization 

Same basic organization as CVODE 

Shared modules: 

0 generic dense, band, SPGMR solvers 

0 NVECTOR module 

User supplies routines for: 

O F  

0 J for direct solve (optional) 

P setup and solve for SPGMR (optional) 

gcomm, @oca1 (for BBD preconditioner) 

Examples provided with user preconditioner and BBD 
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Sensitivity Analysis 

In addition to the solution y or u, we want its sensitivity 
(first-order) with respect to parameters in the problem 
(or initial conditions). 

(1) ODES. 

If P = ( P l ,  . .  ,Pm)  and Y = f ( t , Y , P ) ,  Y ( t 0 )  = Yo(P) ,  
we want s = d y / a p  ( N  x m). 

Each column si = ay/api satisfies another ODE 

with initial values si(t0) = dyO/dpi. 

S ensPVOD E [Lee/Hindmarsh/Brown, 20001 integrates 
extended ODE system for Y = ( y ,  wl, 7 wm), where 
wi = pisi and pi = scale factor N pi. 

Evaluation of W; = pisi done by difference quotients 
(range of choices) or by Automatic Differentiation. 

Jacobian of extended system, of size N(m+ l), is approx- 
imated by diag[J, , J ] .  Appropriate preconditioner is 
diag[P, - , PI. Linear systems involve added solve op- 
erations but no added matrix setup operations. 
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ODE Sensitivity Analysis (cant .) 

CVODES [Serban/Hindmarsh, 20021 has two modes: 

integrate extended system for Y = (y, SI, , s,) 
(2 new options for staggered corrector iteration) 

integrate for y; integrate adjoint system backward 

Adjoint (backward) sensitivity analysis: 

Given g ( t ,  y, p )  such that (ag/dp)l t+ is desired, - .  

integrate from t f  to to the adjoint system 
* 

, k = - J * p  , p ( t f ) =  (2) 
Then 

= p*(to)s(to) + g p* fpd t  + gPlt=tf 

Regenerate y ( t )  values, needed in RHS, via check-point 
scheme. 
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Sensitivity Analysis (cont .) 

(2) Nonlinear Systems. 

F ( u , p )  = 0, s = a u p p  +- 

SensKINSOL [Grant/Hindmarsh/Taylor, 20001 solves 
for u (if not done already by KINSOL), then solves linear 
systems for wi = pisi. 

(3) DAEs. 

= o  -si + -s* + - d F  dF f dF 
dY dy' apa 

SensIDA [Lee/Hindmarsh,2001] integrates extended DAE 
system for Y = (y? w1? , wm), where wi = pisi. 

Newton matrix of extended system is approximated by 
diag[J,  ? J ]  ( J  = Newton matrix of original system). 

23 



Applications 

* Parallel CVODE is being used in a parallel 3D tokamak 
turbulence model in LLNL’s Magnetic Fusion Energy Di- 
vision. A typical run has 7 unknowns on a 64 x 64 x 40 
mesh, with up to 60 processors. 

* KINSOL with a HYPRE Multigrid preconditioner is 
being applied within LLNL/CASC to solve a nonlinear 
Richards equation for pressures in porous media flows. 
Fully scalable solution performance obtained on up to 225 
processors of ASCI Blue. SensKINSOL used to quantify 
uncertainty in these groundwater problems. 

* CVODE, KINSOL, IDA, with MG preconditioner, are 
being used to solve 3D neutral particle transport problems 
within LLNL/CASC. Scalable performance obtained on 
up to 5800 processors on ASCI Red. 

* SensPVODE, SensKINSOL, and SensIDA have been 
used to  determine solution sensitivities of neutral particle 
transport applications at LLNL w.r.t. various material 
properties, for solution uncertainty quantification. 

* IDA and SensIDA are being used in a cloud and aerosol 
microphysics model at LLNL to study cloud formation 
processes, in study of model parameter sensitivity. 
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