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USER DOCUMENTATION FOR SENSIDA, A VARIANT OF IDA FOR
SENSITIVITY ANALYSIS*

STEVEN L. LEE AND ALAN (. HINDMARSH !

1. Introduction. SensIDA and IDA [9] are general-purpose codes for solving differential-
algebraic equation (DAE) initial value problems. SensIDA is a variant of IDA that includes
options for simultancously computing the DAE solution together with its first-order sensi-
tivity coefficients with respect to model parameters. SensIDA is written in ANSI-standard
C and it is mainly based on IDA. DASPK3.0 [11], and SensPVODE [10]. IDA is based
on DASPK2.0 [3]. DASPK3.0 is a Fortran77 code for the sensitivity analvsis of DAE imi-
tial value problems. SensPVODE is a sensitivity analvsis variant of the parallel ordinary
differential equation solver PVODE [5].

SensIDA can be compiled to run on serial or parallel computers. This 1s accomplished by
specifving that the serial or parallel version of the vector module NVECTOR is used when com-
piling SensIDA. The parallel version of SensIDA uses MPL (Message-Passing Interface [8])
to achieve parallelism. and is intended for a distributed Single Program Multiple Data en-
vironment in which all vectors are identically partitioned across processors. The idea is for
cach processor to solve a certain fixed subset of the DAEs that describe the model problem
and the first-order sensitivity coefficients of the solution.

SensIDA includes all of the numerical methods contained in IDA: backward differen-
tiation formulas (BDF) for time integration: Newton/direct methods or an Inexact New-
ton/IKrvlov method for solving the nonlincar svstems: preconditioning modules for Kryvlov
subspace wethods such as GMRES [13]. The linear solver and preconditioning modules al-
low for other direct methods. Krvlov methods. and user-supplied preconditioners to be easily
included. SensIDA also retains the use of matrix-free methods [2] for approximating pre-
conditioned matrix-vector products. This approach obtains matrix-vector products within
GMRES without explicitly computing or storing the linear svstem matrix.  The parallel
version of SensIDA includes only the Krvlov method GMRES for solving lincar systems.
SensIDA was developed and tested on a cluster of Sun-SPARC workstations.

The remainder of this document 1s organized as follows: Section 2 sets the mathematical
notation and summarizes the basic approach to sensitivity analvsis. Section 3 summarizes
the organization of the SensIDA solver, while Section 4 summarizes its usage. Section 5
deseribes three example problems. Finally, Section 6 discusses the availability of SensIDA.

2. Mathematical Considerations. In many large-scale computational simulations.
the governing equations can often be spatially discretized and then numerically solved as a
svstem of DAEs. Typically, these equations contain parameter values (for example. reaction
rates and problem coefficents) that are not precisely known. In addition to numerically
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solving the DAEs. it may be desirable to determine the sensitivity of the results with respect
to the model parameters. Such sensitivity information is useful because it indicates which
parameters are most influential in affecting the behavior of the simulation.

SensIDA is a variant of IDA that computes the first-order sensitivity of the DAE solution
with respect to some or all of its model parameters. When computing sensitivities n this
context. one is interested in solving the DAE initial value problem

(1) F(t.y.y'.p) =0

where ¢y, ¢ and F are vectors in RY. p is a vector of parameters in R, and f is the
independent variable. The first-order sensitivities are defined as

Ay(t.p)
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and the sensitivity equations are obtained by differentiating (1) with respect to each param-
cter p;:
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If p; is a nonzero constant. equations for the scaled sensitivities
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¢an be obtained by multiplving each equation (2) by p;:
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This scaling is done in order to obtain vectors w; with the same physical units as the com-
ponents in y.

SensIDA carries out the time integration of the combined system (1) and (4) by viewing
it as a DAE svstem of size N + 1). By defining

y(t) F(t.y.y'.p)
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the combined DAE svstem is simply
(5) F(t.Y.Y'.p)=0
and the initial conditions

Y(te) = Yolp).  Y'(ho) =Y5(p)



st be consistent so that they satisfy (3). Given initial guesses for Y (#9) and Y'(t),
SensIDA inchudes a routine that computes consistent initial conditions for certain classes of
DAE problems [4].

SensIDA nses backward differentiation formulas (BDFs) of order 1 through 5 to integrate
the svstem (5). The first-order case is the backward Euler method. and in that case this
approach vields the nonlinear system
Yn+| - )n

h

where = t,,, — t, is the current stepsize. Due to the form of F. the Jacobian matrix
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Higher-order BDFs also vield Jacobian matrices 9G/0Y with this same lower block trian-
gular structure and with identical block-diagonal entries. J. The only difference is that the
cocficient 1/h becomes ag/h. where ag is a coefficient in the BDF. SensIDA solves the non-
linear svstems G(Y;, 1) = 0 by using the simultancous corrector method [12]. a technigue in
which the Newton iteration uses the block-diagonal portion of 0G/9Y as the linear systemn
matrix. This results in a deconpling that allows J to be used repeatedly in solving the
(m + 1) linear systems that arise: one linear system for the Newton correction to the state
variables y. and m linear systems for the corrections to the m scaled sensitivity vectors w;.
Because all of the Jacobian matrices are identical, the latter svstems are solved using the
same preconditioner and/or linear svstem solver that were specified for the original DAE
problem (1).

The integrator conputes an estimate E, of the Jocal error at each time step. and strives
to satisfv the inequality

(T) HE"“rms.H' <l.

Here the weighted root-mean-square (rms) norm is defined by
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where E,; denotes the ith component of £, and the ith component of the weight vector 1s
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This permits an arbitrary combination of relative and absolute error control.  The user-
specified relative error tolerance is the scalan RTOL; the user-specified absolute error tolerance
is ATOL, which mav be a scalar or a vector. The value for RTOL indicates the number of
digits of relative accuracy for a single time step. The specified value for ATOL; indicates the
values of the corresponding component of the solution vector which may be thought of as
being zero, or at the noise level. In particular. if we set ATOL; = RTOL X FLOOR; then FLOOR,
represents the floor value for the /th component of the solution. The magnitude of FLOOR; is
the value for which there is a crossover from relative error control to absolute error control.
In the case of vector absolute tolerances. a tvpical default for the scaled sensitivity vectors
is to use the same ATOL as for the state variables y. Since the tolerances define the allowed
error per step, they should be chosen conservatively. Experience indicates that a conservative
choice vields a more economical solution than error tolerances that are too large.

For estimating the scaled sensitivity residual (4). SensIDA has an option that applies
centered differences separately:

(10) Eu‘- N UF( v F(toy+0,w. y + 0,0, p) — F(toy — 0w,y — 6w, p)
dy oy 29,

and
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As is typical for finite differences. the proper choice of perturbations d, and 9; is a delicate
matter. SensIDA uses a choice that takes into account several problem-related features:
namely, the relative DAE error tolerance RTOL. the machine unit roundoff €,,,¢nine. and the
weighted root-mean-square norm of the scaled sensitivity w;. We then define

|
max(1/4;.

(12) o, = \/nmx(R,'I‘()L.6,,““.,,“,(.) and 9, =
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The norm for |Jw;] uses the RTOL and ATOL; associated with the state variables y. The
terms €,cnine and 1/0; are included as divide-by-zero safeguards in case RTOL = 0 or ||| =
0. Roughly speaking (i.e.. if the safeguard terms arve ignored), d; gives a /RTOL relative
perturbation to parameter /. and 0, gives a unit weighted rms norm perturbation to y. Of
course, the main drawback of this approach is that it requires four evaluations of F(t. y. 4. p).

Another centered differences technique for estimating the scaled sensitivity residuals uses

Fltoy+ow.y +owl.p+op,e;)— F(t.y— dw;.y —dwl p—dp,e;)

(13) 5

in which
d = min(9d;.d,).

If 0, = d,. a Tavlor series analysis shows that the sum of (10) (11) and (13) are equivalent
to within ((8%). The latter approach. however. is half as costly since it only requires two
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evaluations of F(¢. y.y'.p). To take advantage of this savings, it may also be desirable to
use (13) when 9; = 4,. SensIDA accommodates this possibility by allowing the user to specify
a threshold parameter pp.e. In particular. if &, and 9, are within a factor of |p.c| of cach
other, then (13) is used to estimate the scaled sensitivity residuals. Otherwise, the sum of
(10) (11) is used since §; and o, differ by a relatively large amount and the use of separate
perturbations is prudent.

These procedures for choosing the perturbations (0. 6,. ) and switching (pax) between
centered difference formulas have also been implemented for fivst-order, forward difference
formulas as well. In the latter case. forward differences can be applied separately or the
single forward difference

dF aF OF  F(t.y+dw,. ¢y +dwh,p+op,e;)— F(t.y. y.p)

14 =y P &
() dy oy o, 3

can be used. In SensIDA, the default value of p.c = 0 indicates the use of the centered
difference (13) exclusivelv. Otherwise, the magnitude of p. and its sign (positive or neg-
ative) indicates whether this switching is done with regard to (centered or forward) finite
differences. respectively.

In contrast to the above notation used in describing the mathematical details, the sec-
tions that follow use new variable names in explaining the organization, usage. and example
programs of SensIDA. For convenient reference. we define these names as follows:

e res is the name of the user-supplied function that computes the DAE residual
F(t.y.y'.p).
Ny is the number of DAEs contained in res (= .V above)
Ns is the munber of sensitivity vectors w; to be computed (= m above)
Np is the number of parameters contained in p (> Ns)
Ntotal is the total number of DAEs to be solved by SensIDA (= (1+Ns)Ny)
yy i1s the vector of length Ntotal that contains the Ny differential and algebraic
variables and Ns scaled sensitivity vectors w;

e rhomax is the finite difference threshold parameter py..
For estimating the residual of the scaled sensitivity equations (4). the values and
meanings for rhomax are as follows:

¢ rhomax = 0: Use the centered difference (13).

¢ 0 < rhomax < 1: Use the sum of the centered differences (10) and (11).

o rhomax >= 1: Ifd, and o, are within a factor of rhomax of cach other, then (13)
is used. Otherwise. the sum of the centered differences (10) and (11) is used.

¢ -1 < rhomax < 0: Use the sum of (10) and (11). with forward differences
instead of centered differences.

o rhomax <= -1: If 3, and ¢; are within a factor of |rhomax| of each other, then
use (L), Otherwise. use the sum of (10) and (11) with forward differences
mstead of centered differences.

Lastly. SensIDA provides a wav to compute the sensitivities of y with respect to a certain
subset of the Np parameters. For instructions on specifving which Ns parameters are to be
studied. see the deseription of plist in the next section.
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3. Code Organization. One way to visualize SensIDA is to think of the code as being
organized in lavers, as partially shown in Fig. 1. The user’s main program resides at the top
level. The main program creates the required data structures, makes various initializations,
defines the DAE residual res. defines the preconditioner setup and solve routines (if any).
and makes calls to various modules at the second level. The main program also manages
input /output.

At the second level, the SENSIDA module contains several routines that can be called
by the user: SensIDAMalloc, for memory allocation and basic initializations related to
sensitivity analvsis: SensIDAFree. for memory deallocation: and SensSetVecAtol. for the
vector case of setting absolute error tolerances for sensitivities. The SENSIDA routine RESDQ is
called by the IDA module. RESDQ is responsible for computing the DAE residual by calling the
user’s res routine to evaluate F(f, y, y'. p) and for using various finite difference formulas to
estimate the DAE scaled sensitivity residuals. By design, the SENSIDA module is independent
of the choice of linear solver method used within the Newton iteration.

At the third level are the modules for the linear svstem solver, which at present ave:
SensIDASPGMR, SensIDABAND. SensIDADENSE. Each of these provides an interface to a cor-
responding generic solver for linear svstems by a SPGMR. banded, or dense algorithm. In
each case. the linecar solver is called to solve the (1+Ns) lincar systems of size Ny, The
SPGMR method consists of the modules SPGMR and ITERATIV. SensIDASPGMR also accesses
the user-supplied preconditioner solver routine. if specified, and possibly a user-supplied rou-
tine that computes and preprocesses the preconditioner by wav of the Jacobian matrix or an
approximation to it. The direct method modules. SensIDABAND and SensIDADENSE. access
the user’s Jacobian routine jac if one is supplied.

Finallv, at the second level. the routine IDASolve within the IDA module is used to man-
age the time integration. IDASolve makes calls to SENSIDA to evaluate the scaled sensitivity
residuals, and calls the linear solver module SensIDADENSE. SensIDABAND. or SensIDASPGMR
to solve the linear svstems that arise at cach Newton iteration.

The following modules reside below the levels just described. The LLNLTYPS module
defines types real. integer. and boole (boolean). and facilitates chauging the precision of
the arithmetic in the package from double to single. or the reverse. The LLNLMATH module
specifies power functions and provides a function to compute the machine unit roundoff.
Finally. we now describe the NVECTOR module.

In creating SensIDA from [DAL we developed a seusitivity version of the NVECTOR module.
A revised NVECTOR module is needed because the overall DAE svstem has length Ntotal.
but it consists of [+Ns DAE subsvstems of length Ny: namely, the original nonlinear DAE
svstem (1) and Ns scaled sensitivity residuals (4). Several steps are involved in partitioning
and distributing the subsystems in a multiprocessor environment. First, each processor is
responsible for solving a contignous portion of cach subsvsten. of length Nlocal. Note that
Nlocal need not be the same for cach processor: however. the sum of all the Nlocal values
must be Ny, Furthermore. the 1+Ns subsystems of size Ny are identically partitioned among
the processors. This implementation is handled through the revised NVECTOR module and its
use of abstract data tvpes: type machEnvType. for the machine environment data block (e.g..
Nlocal): and type N_Vector. a data structure for the partitioned and distnibuted vectors
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User Program

main(...), res(..). jact). precond(l). psolve()

-~

‘ SENSIDA IDA 1

L sensidach. sensida.c L ida.h, ida.c ‘

J
( SensIDADENSE 1 ( SensIDABAND W ( SensIDASPGMR i
sensidadense h, sensidadense.¢ sensidaband.h, sensidaband.c sensidaspgmr h, sensidaspgmr ¢ \\\
idadense.h idaband.h idaspgmr.h N
\\
DENSE BAND SPGMR IDABBDPRE
dense.h, dense.c hand.h. band.c spgmr.h. spgmr.c iabhdpre.h. idabbdpre.
ITERATIV
iterativ.h, tterativ.e

NVECTOR

nvector h, navector.e

LLNLTYPS

linltyps.h

LLNLMATH

lInlmath.h. lInlmath.c

Fia. 1. Overall structure of the SensIDA package. Modules comprising the central solver are distin-
quished by rounded boxes. while the user program. linear solver. and wuxiliary modules arve wn unrounded
boxes.



jnust described. To achieve parallelism for any vector operation, each processor performs
the operation on its assigned portions of the input vectors, followed by a global reduction
where needed. In this wayv, vector calculations can be performed simultancously with each
processor working on its own block-portions of the vector.

The parallel version of SensIDA uses MPT (Message Passing Interface [8)) for all inter-
processor communication. This achieves a high degree of portability, since MPI is becoming
widely accepted as a standard for message passing software. For a different parallel comput-
ing environment. some rewriting of the vector module could allow the use of other specific
machine-dependent instructions.

4. Using SensIDA. This section describes the use of SensIDA. We begin with a brief
overview, in the form of a skeleton user program for parallel applications. Following that
are detailed descriptions of the interface to the various user-callable routines, and of the
user-supplied routines. We also describe a preconditioner module that is part of the IDA
package. Finally, there are comments on usage nnder C++.

4.1. Overview of Usage. The following is a skeleton of the user’s main program (or
calling program) as an application of SensIDA on a parallel machine. The user program is
to have these steps in the order indicated. In the serial case, Steps 3. 5, 17, and 18 can be
omitted. For the sake of brevity, we defer many of the details to the later subsections. or to
the IDA user document [9].

l. #include header files needed, to obtain various tvpe definitions. enumerations.
macros. ete. The files include 11nltyps.h. 11nlmath.h, ida.h. nvector.h. mpi.h:
one or more of the files idadense .h. idaband.h. idaspgmr.h. idabbdpre.h associ-
ated with the choice of preconditioner and/or linear svstem solvers: and sensida.h.
Also. the calling program must set the integer variables Ny, Np, Ns and Ntotal.

2. The calling program must define a pointer to a user-defined data block that is passed
to the user’s res rontine. This data block must include a real pointer (for example,
p) that points to the array of real parameters used by res to evaluate F(t. y. ' p).
For example. if the pointer to the data block has the form
typedef struct {..., real *p} *rdata. then rdata->p = p must point to the
real array in which pli-1]1 = p;, for i=1,...,Np.

3. MPI_Init(&argc, &argv) to initialize NMPL if used by the nser’s program. Here
argc and argv are the command line argument counter and array received by main.

4. Set Nlocal = the local vector length for this processor. and Ny = the global vector

length for this processor. Note that Ny is the sum of all values of Nlocal.

5. machEnv = PVecInitMPI(comm, Nlocal, Ny, &argc, &argv) followed by
if (machEnv == NULL) return(1). to initialize the NVECTOR module. Here comm is
the MPL communicator. which may he set by suitable MNP calls, for a proper subset
of the active processors. or else set to either NULL or MPT_COMM_WORLD to specify that
all processors are to he used.

6. The calling program must declare a real pointer (e.g., pbar) and set an array of
real values pbar[i] that are used to scale the Ns sensitivity vectors w;.  Each
pbar [i] must be sct to a nonzero constant that is dimensionally consistent with
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=1

10.

11.

13.

plil. Typically. pbar[iJ=p[i] whenever p[i] is nonzero.

The pointer plist must be set to NULL or point to an array of integers. For the latter,
this array can be allocated using plist = (int *) malloc(Ns * sizeof(int)).
For the default setting plist = NULL. yysub[i] contains the scaled sensitivity of
¢ with respect to p;. Otherwise. the user must set the integers in plist to indicate
which of the Ns sensitivity vectors are to be computed. Namely, yysub[i] will
contain the scaled sensitivity of y with respect to pj, where j=plist[i-1] and
i=1,...,Ns.

Create and set N_-Vector yy and N_Vector yp to initial values for ¥ and Y. respec-
tively. Depending on user options. also create the vector id of differential/algebraie
component Hags and/or the vector constraints of inequality constraint flags. If an
existing data array ydata contains the initial values of yy, then call

yy = SensN_VMAKE(Ntotal, ydata, machEnv). Otherwise, make the call

yy = N_VNew(Ntotal, machEnv) and load initial values into the array of size Ntotal
defined by N_VDATA (yy).

Conceptually. yy consists of (14Ns) vectors of length Ny, If yy was created with
N_VNew. then load the Ny initial values with N_.VDATA(yy) = ydata where ydata is a
data array of size Ny. To load the /th sensitivity vector. use yysub = N VSUB(yy);
N_VDATA(yysub[i]) = wdata. where wdata is an existing data array of length Ny.
Note that yysub[0] is a pointer to the N Vector of state variables y, and that
yysub[i] is a pointer to the N_.Vector for the /th scaled sensitivity veetor w;. Like-
wise. set yp to 7.

I[f needed. several commands are available for identifving the components of the Ns
sensitivity vectors as differential or algebraic variables, for initializing the sensitivity
vectors to zero. and for setting the absolute error tolerances in the case of vector
tolerances. To identify cach component of the Ns sensitivity vectors as a differential
or algebraic variable. use SensSetId(id, Ns). where the vector id is the differen-
tial/algebraic components flag used for yy in Step 7. The Ns sensitivity vectors can
be initialized to zero using SensInitZero(yy, Ns). Finally, for the case of vector
tolerances for absolute error control, a tyvpical default is to use the same atol as for
the state variables y. Use SensSetVecAtol(atol, Ns) to do this. Then. alter the
resulting vector elements if desired.

ida_mem = SensIDAMalloc(...) allocates internal memory for IDA. initializes
IDA. and returns a pointer to the IDA memory structure. (See details below.)
Specify the linear svstem solver to be used by making one of the calls:

flag = SensIDADense(...) or flag = SensIDABand(...) or

flag = SensIDASpgmr(...) followed by a test if (flag !'= 0) return(1).

. Optionallv. correct the initial values in yy, yp with the call

flag = IDACalcIC(idamem, icopt, ...):if (flag '= 0) return(1).

iflag = IDASolve(ida.mem, tout, yy, &t, itask) for cach point t = tout at
which output is desired. Set itask to NORMAL to have the integrator overshoot tout
and interpolate. or ONE_STEP to take a single step and return. Alternatively. set
itask = ONE_STEP to take one step forward and return. Also. test for the condition
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flag < 0 to detect a failure. Following the call, process the vectors yy and yp.
the computed solution Y and Y at t = tt. The unscaled sensitivity vector s_i 1s
obtained by multiplving yysub[i] by the reciprocal of pbar[i]. To do this, call
N_VScale(1.0/pbar[i], yysubli], s_i).

1. SensIDAFree(ida_mem) to free the memory allocated for IDA.

15. The memory that was created for the vector yy in Step 7 must be deallocated:
call N_VFree(yy) if yy was allocated by yy = N_.VNew(...). or the user must call
SensN_VDISPOSE(Ntotal, yy) if yy was allocated by yy = SensN_VMAKE(...).

16. Before freeing the pointer to the user-defined data block rdata, release the ar-
ravs containing the scale factors pbar and the real parameters p: free(pbar) ;
free(rdata->p); free(rdata).

17. PVecFreeMPI(machEnv) to free machine-dependent data.

18. MPI_Finalize();

As indicated above. error conditions are possible at many of the steps, and are fHagged
by nonzero return values. In addition, error messages are issued in most cases.

The form of the c¢all to SensIDAMalloc is

ida_mem = SensIDAMalloc(Ny, Ns, Ntotal, res, rdata, tO, yO, ypO,
itol, rtol, atol, id, constraints, errfp, optln,
iopt[], roptl], machEnv, pl], pbar[], plist, rhomax);

Except for a few additions. the arguments in SensIDAMalloc are the same as for the IDA
routine IDAMalloc: the integer variables (Ny. Ns. Ntotal). the real pointers (p, pbar). and
the integer pointer plist are described above: and the real variable rhomax is the finite
difference threshold parameter (pha.): see the description relating (13) to (14) in §2. res is
the C function to compute F(f. y. 4. p). rdata is a pointer to the user-defined data block
passed directly to the user’'s res function. t0 is the initial value of £, yO is the vector of
length Ntotal containing the initial values of ¥ (which can be the same as the vector yy
described above). and yp0 is the vector of length Ntotal containing the initial value for the
derivative Y. The next three parameters are used to set the error control. The flag itol
is replaced by either SS or SV. where SS indicates scalar relative error tolerance and scalar
absolute error tolerance. while SV indicates scalar relative error tolerance and vector absolute
error tolerance. The latter choice is important when the absolute error tolerance needs to
be different for cach component of the DAE. The arguments &rtol and atol are pointers
to the user’s error tolerances. id is an N Vector. required conditionally, which states a
given element to be either algebraic or differential. constraints is an N_Vector defining
inequality constraints for cach component of the vector Y. The file pointer errfp points to
the file where error messages from SensIDA are to be written (NULL for stdout). If optIn is
replaced by FALSE. then the user is not going to provide optional input. while if it is TRUE
then optional inputs are examined in iopt and ropt. iopt and ropt are integer and real
arrayvs for optional input and output. machEnv is a pointer to machine environment-specific
information. Full details for the arguments common to IDAMalloc can be found in [9].

4.2. User-Supplied Functions. The user-supplied routines consist of one function
defining the DAE residual. and (optionally) one or two functions that define the precondi-
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tioner for use in the SPGMR algorithm. All of the specifications are the same as when using
IDA. as documented in [9]. However. recall that Ny refers to the munber of DAEs contained
in res, and the user-supplied data structure rdata contains a pointer (for example, p) that
points to the arrav of real parameters used in res.

The function F(t, y, 4. p) defining the DAE system must be supplied by the user in the
form of a C' function, denoted res in the Overview of Usage.

int res(integer Ny, real tres, N_Vector yy, N_Vector yp,
N_Vector resval, void *rdata)
This function takes as input the problem size Ny. the independent variable value tres. the
dependent variable vector yy. and the derivative (with respect to t) of the yy vector, yp.
The compnted value of F(t. y,y'. p) is stored in resval.

If preconditioning is used, then the user must provide a C function to solve the linear
svstem PPz = p where P is a left preconditioner matrix. Preconditioning is an important
part of using IDA with the SPGMR solver (or any Kryvlov solver). In any nontrivial DAE
problem. it is usually essential to provide a preconditioner of some sort. This is primarily
becanse the Krvlov iteration convergence test is based on the preconditioned residual vector.
Withont preconditioning. this test ¢can be a very poor measure of convergence.

I supplving a preconditioner. the user must supply a C routine PSolve of the following
form:

int PSolve(integer Ny, real tt, N_Vector yy, N_Vector yp,

N_Vector rr, real cj, ResFn res, void *rdata, void *pdata,

N_Vector ewt, real delta, N_Vector rvec, N_Vector zvec,

long int *nrePtr, N_Vector tempv)
[ts input includes tt. the current value of the independent variable: yy. the current value of
the dependent variable vector y of length Ny: yp. the current value of the derivative vector
y': rr. the crrent vector of the residual vector F(t y.y' p): ¢j. the scalar in the svstem
Jacobian. proportional to 1/k: res. the residual function for the DAE problem: rdata. a
pointer to user data to be passed to res: pdata. a pointer to user preconditioner data.
Further input parameters arve ewt. the input error weight vector: delta. an input tolerance
if Psolve is to use an iterative method: rvec. the input right-hand side vector r in the linear
svstem: zvec. the computed solution vector z: nrePtr. a pointer to the memory location
containing the IDA problem data nre (the number of calls to res): tempv. a pointer to a
memory location for temporary storage. The integer returned value s to be negative if the
Psolve function failed with an nonrecoverable error. 0 if Psolve was successful. or positive
if there was a recoverable ervor.

If the user’s preconditioner requires that any Jacobian related data be evaluated or
preprocessed. then this needs to be done in the optional user-supplied C' function Precond.
The Precond function has the form:

int Precond(integer Ny, real tt, N_Vector yy, N_Vector yp,
N_Vector rr, real c¢j, ResFn res, void *rdata, void *pdata,
N_Vector ewt, N_Vector constraints, real hh, real uround,
long int *nrePtr, N_Vector tempvl, N_Vector tempv2,
N_Vector tempv3)



The arguments which have not been discussed previously are the following: constraints,
the constraints vector: hh, a tentative step size in t: uround, is the machine unit roundoft;
tempvl, tempv2. tempv3 are temporary N_vectors available for workspace. The current
stepsize hh and unit ronndoff uround are supplied for possible use in difference quotient
calculations.

4.3. Band-Block-Diagonal Preconditioner Module. SensIDA has the same IBBDPRE
preconditioner module that is included in IDA. This preconditioner was developed to treat a
rather broad class of problemns based on solving partial differential equations (PDEs) using
a method of ines approach. The modules generate a preconditioner that is a block-diagonal
matrix, and each block contains a band matrix. The blocks need not have the saune number
of super- and sub-diagonals; these mumbers may vary from block to block. The IDA user’s
guide [9] gives a complete description of this preconditioning technique. The basic idea is
to isolate the preconditioning so that it is local to each processor, and also to use a (possi-
blv cheaper) approximate residual function. This reguires the definition of a new funection
G(t,y. 4. p) which approximates the function F(f. y. ¢'. p) as given in (1). The choice G = F
is certainly allowed. but a less expensive choice may be just as effective for preconditioning.

To use this IBBDPRE module with SensIDA, the user mmst supply two functions which
the module calls to construct the preconditioner matrix 7. These are in addition to the
user-supplied residual function res.

e A function glocal(tt, yy, yp, gg, rdata) must be supplied by the user to com-
pute Gt y. 4 p). It loads the vector gg as a function of tt. yy, yp and the param-
eters p contained in rdata. Although yy. yp. and gg are all of tvpe N_Vector, only
the local segment of each. of length Nlocal. is to he accessed in the rontine glocal.

e A function gcomm(yy, yp, rdata) which must be supplied to perform all inter-
processor communications necessary for the execution of the glocal function.

Both functions take as input the same pointer rdata as that passed by the user to
SensIDAMalloc and passed to the user’s function res. Both are to return an int equal
to 0 (indicating success). or else 1 or -1 (indicating recoverable or non-recoverable failure.
respectivelv). just as for res. The user is responsible for providing space (presumably within
*rdata) for data that are communicated by gcomm from the other processors, and that are
then used by glocal. The function glocal is not expected to do any communication.

The usage of the IBBDPRE module requires: (a) a call to IBBDAlloc to supply required
parameters: and (b) passing specific names for the preconditioning routines in the call to
SensIDASpgmr. Sce [9] for details.

4.4. Use by a C++ Application. SensIDA is written in a manner that permits it
to be used by applications written in C4+4 as well as in C. For this purpose. cach SensIDA
header file is wrapped with conditionally compiled lines reading extern "C" {...}. condi-
tional on the variable __cplusplus being defined. This directive canses the C++ compiler
to use C-styvle names when compiling the function prototyvpes encounteved. Users with C++
applications should also be aware that we have defined. in 11nltyps.h. a boolean variable
tvpe. boole. since (U has no such type. The type boole is cquated to type int. and so
arguments in user calls. or calls to user-supplied routines. which are of tvpe boole can be
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tvped as either boole or int by the user. The same applies to vector kernels which have a
tvpe boole return value, if the user is providing these kernels. The name boole was chosen
to avoid a conflict with the C++ type bool.

5. Example Problems. The SensIDA package includes eight sensitivity analysis ex-
ample programs. These are based on three DAE system problems, two of which are solved
in several different wavs. The last of those two. a food web problem, i1s the most difficult
and most realistic. Collectively, the examples are intended to illustrate the usage of both
the serial and parallel versions of SensIDA. the usage of all three linear svstem modules.
the use of the IDACale routine for obtaining consistent initial conditions, and the use of the
IDABBDPRE preconditioner module. In the following. we present the three DAE problems
and describe how each is solved with SensIDA.

5.1. Robertson Kinetics Problem. This example, due to Robertson, is a model of
a three-species chemical kineties svstem written in DAE form.  Differential equations are
given for species y' and y? while an algebraic equation determines y*. The equations for the
svstem concentrations y' () are:

dy'Jdt = —pyry' + pay?’y’
(15) dy?Jdt = pry' — poy?y® — pa(y?)?
O=y' +y*+y* -1

The initial values are: y' = 1. ¢? = 0. and y* = 0. The parameter values are: p; = 0.0-4
py = 10" and py = 3 x 107, This example computes the three concentration compounents on
the interval from ¢ = 0 through 4 x 10'Y.

This problem was solved only in one serial case using the simplest linear solver module,
[DADENSE. It illustrates the application of IDADENSE. with a user-supplied Jacobian
function. for those problems to which a dense solver is applicable.

The code and corresponding output can be found as sensrobx. c and sensrobx.output
i the distributed package.

5.2. Heat Equation Problem. This example solves a discretized 2D heat PDE prob-
lem. The DAE svstem arises from the Dirichlet boundary condition « = 0. along with the
differential equations arising from the discretization of the interior of the region.

The equations solved are:

Qufot = pyu,, + pauy,, (interior)
u = Q. (boundary).

(16)

[nitial conditions are given by v = 16.0(1 — r)y(l — y). where the spatial domain is the unit
square 0 < .y < 1. The parameter values are pp = 1.0, p, = 1.0, and the time interval is
0 <t <1024

We discretize this PDE svstem (16) (plus boundary conditions) with central differencing
on a 10 x 10 mesh. so as to obtain a DAE svstem of size NV = 100. The dependent variable
vecetor u consists of the values v/ (). ge. 1) grouped first by roand then by g At cach spatial
boundary point. the boundary condition is coupled algebraically into the adjacent interior
points by the central differencing scheme,
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We solved this problem in four different wavs. with the following example programs:

1. sensheatsb: serial version of SensIDA. band linear solver. The half-bandwidths
are 10.

2. sensheatsk: serial version of SensIDA. Krvlov (GMRES) lincar solver with a user-
supplied preconditioner. As a preconditioner, we use the diagonal elements of the
matrix .J.

3. sensheatpk: parallel version of SensIDA. Krvlov (SPGMR) linear solver with a
user-supplied preconditioner. We nuse a 5 x5 subgrid on each of four processors. For
the preconditioner. we again use the diagonal elements of the matrix .J.

4. sensheatbbd: parallel version of SensIDA. Krvlov (SPGMR) linear solver with
IDABBDPRE preconditioner moditle. We use a5 x 5 subgrid on cach of 4 processors.
We use half-hbandwidths mudg = mldq = 5 on each processor for the difference quo-
tient scheme. but keep only a tridiagonal matrix (mu = ml1 = 1).

The source program for all four cases. along with the corresponding output files are
available in the distributed package. Thev are not included in this document.
In the Appendix. we give the source and output of the sensheatpk program.

5.3. Food Web Problem. This example is a model of a multi-species food web [1], in
which predator-prev relationships with diffusion in a 2D spatial domain are simulated. Here
we consider a model with s = 2p species: p predators and p prev. Species 1., .., p (the prev)
satisfv rate equations. while species p 4+ 1o s (the predators) have infimtely fast reaction
rates. The coupled PDEs for the species concentrations ¢ (. y. t) are:

(17) J )t = Ri(r y.o) + di(¢!, + r"’,'m) (r=1.2..... ).
0= Ri(r.y.c)+di(c', + ('j/”) (l=p+1..... 5)
with

&5
Ri{r oy )=+ Z ).
i1
Here ¢ denotes the vector {¢'}. The interaction and diffusion coefficients (a;;. 0. d;) can be
functions of (r.y) in general. The choices made for this test problem are as follows, and
include 2 parameters in the term b

a;; = —1 (all )
a;=-05-10°% (i <p.j>p)
a; =10" (i > p.j < p)

(all other a,; = 0) .

b, =0,(r.y) =V + prry+ posin(dor)sin(dry)) (1 < p)
by =bi(r.y) = —(1 + prry + pasin(dor)sin(Hry)) (> p) .

and
{ di =1 (i < p)

d, =05 (i >p).
11



The spatial domain is the unit square 0 < r,y < 1, and the time interval is 0 <t < 1.
The parameters values are: p, = 50. p, = 1000. The boundary conditions are of Neumann
tyvpe (zero normal derivatives) evervwhere. The coefficients are such that a unique stable
equilibrium is guaranteed to exist when pp = p, = 0. Empiricallv, a stable equilibrinm
appears to exist for (17) when p; and p, are positive. although it mayv not be unique. For the
initial conditions, we set cach preyv concentration to a simple polvnomial profile satisfving
the boundary conditions. while the predator concentrations are all set to a Hat value:

ey 0) = 10+ {160 (1 — y(l — ]2 (< p) .
Aoy 0) = 10> (1 > p) .

We discretize this PDE svstem (17) (plus boundary conditions) with central differencing
on an L x L mesh, so as to obtain a DAE system of size N = sL?. The dependent variable
vector ' consists of the values ¢ (. gy, 1) grouped first by species index i, then by ., and
lastly by y. At ecach spatial mesh point. the svstem has a block of p ODE’s followed by a
block of p algebraic equations. all coupled. For this example. we take p = 1.5 = 2. and
L = 20. Sce also [4]. where various cases of this problem are solved with DASPIK.

This problem was solved in three different wavs, with the following three example pro-
2ras:

1. senswebsb: serial version of SensIDAL band linear solver. The half-bandwidths ave
mu = ml = sL = 40.

2. senswebpk: parallel version of SensIDAL Krvlov (SPGMR) linear solver with a user-
supplied preconditioner. We use a Lsub x Lsab subgrid. with Lsub = 10. on each
of four processors. For the preconditioner. we take the block-diagonal matrix with
2 x 2 blocks arising from the reaction coeflicients 97, /de only.

3. senswebbbd: parallel version of SensIDA. Krvlov (SPGMR) linear solver with
IDABBDPRE preconditioner module. We use half-bandwidths mudq = mldq = sLsub =
20 for the difference quotient schieme. but retain only a matrix with bandwidth 5 by
setting mu = ml = 2.

It all three cases. the flat predator initial values are not consistent with the quasi-steady
ecquations for the predator species. and so we call IDACalcIC to correct those values. In
the two parallel programs. we use a logically square array of processors and corresponding
Cartesian subdomain decomposition.

6. Availability. The SensIDA package is being released for general distribution at
this time. Interested users should contact Steven Lee (sleeallnl.gov ) or Alan Hindmarsh
(alanh allul.gov).

REFERENCES

[1] Peter N. Brown. Decay to Uniform States in Food Webs, SLAN . Appl. Math.. 16 (1986). pp. 376 392.

[2] Peter N Brown and Alan C. Hindmarsh. Reduced Storage Matric Methods in Stiff ODE Systens, ).
Appl. Math. & Comp.. 31 (1989). pp. -10-91.

[3] Peter N. Brown. Alan C. Hindmarsh. and Linda R. Petzold. Using Krylov Methods in the Solution of
Large-Scale Differential- Allgebraic Systems. STANL Y. Scil Comput.. 15 (1990, pp. LIGT 18R,

15



Peter N. Brown, Alan C. Hindmarsh. and Linda R. Petzold. Consistent Initial Condition Calculation
for Differential- Algebraic Systems, SIAN J. Sci. Comput., 19 (1998), pp. 1495 1512.

George D. Byvrne and Alan C. Hindmarsh, User Documentation for PVODE, an ODE Solver for Parallel
Computers, Lawrence Livermore National Laboratory report UCRL-ID-130884, May 1998. See also
the Addenda in the doc subdirectory of the current version of PVODE.

Scott D. Cohen and Alan C. Hindmarsh, CVODE User Guide, Lawrence Livermore National Labora-
tory report UCRL-MA-118618. Sept. 1994,

Scott D. Cohen and Alan C. Hindmarsh, CVODE. a Stiff/Nounstiff ODE Solver in C, Computers in
Physics. 10, No. 2 (1996). pp. 138 143.

William Gropp, Ewing Lusk, and Anthony Skjellun, Using MPI Portable Parallel Programming with
the Message-Passing Interfoce. The MIT Press, Cambridge, MA, 1994,

Alan C. Hindmarsh and Allan G. Taylor, User Documentation for IDA, a Differentiol-Algebraic Equa-
tion Solver for Scquential and Parallel Computers. Lawrence Livermore National Laboratory report
UCRL-MA-136910, December 1999.

Steven L. Lee, Alan C. Hindmarsh, and Peter N. Brown, User Documentation for SensPVODE, a Vari-
ant of PVODE for Sensitivity Analysis, Lawrence Livermore National Laboratory report UCRL-
MA-140211, August 2000.

Shengtai Li and Linda R. Petzold, Software and Algorvithins for Sensitivity Analysis of Large-Scale
Differential Algebraic Systems, To appear J. Comp. Appl. Math.

Timothy Maly and Linda R. Petzold, Numerical Methods and Software for Sensitivity Analysis of
Differential-algebraic systems. Appl. Numer. Math., 20 (1996). pp. 57 79.

Yousef Saad and Martin Schualtz, GMRES: A Generalized Minimmal Residual Algorithin for Solving
Nonsymanetric Linear Systems. STANM J. Sci. Stat. Comput.. 11 (1990). 856-869.

16



7. Appendix: Listing of Heat Equation Example, with Sensitivity Analysis.
/] K3k ok ok ke o sk ok ok ok oK ok oK ok ok K o sk ok ok 3k ok ok ok oK ok 3 ok 3 o ok ok ok ok K ok sk o ok K sk R oK oK o ok K 3 ok 3 ok KOk K Kk ok Kk
* File: sensheatpk.c
* Written by: Steven L. Lee and Alan C. Hindmarsh

*

Sensitivity analysis version of Example problem for SensIDA:
2D heat equation, parallel, GMRES.

This example solves a discretized 2D heat equation problem.

The DAE system solved is a spatial discretization of the PDE
du/dt = pl*d~2u/dx”2 + p2*d~2u/dy"2

on the unit square, where pl = 1.0 and p2 = 1.0.

The boundary condition is u = 0 on all edges.

Initial conditions are given by u = 16 x (1 - x) y (1 - y).

The PDE is treated with central differences on a uniform MX x MY grid.
The values of u at the interior points satisfy ODEs, and equations

u = 0 at the boundaries are appended, to form a DAE system of size

N = MX * MY. Here MX = MY = 10.

The system 1s actually implemented on submeshes, processor by processor,
with an MXSUB by MYSUB mesh on each of NPEX * NPEY processors.

The system is solved with SensIDA using the Krylov linear solver IDASPGMR.
The preconditioner uses the diagonal elements of the Jacobian only.
Routines for preconditioning, required by IDASPGMR, are supplied here.

The constraints u >= 0 are posed for all components.

Local error testing on the boundary values is suppressed.

Output is taken at t = 0, .01, .02, .04, ., 10.24.

o R B R R S S R B T B RN S BT I I S . T R S SR R B R S

***********************************************************************/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "llnltyps.h"
#include "llnlmath.h"
#include “nvector.h"
#include "ida.h"



#include
#include
#include
#include

#define
#tdefine
#define

#tdefine

#tdefine
#tdefine

#define
#define

#define
#define

#define
#tdefine
#tdefine

typedef
real
intege
real
real
N_Vect
MPI_Co

} *UserD

"idaspgmr.h"
"iterativ.h"
"mpi.h"
"sensida.h"

ZERO RCONST(0.0)
ONE  RCONST(1.0)
TWO  RCONST(2.0)

NQUT 11
NPEX 2
NPEY 2
MXSUB 5
MYSUB 5
MX {NPEX*MXSUB)
MY {(NPEY*MYSUB)
NY {(MX*MY)
NP 2
NS 2
struct {
*p;

/ *

/*
/*
/*
/*
/*

/*
/*
/ *
/*
/*
/*

Number of output times */

No. PEs in x direction of PE
No. PEs in y direction of PE
Total no. PEs = NPEX*NPEY */
No. x points per subgrid */
No. y points per subgrid */

MX = number of x mesh points
MY = number of y mesh points
Spatial mesh is MX by MY */

number of equations */
number of parameters */
number of sensitivities */

array */
array */

*/
*/

r neq, thispe, mx, my, 1ixsub, jysub, npex, npey, mxsub, mysub;
dx, dy, coeffx, coeffy, coeffxy;
uext [ (MXSUB+2) * (MYSUB+2) ] ;

or pp; /* vector of diagonal preconditioner elements */
mm comm;
ata;

/* Prototypes of private helper functions */

static int InitUserData(integer Neq, integer thispe, integer npes,
MPI_Comm comm, UserData data);

static int SetInitialProfile(N_Vector uu, N_Vector up, N_Vector id,

N_Vector res, UserData data);



/* User-supplied residual function and supporting routines */

int heatres(integer Neq, real tres, N_Vector uu, N_Vector up,
N_Vector res, void *rdata);

static int rescomm(N_Vector uu, N_Vector up, void *rdata);

static int reslocal{real tres, N_Vector uu, N_Vector up,
N _Vector res, void *rdata);

static int BSend (MPI_Comm comm, integer thispe, integer ixsub, integer jysub,
integer dsizex, integer dsizey, real uarrayl(l);

static int BRecvPost(MPI_Comm comm, MPI_Request request[], integer thispe,
integer ixsub, integer jysub,
integer dsizex, integer dsizey,
real uext[l, real buffer([]);

static int BRecvWait (MPI_Request request[], integer ixsub, integer jysub,
integer dsizex, real uext[], real buffer[]);

/* User-supplied preconditioner routines */

int PSolveHeateq(integer local_N, real tt, N_Vector uu,
N_Vector up, N_Vector rr, real cj, ResFn res, void x*rdata,
void *pdata, N_Vector ewt, real delta, N_Vector rvec,
N_Vector zvec, long int *nrePtr, N_Vector tempv);

int PrecondHeateq(integer local_N, real tt, N_Vector yy,
N_Vector yp, N_Vector rr, real cj,
ResFn res, void *rdata, void *pdata,
N_Vector ewt, N_Vector constraints, real hh,
real uround, long int *nrePtr,
N_Vector tempvl, N_Vector tempv2, N_Vector tempv3);

main(int argc, char xargvll)

{

integer retval, i, j, iout, itol, itask, local N, npes, thispe;
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long int iopt[OPT_SIZE];

boole optln;

real ropt[OPT_SIZE], rtol, atol;
real tO, t1, tout, tret, umax;
void *mem;

UserData data;

N_Vector uu, up, constraints, id, res;
IDAMem idamem;

MPI_Comm comm;

machEnvType machEnv;

N_Vector *uusub, *upsub;
N_Vector *constraintssub;
integer Ntotal;

real *pbar;

real rhomax;

int *plist;

Ntotal = (1+NS)*NY;

/* Get processor number and total number of pe’s. */
MPI_Init(&argc, &argv);

comm = MPI_COMM_WORLD;

MPI_Comm_size(comm, &npes);

MPI_Comm_rank(comm, &thispe);

if (npes '= NPEX*NPEY) {
if (thispe == 0)
printf ("\n npes=%d is not equal to NPEX*NPEY=Yd\n", npes,NPEX*NPEY);
return(1l);

}

/* Set local length local_N. */
local_N = MXSUB*MYSUB;

/* Set machEnv block. */
machEnv = PVecInitMPI(comm, local_N, NY, &argc, &argv);
if (machEnv == NULL) return(1);

/* Allocate and initialize the data structure and N-vectors. */
data = (UserData) malloc(sizeof =*data);

/* Store nominal parameter values in p */
data->p = (real *) malloc(NP * sizeof(real)),
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data->p[0]
data->p[1]

non
I

/* Scaling factor for each sensitivity equation */
pbar = (real *) malloc(NP * sizeof(real));

pbar([0] = 1.0;

pbar([1] = 1.0;

/* Store ordering of parameters in plist */
plist = (int *) malloc(NP * sizeof(int));
plist[0] = 1;

plist[1] = 2;

rhomax = 0.0;

uu = N_VNew(Ntotal, machEnv);

up N_VNew(Ntotal, machEnv);

res = N_VNew(Ntotal, machEnv);
constraints = N_VNew(Ntotal, machEnv);
id = N_VNew(Ntotal, machEnv);

/* Create pointers to subvectors */
uusub = N_VSUB(uu) ;

upsub = N_VSUB(up);

constraintssub = N_VSUB(constraints);

data->pp = N_VNew(NY, machEnv); /* An N-vector to hold preconditioner. */
InitUserData(NY, thispe, npes, comm, data);

/* Initialize the uu, up, id, and res profiles. */
SetInitialProfile(uu, up, id, res, data);

/* Set constraints to all 1’s for nonnegative solution values in y. */
N_VConst(ONE, constraintssub[0]);

/* Initialize the sensitivity variables */
SensInitZero(uu, NS);

SensInitZero(up, NS);
SensInitZero{(constraints, NS);

/* Identify all sensitivity variables as differential variables */
SensSetId(id, NS);
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t0 = 0.0; t1 = 0.01;

/* Scalar relative and absolute tolerance. */

itol = SS;
rtol = 0.0;
atol = 1.e-3;

/* Set option to suppress error testing of algebraic components. */
optIn = TRUE;

for (i = 0; i < OPT_SIZE; i++) {iopt[i] = O; ropt[i] = ZERO; }

iopt [SUPPRESSALG] = 1;

/* Call SensIDAMalloc to initialize solution. (NULL argument is errfp.) x/
itask = NORMAL;

mem = SensIDAMalloc(NY, NS, Ntotal, heatres, data, tO, uu, up,
itol, &rtol, &atol, id, constraints, NULL, optln,
iopt, ropt, machEnv, data->p, pbar, plist, rhomax);
if (mem == NULL) {
if (thispe == 0) printf ("SensIDAMalloc failed.");
return(1); }
idamem = (IDAMem)mem;

/* Call SensIDASpgmr to specify the linear solver. */
retval = SensIDASpgmr (idamem, PrecondHeateq, PSolveHeateq, MODIFIED_GS,
0, 0, 0.0, 0.0, data);

if (retval != SUCCESS) A
if (thispe == 0) printf("SensIDASpgmr failed, returning %d.\n",retval);
return(l);

}

/* Call IDACalcIC (with default options) to correct the initial values. */
retval = IDACalcIC(idamem, CALC_YA_YDP_INIT, t1, ZERO, 0,0,0,0, ZERO);

if (retval '= SUCCESS) {
if (thispe == 0) printf("IDACalcIC failed. retval = %d\n", retval);
return(1);

}

/* Compute the max norm of uu. */
umax = N_VMaxNorm(uusub[0]);
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/* Print output heading (on processor 0 only). */

if (thispe == 0) {
printf ("sensheatpk: Heat equation, parallel example problem for SensIDA \n");

printf (" Discretized heat equation on 2D unit square. \n");
printf (" Zero boundary conditions,");

printf (" polynomial initial conditions.\n");

printf (" Mesh dimensions: %d x %d", MX, MY);

printf (" Total system size: %d\n\n", NY);

printf ("Subgrid dimensions: %d x %d", MXSUB, MYSUB) ;

printf (" Processor array: %d x %d\n", NPEX, NPEY);
printf ("Number of sensitivities: Ns = %d\n", N3);

printf ("Parameter values: p_1 = %9.2e, p-2 = %9.2e\n",
data->p[0], data->p[1]);

printf("Scale factors: pbar_1 = %9.2e, pbar_2 = %9.2e\n",
pbar [0], pbar[1]);

printf("Finite difference: rhomax = %g\n", rhomax);

printf("Tolerance parameters: rtol = J%g, atol = %g\n", rtol, atol);
printf("Constraints set to force all components of solution u >= 0. \n");
printf ("iopt [SUPPRESSALG] = 1 to suppress local error testing on");
printf(" all boundary components. \n");

printf("Linear solver: IDASPGMR ");

printf("Preconditioner: diagonal elements only.\n");

/* Print output table heading and initial line of table. */
printf("\n");

printf ("Output Summary: max(u) = max-norm of solution u \n");

printf (" max(s_i) = max-norm of sensitivity vector s_i\n\n");
printf (" time max (u) k nst nni nli nre h npe nps\n");
printf (" . . . . . . . . . . . . . . . . . . . oA

printf (" %5.2f %13.5e %d %3d %3d %3d %4d %9.2e %3d %3d\n",
t0, umax, iopt[KUSED], iopt[NST], iopt[NNI], iopt[SPGMR_NLI],
iopt [NRE], ropt[HUSED], iopt[SPGMR_NPE], iopt[SPGMR_NPS]);

for (1 = 1; 1 <= NS; 1i++){
umax = N_VMaxNorm(uusub[i]);
j = (plist == NULL) 7 i : plistl[i-1];
if (thispe == 0) {
printf("max(s_%d) = %11.5e\n", j, umax/pbar(j-1]);
if (1 == NS) printf("\n");



+

/* Loop over tout, call IDASolve, print output. */

for (tout = t1, iout = 1; iout <= NOUT; iout++, tout *= TWO) {
retval = IDASolve(idamem, tout, t0, &tret, uu, up, itask);

umax = N_VMaxNorm(uusub[0]);
if (thispe == 0)
printf(" %5.2f %13.5e %d %3d %3d %3d %A4d %49.2e %3d %3d\n",
tret, umax,iopt[KUSED],iopt[NST],iopt[NNI],iopt[SPGMR_NLI],
iopt [NRE], ropt[HUSED], iopt[SPGMR_NPE], iopt[SPGMR_NPS]);

for (i = 1; 1 <= N§; 1++){
umax = N_VMaxNorm(uusub([il]);
j = (plist == NULL) ? i: plist[i-1];
if (thispe == 0) {
printf ("max(s_%d) = %11.5e\n", j, umax/pbar[j-11);
if (i == NS) printf("\n");
}

il

if (retval < 0) {
if (thispe == 0) printf("IDASolve returned %d.\n",retval);
return(l);

}
} /* End of tout loop. */

/* Print remaining counters and free memory. */
if (thispe == 0) printf("\n netf = %d, ncfn = %d, ncfl = %d \n",
iopt [NETF], iopt[NCFN], iopt[SPGMR_NCFL]);

SensIDAFree(idamen) ;
N_VFree(uu);
N_VFree(up);
N_VFree(constraints);
N_VFree(id);
N_VFree(res);
N_VFree(data->pp);
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if (plist !'= NULL) free(plist);
free(pbar);

free(data->p);

free(data);

PVecFreeMPI (machEnv) ;
MPI_Finalize();

return(0) ;

} /% End of sensheatpk main program. */
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/* InitUserData initializes the user’s data block data. */

static int InitUserData(integer Neq, integer thispe, integer npes,
MPI_Comm comm, UserData data)

{

data->neq = Neq;

data->thispe = thispe;

data->dx = ONE/(MX-0ONE) ; /* Assumes a [0,1] interval in x. */
data->dy = ONE/(MY-ONE); /* Assumes a [0,1] interval in y. */
data->coeffx ONE/ (data->dx * data->dx);

data->coeffy ONE/(data->dy * data->dy);

data—->coeffxy = TWO/(data->dx * data->dx) + TWO/(data->dy * data->dy);
data->jysub = thispe/NPEX;

data->ixsub = thispe - data->jysub * NPEX;
data->npex = NPEX;

data->npey = NPEY;

data->mx = MX;

data->my = My;

data->mxsub = MXSUB;

data->mysub = MYSUB;

data->comm = comm;

return(0) ;
} /* End of InitUserData. =/
/**************************************************************/
/* SetInitialProfile sets the initial values for the problem. */

static int SetInitialProfile(N_Vector uu, N_Vector up, N_Vector id,
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N_Vector res, UserData data)

integer i, iloc, j, jloc, offset, loc, ixsub, jysub;
integer ixbegin, ixend, jybegin, jyend;
real xfact, yfact, *udata, *iddata, dx, dy;

/* Initialize uu. */

udata = N_VDATA(uu);
iddata = N_VDATA(id);

/* Set mesh spacings and subgrid indices for this PE. */
dx = data->dx;

dy = data->dy;

1xsub = data->ixsub;

jysub = data->jysub;

/* Set beginning and ending locations in the global array corresponding
to the portion of that array assigned to this processor. x/

i1xbegin = MXSUB*ixsub;
ixend = MXSUB=*(ixsub+1) - 1;
jybegin = MYSUB*jysub;
jyend = MYSUBx*(jysub+1l) - 1;

/* Loop over the local array, computing the initial profile value.
The global indices are (i,j) and the local indices are (iloc,jloc).
Also set the id vector to zero for boundary points, one otherwise. */

N_VConst (ONE, id);
for (j = jybegin, jloc = 0; j <= jyend; j++, jloc++) {
yfact = data->dy*j;
offset= jloc*MXSUB;
for (i = ixbegin, iloc = 0; i <= ixend; i++, iloc++) {
xfact = data->dx * 1i;
loc = offset + iloc;
udatalloc] = 16. * xfact * (ONE - xfact) * yfact * (ONE - yfact);
if (i ==0 || i == MX-1 || j == 0 || j == MY-1) iddata[loc] = ZERO;
}

/* Initialize up. */

N_VConst (ZERD, up); /* Initially set up = 0. */
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/* heatres sets res to negative of ODE RHS values at interior points. */
heatres(data->neq, ZERO, uu, up, res, data);

/* Copy -res into up to get correct initial up values. */
N_VScale(-ONE, res, up);

return(SUCCESS) ;

} /* End of SetlInitialProfiles. */

/xxrsoksokkxkxkkkkk Functions called by the IDA solver s kskkskkkkisksiokkkkkkk/
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heatres: heat equation system residual function
This uses 5-point central differencing on the interior points, and
includes algebraic equations for the boundary values.
So for each interior point, the residual component has the form

res_i = uw’_i - (central difference)_i
while for each boundary point, 1t is res_i = u_1.
This parallel implementation uses several supporting routines.
First a call is made to rescomm to do communication of subgrid boundary
data into array uext. Then reslocal is called to compute the residual
on individual processors and their corresponding domains. The routines
BSend, BRecvPost, and BREcvWait handle interprocessor communication
of uu required to calculate the residual. */

int heatres(integer Neq, real tres, N_Vector uu, N_Vector up,

{

N_Vector res, void *rdata)

int retval;
UserData data;

data = (UserData) rdata;

/* Call rescomm to do inter-processor communication. */
retval = rescomm(uu, up, data);

/* Call reslocal to calculate res. */
retval = reslocal(tres, uu, up, res, data);
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return(0) ;

} /* End of residual function heatres. */

/* Supporting functions for heatres. x*/
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/* rescomm routine. This routine performs all inter-processor
communication of data in u needed to calculate G. *x/

static int rescomm(N_Vector uu, N_Vector up, void *rdata)
{

UserData data;

real xuarray, *uext, buffer[2*MYSUB];

MPI_Comm comm;

integer thispe, 1ixsub, jysub, mxsub, mysub;

MPI_Request request([4];

data = (UserData) rdata;
uvarray = N_VDATA(uu);

/* Get comm, thispe, subgrid indices, data sizes, extended array uext. */
comm = data->comm; thispe = data->thispe;

ixsub = data->ixsub; jysub = data->jysub;

mxsub = data->mxsub; mysub = data->mysub;

uext = data->uext;

/* Start receiving boundary data from neighboring PEs. */
BRecvPost (comm, request, thispe, ixsub, jysub, mxsub, mysub, uext, buffer);

3

/* Send data from boundary of local grid to neighboring PEs. */
BSend(comm, thispe, ixsub, jysub, mxsub, mysub, uarray);

/* Finish receiving boundary data from neighboring PEs. */
BRecvWait (request, ixsub, jysub, mxsub, uext, buffer);

return(0) ;

} /* End of rescomm. =*/
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/* reslocal routine. Compute res = F(t, uu, up). This routine assumes

that all inter-processor communication of data needed to calculate F
has already been done, and that this data is in the work array uext.

static int reslocal(real tres, N_Vector uu, N_Vector up, N_Vector res,

{

void *rdata)

real *uext, *uuv, *upv, *resv,

real termx, termy, termctr;

integer 1, 1x, j, ly, offsetu, offsetue, locu, locue;
integer ixsub, jysub, mxsub, mxsub2, mysub, npex, npey;
integer ixbegin, ixend, jybegin, jyend;

UserData data;

real pl, p2;

/* Get subgrid indices, array sizes, extended work array uext. */

data = (UserData) rdata;

pl = data->p[0];

p2 = data->pl[1];

uext = data->uext;

uuv = N_VDATA(uu);

upv = N_VDATA(up) ;

resv = N_VDATA(res);

ixsub = data->ixsub; jysub = data->jysub;
mxsub data->mxsub; mxsub2 = data->mxsub + 2;
mysub

data->mysub; npex = data->npex; npey = data->npey;

/* Initialize all elements of res to uu. This sets the boundary
elements simply without indexing hassles. */

N_VScale(ONE, uu, res);

/* Copy local segment of u vector into the working extended array uext.

This completes uext prior to the computation of the res vector.

offsetu = 0;

offsetue = mxsub2 + 1;

for (ly = 0; ly < mysub; ly++) {
for (1x = 0; 1x < mxsub; lx++) uext[offsetue+lx] = uuv[offsetu+lx];
offsetu offsetu + mxsub;
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offsetue = offsetue + mxsub2;

/* Set loop limits for the interior of the local subgrid. */

ixbegin = 0;

ixend = mxsub-1;

jybegin = 0O;

jyend = mysub-1;

if (ixsub == 0) ixbegin++; if (ixsub == npex-1) ixend--;

if (jysub == 0) jybegin++; if (jysub == npey-1) jyend--;
/* Loop over all grid points in local subgrid. */

for (ly = jybegin; ly <=jyend; ly++) {
for (1x = ixbegin; 1lx <= ixend; lx++) {

locu = 1x + ly*mxsub;
locue = (1x+1) + (1ly+1)*mxsub2;
termx = pl * data->coeffx *(uext[locue-1] + uext[locue+1]);
termy = p2 * data->coeffy *(uext[locue-mxsub2] + uext[locue+mxsub2]);
termctr = (plx(data->coeffx) + p2x(data->coeffy)) * TWO * uext[locue];
resv([locu] = upv[locu] - (termx + termy - termctr);

}

}

return(0) ;

} /* End of reslocal. x/
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/* Routine to send boundary data to neighboring PEs. */

static int BSend(MPI_Comm comm, integer thispe, integer ixsub, integer jysub,
integer dsizex, integer dsizey, real uarray[])

{
integer ly, offsetu;
real bufleft[MYSUB], bufright[MYSUB];

/* If jysub > 0, send data from bottom x-line of u. */

if (jysub !'= 0)
MPI_Send(&uarray([0], dsizex, PVEC_REAL_MPI_TYPE, thispe-NPEX, 0, comm);
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/* 1If jysub < NPEY-1, send data from top x-line of u. */

if (jysub '= NPEY-1) {
offsetu = (MYSUB-1)*dsizex;
MPI_Send(&uarray[offsetu], dsizex, PVEC_REAL_MPI_TYPE,
thispe+NPEX, O, comm);

/* If ixsub > O, send data from left y-line of u (via bufleft). x/

if (ixsub != 0) {
for (ly = 0; 1y < MYSUB; 1ly++) {
offsetu = ly*dsizex;
bufleft[ly] = uarrayloffsetul;
}
MPI_Send(&bufleft[0], dsizey, PVEC_REAL_MPI_TYPE, thispe-1, 0, comm);
}

/* 1f ixsub < NPEX-1, send data from right y-line of u (via bufright). */

if (ixsub != NPEX-1) {
for (ly = 0; ly < MYSUB; 1ly++) {
offsetu = 1y*MXSUB + (MXSUB-1);
bufright[1y] = uarrayl[offsetu];
}
MPI_Send(&bufright{0], dsizey, PVEC_REAL_MPI_TYPE, thispe+1, 0, comm);
}
} /* End of BSend. */

/**************************************************************/

/* Routine to start receiving boundary data from neighboring PEs.
Notes:
1) buffer should be able to hold 2*MYSUB real entries, should be
passed to both the BRecvPost and BRecvWait functions, and should not
be manipulated between the two calls.
2) request should have 4 entries, and should be passed in
both calls also. */

static int BRecvPost(MPI_Comm comm, MPI_Request request[], integer thispe,
integer ixsub, integer jysub,
integer dsizex, integer dsizey,
real uext[], real buffer[])



integer offsetue;
/* Have bufleft and bufright use the same buffer. x*/
real *bufleft = buffer, *bufright = buffer+MYSUB;

/* If jysub > 0, receive data for bottom x-line of uext. */
if (jysub !'= 0)
MPI_Irecv(&uext[1], dsizex, PVEC_REAL_MPI_TYPE,
thispe-NPEX, 0, comm, &request([0]);

/* If jysub < NPEY-1, receive data for top x-line of uext. */
if (jysub != NPEY-1) {
offsetue = (1 + (MYSUB+1)*(MXSUB+2));
MPI_Irecv(&uext[offsetue], dsizex, PVEC_REAL_MPI_TYPE,
thispe+NPEX, 0, comm, &request([1]);

/* If ixsub > 0, receive data for left y-line of uext (via bufleft). */
if (ixsub != 0) {
MPI_Irecv(&bufleft[0], dsizey, PVEC_REAL_MPI_TYPE,
thispe-1, 0, comm, &request(2]);

/* 1f ixsub < NPEX-1, receive data for right y-line of uext (via bufright).
if (ixsub != NPEX-1) {
MPI_Irecv(&bufright[0], dsizey, PVEC_REAL_MPI_TYPE,
thispe+l, 0, comm, &request[3]);

} /* End of BRecvPost. */

/****************************************************************/

/* Routine to finish receiving boundary data from neighboring PEs.
Notes:
1) buffer should be able to hold 2*MYSUB real entries, should be
passed to both the BRecvPost and BRecvWait functions, and should not
be manipulated between the two calls.

2) request should have four entries, and should be passed in both
calls also. */

static int BRecvWait(MPI_Request request[], integer ixsub, integer jysub,
integer dsizex, real uext[], real buffer[])
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integer ly, dsizex2, offsetue;
real *bufleft = buffer, *bufright = buffer+MYSUB;
MPI_Status status;

dsizex2 = dsizex + 2;

/* If jysub > 0, receive data for bottom x-line of uext. */
if (jysub !'= 0)
MPI_Wait (&request[0],&status);

/* If jysub < NPEY-1, receive data for top x-line of uext. */
if (jysub != NPEY-1)
MPI_Wait(&request[1],&status);

/* If ixsub > 0, receive data for left y-line of uext (via bufleft). */
if (ixsub != 0) {
MPI_Wait (&request[2],&status);

/* Copy the buffer to uext. x*/
for (ly = 0; 1y < MYSUB; 1ly++) {
offsetue = (ly+1)*dsizex2;
uext [offsetue] = bufleft([ly];
}
+

/* If ixsub < NPEX-1, receive data for right y-line of uext (via bufright). x/
if (ixsub != NPEX-1) {
MPI_Wait (&request[3],&status);

/* Copy the buffer to uext */
for (ly = 0; ly < MYSUB; ly++) {
offsetue = (ly+2)*dsizex2 - 1;
uext [offsetue] = bufright(ly];
}
}
} /* End of BRecvWait. */
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* PrecondHeateq: setup for diagonal preconditioner for heatsk. *
* *

* The optional user-supplied functions PrecondHeateq and *
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PSolveHeateq together must define the left preconditoner
matrix P approximating the system Jacobian matrix

J = dF/du + cj*dF/dw’
(where the DAE system is F(t,u,u’) = 0), and solve the linear
systems P z = r. This is done in this case by keeping only
the diagonal elements of the J matrix above, storing them as
inverses in a vector pp, when computed in PrecondHeateq, for
subsequent use 1n PSolveHeateq.

In this instance, only cj and data (user data structure, with

pp etc.) are used from the PrecondHeateq argument list.
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int PrecondHeateq(integer local_N, real tt, N_Vector yy,
N_Vector yp, N_Vector rr, real cj,
ResFn res, void #*rdata, void *pdata,
N_Vector ewt, N_Vector constraints, real hh,
real uround, long int *nrePtr,
N_Vector tempvl, N_Vector tempv2, N_Vector tempv3)

integer 1, j, offset, loc;

real *rv, *zv, *ppv, pelinv, pel;

integer 1x, ly, ixbegin, ixend, jybegin, jyend, locu, mxsub, mysub;
integer ixsub, jysub, npex, npey;

UserData data;

real pl, p2;

data = (UserData) pdata;
pl = data->p[0];
p2 = data->pl[1];

ppv = N_VDATA(data->pp);

ixsub = data->ixsub;
jysub = data->jysub;
mxsub = data->mxsub;
mysub = data->mysub;
npex = data->npex;
npey = data->npey,

/* Initially set all pp elements to one. */
N_VConst (ONE, data->pp);

/* Prepare to loop over subgrid. */



ixbegin = 0;

ixend = mxsub-1;

jybegin = O;

jyend = mysub-1;

if (ixsub == 0) ixbegin++; if (ixsub == npex-1) ixend--;

if (jysub == 0) jybegint+; if (jysub == npey-1) jyend--;
pel = cj + ((plxdata->coeffx) + (p2*data->coeffy))x*TWO;
pelinv = ONE/pel;

/* Load the inverse of the preconditioner diagonal elements
in loop over all the local subgrid. */

for (ly = jybegin; ly <=jyend; ly++) {
for (1x = ixbegin; 1x <= ixend; 1lx++) {

locu = 1lx + ly*mxsub;
ppv[locu] = pelinv;
}
}
return(SUCCESS) ;

} /* End of PrecondHeateq. */

/*************************************;****************************
* PSolveHeateq: solve preconditioner linear system. *
* This routine multiplies the input vector rvec by the vector pp *
* containing the inverse diagonal Jacobian elements (previously x
* computed in PrecondHeateq), returning the result in zvec. */

int PSolveHeateq(integer local_N, real tt, N_Vector uu,
N_Vector up, N_Vector rr, real cj, ResFn res, void *rdata,

void *pdata, N_Vector ewt, real delta, N_Vector rvec,
N_Vector zvec, long int *nrePtr, N_Vector tempv)

{
UserData data;
data = (UserData) pdata;

N_VProd(data->pp, rvec, zvec);

return(SUCCESS) ;
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} /* End of PSolveHeateq. */
Sample output for the example program sensheatpk.

sensheatpk: Heat equation, parallel example problem for SensIDA

Discretized heat equation on 2D unit square.
Zero boundary conditions, polynomial initial conditions.

Mesh dimensions: 10 x 10 Total system size: 100
Subgrid dimensions: 5 x 5 Processor array: 2 x 2
Number of sensitivities: Ns = 2
Parameter values: p_1 = 1.00e+00, p_2 = 1.00e+00
Scale factors: pbar_1 = 1.00e+00, pbar_2 = 1.00e+00
Finite difference: rhomax = 0

Tolerance parameters: rtol = 0, atol = 0.001

Constraints set to force all components of solution u >= 0.

iopt [SUPPRESSALG] = 1 to suppress local error testing on all boundary components.
Linear solver: IDASPGMR Preconditioner: diagonal elements only.

Output Summary: max(u) = max-norm of solution u

time

0.00
max(s_1)
max(s_2)

0.01
max(s_1)
max(s_2)

0.02
max(s_1)
max(s_2)

0.04
max(s_1)
max(s_2)

0.08
max(s_1)
max{(s_2)

(s}

max(s_1i) = max-norm of sensitivity vector s_1i

max (u) k nst nni nli nre h npe nps
.75461e-01 0 0 1 2 5 1.00e-05 2 1
0.00000e+00

0.00000e+00

8.24106e-01 2 11 14 25 41 2.56e-03 10 73
7.20774e-02
7.20774e-02

6.88134e-01 3 14 18 40 60 5.12e-03 10 100
1.27129e-01
1.27129e-01

4.70846e-01 3 18 22 58 82 5.12e-03 10 130
1.81792e-01
1.81792e-01

2.16343e-01 3 22 27 94 123 1.02e-02 11 181

1.68497e-01
1.68494e-01
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0.16
max(s_1)
max(s_2)

0.32
max(s_1)
max(s_2)

0.64
max(s_1)
max(s_2)

1.28
max(s_1)
max(s_2)

2.56
max(s_1)
max(s_2)

5.12
max(s_1)
max(s_2)

10.24

max(s_1)
max(s_2)

netf =

0,

~ b

.54871e-02
.05468e-02
.05478e-02

.00938e-03
.95024e-03
.94397e-03

.04003e-04
.18633e-04
.18349e-04

.24684e-04
.74875e-04
.79646e-04

.16884e-04
.97687e-04
.87800e-04

.80339%e-05
.89528e-04
.51301e-04

3.54902e-04
1.84619e-04
1.57882¢-04

ncfn = 1,

30

38

44

47

49

51

52

ncfl

0

36

47

56

62

65

68

70

147

226

270

283

293

299

307

37

185

275

328

347

360

369

379

.02e-02

.10e-02

.47e-01

.95e-01

.90e-01

.36e+00

.72e+00

11

13

15

19

20

22

23

261

373

444

475

494

509

523



