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A high-wavenumber viscosity for

high-resolution numerical methods
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Numerical simulations of compressible flows are commonly based on the Euler

equations when effects of viscosity are thought to be negligible. These equa-

tions admit singular solutions, even in cases where the initial and boundary

conditions are smooth. So-called ‘Euler solvers’ rely on numerical dissipation,

explicitly or implicitly present in the scheme, to regularize the problem, such

that physical solutions are selected. In one dimension, the Euler equations for

inviscid flow of an ideal gas are

9, dpu

8t+ ox =0,
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where p is density, u is velocity, p is pressure, E = (e 4+ uu/2) is total energy,
e is internal energy and 7 is the ratio of specific heats. Flows represented by
discrete numerical ‘solutions’ to these equations are more consistent with a

set of equations in which (2) and (3) are replaced by

dpu 0 B

W%—a—x(puu—l—p—ﬂ—(} (5)
and

JopE 0 B

WﬂLa—x[(PEﬂLP—T)U]—Oa (6)

where 7 is a dissipation mechanism, which produces entropy consistent with
the Rankine-Hugoniot equations and the second law of thermodynamics. For
schemes with implicit dissipation, various methods exist for estimating 7
(Ramshaw, 1994). For the explicit-dissipation scheme to be introduced, we

choose 7 to be a stress term of the form

ou

where 4 is a grid-dependent artificial viscosity. Typically, as the grid spacing,
Az, goes to zero, u — 0, but du/dx — oo at the discontinuities; therefore, 7
remains finite at the discontinuities, regardless of grid refinement. Numerical
simulations of discontinuous flows, like real-world flows, must generate finite
entropy in the limit of vanishing viscosity; hence, numerical solutions are con-
sistent with the Euler equations only in the sense that the space over which 7
is nonzero decreases as Az — 0. The definition of a ‘high resolution’ numerical
method is a scheme in which 7 only damps wavenumbers close to the Nyquist
wavenumber, 7/Az. For schemes with explicit artificial viscosity, this can be

accomplished by making p oc 0"u/0z", where r is a user-specified integer,



which gives the viscosity a high wavenumber (k") bias. This type of artificial
selective damping has been successfully employed in acoustics computations
by Tam et al. (1993), and by Barone and Lele (2002) who set 7 o< 0"u/0x".
In our formulation, we base pu, rather than 7 on the r-derivative, in order to

make (5) assume the form of the Navier-Stokes equation.

The effect of an added viscosity on the accuracy of a scheme can be quantified
using the concepts of modified wavenumber and amplification factor. Consider

a periodic isentropic flow, where (1), (2) and (3) can each be cast in the form

19J0) 0¢

— +60—=0 8

ot + Ox ’ (®)
where 6 is a wave speed and ¢ is a Riemann invariant (Landau and Lifshitz,
1959). For the purpose of analysis, 6 will be taken as constant. The spatially-
discrete analogue of (8) is
0o,
— 460D -¢; =0 9
where j is a grid index and D- denotes a discrete operator approximating

0/0x. Fourier transforms (F) of (8) and (9) can be written as

8%_(tk) + 0(ik/Az)p(k) =0, (10)
and

Lo .

v +0(iw/Ax)pp =0, (11)

respectively, where ¢(k) = F{o(x)}, ¢ = F{¢;}, k is a nondimensional

wavenumber (ranging from 0 to 7) and w = w(k) is a nondimensional modified



wavenumber. The modified wavenumber for a spatial discretization of the form

5(15;72 + 05¢;;1 + (15; + O‘¢;‘+1 + 5¢;+2

a Gjt1— Pj—1
2Ax ’

_ C¢j+3 — ¢j_3 N b¢j+2 — @)z N
x

N 6Ax 4A (12)

is obtained by taking the Fourier transform of (12) and applying the shifting
theorem, F{@;m} = exp(imk)¢;. The result is (Vichnevetsky and Bowles,

1982; Lele, 1992)

asin(k) + (b/2) sin(2k) + (c/3) sin(3k)
1+ 2accos(k) + 23 cos(2k)

w(k) = (13)

In this note, we will consider the following four centered differencing schemes:

a 4th-order explicit (E4) scheme,

1 17 101 1

aﬁ:_a a= -, b:—, C—= /7,
20 12 150 100

and a spectral (S) Fourier transform scheme for which w = k.

The numerical amplification factor for a temporal integration method is de-
fined as the solution (or error) after a complete time step (n + 1) divided
by the solution (or error) at the previous time step (n), i.e., Ay = ¢} /#7.

Here we consider a five-step 4th-order Runge-Kutta (RK4) method derived



by Kennedy et al. (1999). For differential equations of the form ¢ = f, the

scheme is

q" = Atfr=t 4 Angn—t
n=1,..9 (14)

¢ = ¢t + Blgn

where At is the time step, 7 is the RK4 subcycle, and A" and B" are:

Al =0

A% = —6234157559845/12983515589748
A3 = —6194124222391/4410992767914
At = —31623096876824/15682348800105
A® = —12251185447671/11596622555746
B! = 494393426753 /4806282396855

B? = 4047970641027 /5463924506627

B? = 9795748752853 /13190207949281
B* = 4009051133189/8539092990294

B® = 1348533437543 /7166442652324 .

This particular RK4 scheme was chosen for its broad stability properties for

both convective and viscous terms. Applying (14) to (11) and combining all



the Runge-Kutta substeps leads to

n=>5 2 4 3 5
AN:z’;ZOZ[1—7“+2—Z]—il%—%+2%6], (15)
k

where ¢, = wO and © = §At/Ax = CFL number. Numerical stability re-
quires |Ay| < 1, and hence, the maximum stable CFL number depends on
the maximum value of the modified wavenumber. Maximum stable CFL num-
bers for the E4-RK4, C4-RK4, C10-RK4 and S-RK4 schemes are 2.435, 1.929,

1.437 and 1.063, respectively.

The exact solution to (10) at t = nAt is ¢" (k) = ® exp(—ikn®). The amplifi-

cation factor for the exact solution is

n+1
Ap = ¢¢n(li/)f) = exp(—ity)
2 4 6 3 5
_ 1—%+%—%’6+0(¢2)1 —il¢k—%+%’6—0(¢£) , (16)

where ¢, = kO. The total error (spatial plus temporal) for the centered-space
Runge-Kutta schemes is £y = Ay — Ag. The real part of £y is the diffusive er-
ror and the imaginary part is the dispersive error. The errors increase at higher
wavenumbers and higher CFL numbers. Therefore, the optimum CFL number
depends on the spectral content of the flow, and hence will vary depending on

the problem.

To see how a wavenumber-weighted viscosity affects the overall error, add a
term of the form vk"¢(k)/Az? to the right-hand side of (10). The amplification
factor for the exact solution with artificial viscosity is Ay = exp(ck” — ik©),
where v is a kinematic viscosity parameter and ¢ = vAt/Az? The error

introduced by the spectral-like viscosity is



Ev = Ay — Ap=exp(ok” — ik©O) — exp(—ik©O)
— [O’kr L0 (kQ'r)} — [O.kr—l—l + 0 (k2r+1)] )

For small wavenumbers, k, we can choose r sufficiently large that &y is less
than £y; i.e., we can ensure that the error introduced by the artificial viscosity

is less than the space-time discretization errors already present.

The particular form of explicit artificial viscosity employed in our simulations
is

1|0
p=C,pAz o

: (17)

where ﬂ denotes a Gaussian filter applied to the absolute value. This is done
in order to ensure that p is smooth and positive. It is desirable to choose r
as large as possible, in order to minimize the error caused by introducing 7
into the equations. However, larger values of r require larger stencils to accu-
rately represent the r-derivative. Compact (Padé) schemes provide a means
whereby high derivatives can be computed with reasonably small stencils. For
the current simulations we choose r = 8 and compute the 8th-derivative with

the following compact scheme

20uV 114 14 ({1 4wl

+(3/2) (3" + ")
= [4200u; — 3360(1j41 + ;1)
+ 1680(wjt2 + uj—2)
— 480(u; 45 + 1j_3)
+ 60(ujpa + uj4)]/A2%,

VIII

where u;

approximates 9®u/dz® at the jth grid point. The filter is then

applied as
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which is very nearly equivalent to a Gaussian filter of width 4Ax. For the
calculations presented here, C', = 0.1. Simulations in which the artificial terms

are incorporated into the C10-RK4 scheme are denoted as C10V-RK4.

Our test problem is a breaking wave with initial conditions:

p/po=1+esin(2rz/)\)
p/po=(p/p0)"
Cs/Cs0 = (:0//00)@71)/2
u=2(cso — ¢5)/(v— 1),

where ¢, is the sound speed, pg = 1073, py = 10%, v = 5/3 and ¢ = 0.1. The
wavelength, A, is set to NAx, where NV is the number of grid points per period.
For this set of initial conditions, two of the three characteristics are initially
constant, with the third satisfying a Burgers-like equation. The exact solution
consists of the initial profiles being advected with velocity u — ¢,, hence points
on the profiles move from z to & = z + (u — ¢5)t. A discontinuity begins to
form when the solution attempts to become multivalued; this happens for a

given x at

A [1 4 esin(27z/\)]B=1/2

t =
(v + 1)mecyo cos(2mx /) ’

which has the minimum

sinf2ray/3) =~ ! R < ! il 7>1/2 |




For € < 1, sin(2ray/\) = —(3 — 7)e/2 and t, = [N/ (7 + 1)wecso][1 + O(€¥)],
where t, denotes the time when the wave first begins to break. The disconti-
nuity therefore forms very near the point initially corresponding to x = 0 and
grows to include more points on either side. The peaks of the initial sinusoidal
profile at x, = £A/4 reach this point at a later time given by

=D
! (v + 1) (esp — csp)

~A2(y+ 1ecso = (m/2)ty -

At this time, the discontinuity reaches its greatest amplitude, after which it
slowly decreases (Landau and Lifshitz, 1959). The analytical solution to this
breaking wave is only valid for ¢ < ¢, because, unlike pure Burgers flow, the
shock processes fluid; hence, the entropy ceases to be constant for ¢ > ¢,. The
temporal evolution of the density field for the breaking wave is depicted in

Fig. 1.

Convergence rates for the centered RK4 schemes at ¢ = 3t,/4, when the flow
is still smooth, are plotted in Fig. 2. At high CFL numbers, time-stepping
errors determine the rates of convergence; however, the actual errors are much
lower for the higher-resolution spatial discretizations. For instance, errors for
the C10-RK4 scheme are more than an order of magnitude lower than those
of the E4-RK4 scheme, even though both methods are formally 4th-order
accurate at CFL=1. At low CFL numbers, spatial discretization errors deter-
mine the rates of convergence; e.g., the C10-RK4 scheme exhibits 10th-order
convergence at CFL=1/16. When artificial viscosity is added to this scheme,
the convergence rate is limited by the r parameter, which in this case gives

8th-order convergence.

Next we compare the accuracy of the C10V-RK4 method against two standard
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Fig. 1. Density solution in a frame moving with the mean wave velocity at ¢ = 0
(heavy solid), t;/2 (dashed), 3t,/4 (dotted), ¢, (dot-dashed) and ¢, (thin solid). At
t = t; the wave has moved 1.19 periods in the fixed computational frame and at

t = t, the wave has moved 1.87 periods.

shock-capturing methods, which have been published extensively in the liter-
ature, namely, Jiang and Shu’s 5th-order Weighted Essentially Non-Oscillatory
method with 3rd-order TVD Runge-Kutta time-stepping (WENO5-RK3) (Jiang
and Shu, 1996), and Bell and Colella’s 2nd-order Piecewise Linear MUSCL Di-
rect Eulerian (PLMDE) method (Bell et al., 1989; Colella, 1990). Errors for
the C10V-RK4, WENO5-RK3 and PLMDE methods are plotted versus time
in Fig. 3 for CFL=1 and N/\ = 128. During the smooth phase, the error

for the C10V-RK4 scheme is a couple orders of magnitude lower than the

10



[EEN
oI

N
I |

2 104 F .
2 B ]
S L th-order -
o = E
£ -6 L .
o 107 S
S s .
) . - ]
N 10° F : =
3 : - 8th-order 3
= = E
8 ool E
(O] - = =
= 10 10th-order - E

10_12 i L L \:

20 100 1000

N/A

Fig. 2. Convergence rates for the centered RK4 schemes at ¢t = 3t,/4. Heavy solid
line is C10-RK4 at CFL=1/16, medium solid line is C10V-RK4 at CFL=1/16, thin
solid line is C10-RK4 at CFL=1, dot-dash line is S-RK4 at CFL=1 (this is nearly
coincident with C10-RK4), long dashed line is C4-RK4 at CFL=1, short dashed
line is E4-RK4 at CFL=1. Fiducial lines corresponding to 10th, 8th and 4th-order

convergence are also plotted for reference.

WENO5-RK3 error, which, in turn, is about an order of magnitude lower
than the PLMDE error. However, as the discontinuity forms, the errors for all
three schemes become similar, and the rates of convergence all become first
order. A scale-dependent measure of error is given in Fig. 4, which displays the
density energy spectrum for the shock-capturing schemes at ¢t = 3t,/4 with
N/X = 64. The spectra provide a direct measure of the resolving power of each

scheme. Two facts are evident from the plot; first, the C10-RK4 and C10V-

11
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Fig. 3. Lo errors for C10V-RK4 (solid), WENO5-RK3 (dashed) and PLMDE (dot-

ted) at CFL=1 and N/\ = 128.

RK4 methods have nearly identical resolution properties, which means that
the high-wavenumber viscosity has negligible impact on the solution in smooth
regions; second, the C10 schemes give excellent representation for about half
the wavenumbers, whereas the WENOS5 and PLMDE schemes match less than
a quarter of the wavenumbers. This is a consequence of the fact that the
C10 schemes are purely centered, whereas the WENO5 and PLMDE meth-
ods are upwinded. The modified wavenumber for centered schemes is real (as
is the true wavenumber), whereas the modified wavenumber for non-centered
schemes is complex. For smooth flow, centered schemes have much greater

resolving power than upwinded schemes.

12
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Fig. 4. Density spectrum at ¢ = 3t,/4 with N/A = 64. Thick solid line is exact
solution, medium solid line is C10-RK4, thin solid line is C10V-RK4, dashed line
is WENO5-RK3 and dotted line is PLMDE. All numerical solutions computed at

CFL=1.

In comparing the various numerical methods, a fundamental question is; what
computational cost is required to compute the solution out to a certain time
to within a specified accuracy? Table 1 displays times required for the various
schemes to reach t/t, = 3/4 (with CFL=1), at the resolution required to
meet the indicated L, error. By this measure, the centered schemes are vastly
more efficient than the upwinded methods, because they are able to satisfy
the error tolerance with much fewer grid points. The particular numbers, of
course, depend on the solution time and the specified tolerance; nevertheless,

the centered schemes are clearly superior for smooth flow.

13



scheme N/X\  time steps CPU time (s) Ly error

E4-RK4 995 1004 1.467 2.03 x 1078
C4-RK4 715 722 0.777 2.03 x 108
C10-RK4 512 516 0.583 2.03 x 1078
S-RK4 512 516 0.874 2.03 x 10°8
C10V-RK4 512 516 1.40 2.03 x 1078
WENO5-RK3 2110 2157 76.0 2.03 x 1078
PLMDE 9900 9990 263 2.03 x 108
Table 1

CPU times and resolutions required to reach t/t, = 3/4, at CFL=1, to within the

specified Ls error.

The picture changes, however, when the flow becomes discontinuous. Fig. 5
displays the density solution for the C10V-RK4, WENO5-RK3 and PLMDE
methods at ¢ = ¢,, the time at which the discontinuity reaches its greatest
amplitude. For this time, the ‘exact’ solution is taken as the PLMDE result
with N/A = 20, 000. For all three schemes, the shock is spread over about four
grid points and spurious oscillations are negligible. Results for the C10-RK4
scheme (without artificial viscosity) exhibit strong Gibbs oscillations on both
sides of the shock. The CPU times required for the C10V-RK4, WENO5-RK3
and PLMDE schemes to reach ¢t = ¢, with N/A = 512 and CFL=1, were 2.91,

9.76 and 1.424 seconds, respectively. The computational cost per time step is

14
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Fig. 5. Density computed with the PLMDE (dotted), WENO5-RK3 (dashed) and
C10V-RK4 (thin solid) schemes at ¢ = ¢, with N/A = 64 using CFL=1. The thick

solid line is the PLMDE solution with N/\ = 20, 000.

least for the PLMDE scheme, so it is can clearly achieve a set level of accuracy
in the post-break regime the most efficiently. The C10V-RK4 scheme is a close
second in this regard, while the WENO5-RK3 is a more distant third due to

its much greater expense.

In summary, we have proposed a high-wavenumber formulation for artificial
viscosity as a means of stabilizing high-order methods and reducing oscil-
lations near discontinuities. The spectral-like viscosity can be added to any

numerical method, and is most conveniently implemented using compact sten-

15



cils to compute high derivatives. We have demonstrated the convergence rates
for smooth flow to be proportional to the power of the derivative in the ar-
tificial viscosity; hence, the error introduced by the added dissipation can be
made negligible in smooth regions by choosing a sufficiently high derivative.
We combined the high-wavenumber viscosity with the most efficient of the
centered schemes tested to produce an accurate and efficient shock-capturing
method (C10V-RK4). The new C10V-RK4 scheme was evaluated against stan-
dard shock-capturing schemes (WENO5-RK3 and PLMDE). For the smooth
flow phase, the C10V-RK4 scheme proved much more efficient than either the
WENO5-RK3 scheme or the PLMDE method, with differences increasing for
lower error tolerances. For the discontinuous phase of the flow, errors for the
shock-capturing schemes were similar, and C10V-RK4 proved several times

more efficient than WENO5-RK3 and about half as efficient as PLMDE.
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