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We investigate an ambiguity inherent in the definition
of the vector potential used in electron-electromagnetic
field interactions. Two cases, Zeeman effect and Compton

scattering, are studied.



l.  Introduction

What is the interaction Hamiltonian Hj,t for an electron
interacting with an electromagnetic vector field? Consider the

example of an electron interacting with a spatially uniform

magnetic field (Zeeman effect), for which,

_. S ng
Hipo=-5—LH (1a)
L=-irxV , (1b)

where H is the magnetic field. Egs. (1) depend on writing Hju¢ in

terms of the vector potential K,

Him = "IEE K.V
mc (2a)

A=—Hxr
2 . (2b)

But the vector potential can also be written,

A=1Hx¥+VQ
2 (3)

since in both cases VXA=H  Q is a scalar field with dimensions of

charge. The interaction Hamiltonian now becomes,



leﬁ lﬁ‘H
'V P V'A
int— A 5 m ( 48)

H,
VA=V Q (4b)

However the two Q-dependent terms in Eq (4a) cancel when they are

evaluated to first order using the Schroedinger ground state of an

Yo

atem This result is easily seen by parts integration of the

matrix element of the first term on the right-hand-side of Eq. (4a),

- = 1 - -
<y AV ly > == — <yl VeA Iy >
2 : ()

The two terms however do not cancel in relativistic theory for an

electron ignoring spin. In the Klein-Gordon equation,

2
2 —
[%(fﬁi—ecb) - (Fv ZIL“AV @V-M—-Az)}w m’cly
c ot c? . (6)

the V*A contribution is removed by using the Lorentz gauge,

C o (7) -

where @ is the scalar potential. This means that the A4°V term in

Eq. (6) contributes, in addition to the usual L*H term in Eq. (1a), a
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term depending on Q, as given by Egs. (5) and (4b).

What is Q? It is possible to choose Q to give the Pauli

contribution to the Hamiltonian. Let us take,

i - o
0] M i
4r ir-r'l

where o is the Pauli vector [1]. Then,

VeA=V Q=-icH (8)

The following point is raised by thése considerations. The

A=~1-Hx; A:in;+VQ
use of 2 instead of 2 can be viewed as an
ambiguity in the definition of the electron-vector field interaction

which was removed by Pauli when he postulated the existence of a

term going as ;'ﬁ to the Hamiltonian. The Dirac equation
contributes the Pauli tefm as well as terﬁs accounting for the
magnetic fine structure of the atom. We may ask the question: can
all of these spin-dependent contributions be understood frdm the

Klein-Gordon equation once we develop an improved understanding

—

of the quantum vector field A and its interaction with a charged



particle.

We explore th.is question by studying Compton scattering. It
turns out that the propagators for a relativistic free electron and a
photon are identical; theref-ore it is possible to describe Compton
scattering by replacing the wavy photon interaction lines and
electron propagators of the Feynman graph for Compton scattering in
Fig. 1 with electron interaction lines and photon propagators, as
shown in Fig. 2. The result, as we show in the next section, is the
Klein-Nishina contribution to Compton scattering, whose standard

derivation uses the Dirac equation and is diagrammed in Fig. 1.

II. Compton scattering using photon propagators
The standard derivation of the Compton cross section uses the

Dirac equation , whereupon,

do 2k 2ot koK)’
£=To(?) [(esg) +w]

(1a)

k' 1
k., Rk
1 +R(1 - cose)‘

(1b)

~ A

where rg = e2/mc? is the classical-electron radius, &€ are unit
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vectors in the incident, scattered directions of polarization of the

photon, and 6 is the angle between incident, scattered photon wave

Wl

vectors K, This expression reduces to the classical electro-
magnetic result [6] when k'/k = 1. The first term on the right side of

Eq. (1a) is the sole contribution of Klein-Gordon theory [7]. The

second term, first derived by Klein and Nishina [8] using the Dirac
equation, is interpreted [9] as the scattering of photons by the
permanent magnetic moment of the electron. Both contributions are
summarized by the Feynman graph shown in Fig. 1.

Next we derive the second contribution to Eq. (1a) Ey using
electron interaction lines and the photon propagator, as shown in
Fig. 2. We postulate the following Maxwell's equations for the two

reaction fields generated by the electron-photon interaction,

2 13 )

Lk m——-)Aae— 4mrg< \ufo Ko Vir+ Vi Ao Vi >
¢ ot (2a)

2 19 )

vV -— )Aea—4rcr0< wﬂ Ao Vio+ Vig AWy >
¢* at? (2b)

where the brackets refer to integration over the space of the number

states of the quantized source field, Ao which are unprimed for
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incident and primed for scattered photbﬁs The currents on the right

11[-,

sides of Eqgs. (2) are constructed from the Klein-Gordon current [11],

generalized to include the number states of AO There are no
further contributions to these currentsi‘rlfor an electron initially at

rest.

Only the first terms on the right h

u.‘.".a.

energy-momentum conservation. In Eq ( a) the first term

represents annihilation of a photon (W|th label 1) associated with
the initial state y;q (Fig. 2 graph i) of; jl_'ae electron and incident
photon. In Eq. (2b) the first term repfés‘ents creation of a photon J
from the vacuum state (with label 0) associated with the initial
state g (Fig. 2, graph ii) of the elec_t‘rc.).n and scattered photon
(cross symmetry graph as in Fig. 1, gr.aiph ii).
The source field is defined [4], :
Eam[a l(k!” Ry -idzl;'m*t)]

A

(3)

. ¥ . . £
where the sum runs over A modes and ¢ (max 2) polarizations, ~As are

~

umt vectors in the direction of polanzatlon of the photon, and %,

7‘5 are the annihilation, creation operators defined in the usual way

v



[4] such that,

+
(@155 2y6] = 31000 (4a)
am!nw>=ﬂ/nmlnm- 1> (4b)
+
a5l Mg>=/ny5+1 Inyg+ 1> : (4c)

The wave functions on the right side of Eqgs. (2) are products of

number states of the field for 0 or 1 [Eq.I(Za)] or 0 and 1' [Eq. (2b)]
and Klein-Gordon plane-wave states [11], where the one-photon
states are defined for a single mode and polarization of the incident

[Eq.(2a)] or scattered [Eq. (2b)] photon. For the right side of Eq. (2a),

mC 1(k%r- ot
el g

Vo=
2EV (58)
mc2 (ks

v, = R RIS
2E\V (Sb)

and similarly for the right side of Eq. (2b) for scattered photons. V



is the normalization volume and the energies are defined,

m 2
Ei=Y¥Ymc +cp; =mc (6a)

s .

Henceforth 4-vectors are used such that Eq. (5) can be re-written,

\Iff() mc & 1K X 10>
2EV (7a)
2
Wu: mc CIK‘XII>
2EV (7b)

and similarly for the plane-wave states of the electromagnetic field
[Eq. (3)]. For example XX=kect-kr \where for photons kg =k = w/c:
for frequency w, and for electrons kOj = Ej/hc. Note the important

identities 2 = 0 for photons and Kj2=m202/h2 for electrons. The

plane waves are orthonormal in the usual sense [6],

——wﬁv—3jd3kjd3r Y idoy,.=1
mc2(21r) ' ' (8a)
a ag b=a a—b"' b %

ot o (8b)



The solutions to Egs. (2) are written in momentum space as

functions of k or k' and of t in the limit t— =,

' 5 4
7 _aTo [/ me® (@M 8 (ki+ k- K K e
i) E¢ 2k’ (9a)
> 5 4
;i =ir—0 me” [(2n) & (k;— K' =K+ K)] g, eikct
“a 'y E; 2k (9b)

Energy-momentum conservation requires that Eqgs. (2) be solved
using propagators with contours closed in the lower half plane with
detours which include (exclude) the positive (negative) frequency
root [Eq. (9a)], which is the same as Feynman's boundary condition
for the positive-frequency electron propagator [12], and which
exclude (include) the positive (negative) frequency root [Egs. 9b)].
Both waves propagate forward in time, the former for obvious
reasons and the latter because the Fourier components of the
momentum are reversed relative to the former to satisfy momentum
conservation. The different contours insure energy-momentum

conservation for the two different currents of Egs. (2), namely

10
Kj + k= xf + ' for Eq. (9a) and x; - «' = x; - « for Eqg. (9b), as graphed in



Fig. 2, and they are responsible for the negative interference of the
Klein-Nishina term [Eq.(1)], as we shall see. The second components
of the current in Egs. (2) d-o not contribute for the set of boundary

conditions just stated because of energy-momentum conditions, x;j=

xf + x + «' for Eq. (9a) and k¢ = xj + x + ¥’ for Eq. (9b), which are

impossible to satisfy.

The observable scattering amplitude is written,

Sfi'—'(1|ﬂo|0>‘,qae+<0[ﬂol1'>'ﬂ.ea

5 .
LTo fme” (k-kY) 5.4 e i(k - K')ct
157 E, kK [2m) & (x+K'-K;—K)]e | B

- + ikct -ik'ct

Ap=-ega’e’  +e'a'e . (105)

Note the mixing which occurs in the transitions (Fig. 2):

~

(%, &) = (x',€) gng (x.8) = ('.€) caused by photon propagators which

~ ~

mix x' with € [® is originally associated with x in Eqg. (92)] and x with

~ ~

€' [ € is originally associated with x' in Eq. (9b)]. The observable

fields are of course the incident and scattered fields, which for the
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quantum theory presented here are the number-state representations

of the operator source field Ao [Eq. (3)] and the reaction fields
[Egs. 2)] induced by the currents arising from off-diagonal matrix
f KO.

elements o The operator fields can be measured diagonally from

the number operators ata (incident field) or a'a'*t (scattered field),

or, as in the present application, off-diagonally from the operator

product which accumulates after two sucessive operations, namely
that of operator a followed by a*t [first term on the right side of Eg.

(10a)] or that of a't followed by a' [second term on the right side of
Eq. (10a)]. Thus the first term on the right side of Eq. (10a)
represents a photon quantum state measurement of the incident
field plus a reaction field at the scattered-photon momentum [graph
(i) in Fig. 2]. The second term on the right side of Eq. (10a)
represents a photon quantum state measurement of the scattered

field plus a reaction field at the incident-field momentum [graph (ii)

in Fig. 2].  Other products of the Fourier components of Ao with the
momentum-space reaction fields do not form number operators of
the incident or scattered fields and are therefore unobservable.
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The cross section differential in the solid angle dQ into which

the photon is scattered is calculated by taking the squared modulus
of Eqg. (10a), dividing by (21:‘)484(0) and summing over the phase space

of the final electron and photon, [V2/(2n)6] dskfd3k'. Note that the
square of 84(A1<) can be written as the product 84(A1<) 84(0).

On using the identity,

2 4 3
d3k'Jd3kfn;:—C8 (ke K- K= K) = Jdﬂl{-—
£

, (11)

which follows from use of the identity for the Lorentz invariant

volume element [13],

dkf

38, J d’ks f d(fickqp 8[ (Ecxf) -m%* (k)

(12)

and the identity [5],

f d(ﬁk’)&{zmc"h[k-k'-ﬁ(l e
. 2mc2k

where use has been made of Eqg. (1b), the Klein-Nishina contribution
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immediately follows,

d 2 e 2
i) g
a2 gy (14)
When the contribution given by Eq. (14) is added incoherently to

the usual Klein-Gordon contribution based on the electron propagator

[the first term on the right-hand-side of Eq. (1)], then we obtain the

total Compton cross section as given by Eq. (1).

lll. Discussion and Conclusions

With reference to the modified Feynman graphs in Fig. 2 the
scattering amﬁlitude [Eg. (10)] describes the simultaneous
processes: (i) annihilation of an incident photon at the incident-
electron interaction line, propagation of the photon at the scattered
momentum such that energy-momentum is conserved as shown,
creation of the scattered photon at the scattered-electron
interaction line; (ii) (cross symmetry graph) creation of the
scattered photon at the scattered-electron interaction line,
propagation of the photon at the incident momentum sﬁch that
energy-momentum is conserved as shown, annihilation of Ithe
incident photon at the incident-electron interaction line. The

14



polarization of the .photon does not change because in both processes
(i) and (ii) the same photon quantum state exists before and after
the reaction. In contrast to conventional Feynman graphs (Fig. 1)
for the Diracdescription of Compton scattering, the graphs of Fig. 2

show no electron spin labels but do show photon-state labels. This

result suggests an equivalence between photon-free electron spin-
states and electron-free photon number states.
Acknowledgements. This work was performed under the auspices
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Figure Captions
Figure 1. Standard Feynman graphs for Compton scattering (Ref. 5,
Fig. 7 - 10). The wavy lines are photon interaction lines and the

solid lines are electron propagator lines.

Figure 2. Feynman graphs with wavy photon interaction lines

replaced by electron interaction lines and electron propégétors
replaced by photon propagators. Graph i: annihilation of an incident,
photon at the incident-electron interaction line, propagation of th.‘e
photon at the scattered momentum such that energy-momentum is
conserved as shown, creation of the scattered photon ai the
scattered-electron interaction line; graph ii: (cross symmétry

- graph) creation of the scattered photon at the scattered-electron
interaction line, propagation of the photon at the incident momentum
such that energy-momentum is conserved as shown, annihilation of

the incident photon at the incident-electron interaction line.
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