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FOREWORD

The ideas relating !o the use of organ motion sensors for the purposes
of speech recognition were first described by.the author in spring 1994.
During the past year, a series of productive collaborations between the author,
Tom McEwan and Larry Ng ensued and have lead to demonstrations, new
sensor ideas, and algorithmic descriptions of a large number of speech
recognition concepts. This document summarizes the basic concepts of
recognizing speech once organ motions have been obtained. Micro power
radars and their uses for the measurement of body organ motions, such as
those of the heart and lungs, have been demonstrated by Tom McEwan over
the past two years. McEwan and I conducted a series of experiments, using
these instruments, on vocal organ motions beginning in late spring, during
which we observed motions of vocal folds (i.e., cords), tongue, jaw, and
related organs that are very useful for speech recognition and other purposes.
These will be reviewecl in a separate paper.

Since late summer 1994, Lawrence Ng and I have worked to make
many of the initial recognition ideas more rigorous and to investigate the
applications of these new ideas to new speech recognition algorithms, to
speech coding, and to speech synthesis. I introduce some of those ideas in
section IV of this document, and we describe them more completely in the
document following this one, UCRL-UR-120311. For the design and
operation of micro-power radars and their application to body organ motions,
the reader may contact Tom McEwan directly.

The capability for using EM sensors (i.e., radar units) to measure body
organ motions and positions has been available for decades. Impediments to
their use appear to have been size, excessive power, lack of resolution, and
lack of understanding of the value of organ motion measurements, especially
as applied to speech related technologies. However, with the invention of
very low power, portable systems as demonstrated by McEwan at LLNL
researchers have begun to think differently about practical applications of
such radars. In particular, his demonstrations of heart and lung motions
have opened up many new areas of application for human and animal
measurements.

The author acknowledges the very important contributions of Tom
McEwan and Larry Ng in bringing these ideas to their present level so rapidly.
In addition many important contributions have been made by my colleagues:
Pat Welsh on electronics, Ursula Goldsteinand Mike Portnoff on issues.in
speech recogl~ition, Noel Sewall on data acquisition, and Dr. Wayne Lea of
the Speech Science Institute for commenting on this document. Finally, I
would like to thank the managemen¢ of LLNL’s Laser Program, Engineering
Department, and the Director’s Office for support during the initial stages of
this work.
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NEW IDEAS IN SPEECH RECOGNITION

JOHN F. HOLZRICHTER

I. Introduction

In April 1994, the author described a method of non-acoustic speech
recognition and shortly thereafter, the author and Tom McEwan described
and validated electromagnetic techniques to obtain speech organ position and
velocity information. For a timely, authoritative review of the status of
speech recognition and other technologies, see reference 1, which is a
publication of the National Academy of Sciences. The original descriptions
identified simple algorithms for reducing the organ position information to a
set of position vectors for each speech unit. By speech unit, I mean a word, a
syllable, or a phoneme of sound that is defined to be the minimal unit to be
recognized. See Appendix A for a list of American English phonemes given
by Rabiner (2). The ideas of speech recognition using radar technologies 
valuable and needed because conventional acoustic speech recognition of the
English language is insufficiently accurate for most applications. Under the
best circumstances one sees >5% error rates, and one typically sees >10% with
natural language in adverse (e.g. noisy) environments. These make present
all acoustic recognition systems not yet adequate for use in high value and/or
in high noise conditions, and not acceptable for most users involved in work
using large vocabularies. In addition, present recognition systems have
difficulty with dialectal or foreign speakers. The purpose of this document is
to review for the reader the basics ideas behind using electromagnetic wave
scattering (i.e. radar scattering) from body organs to enhance speech
recognition. I briefly review the principles of radar scattering from human
organs, and then I describe a series of speech recognition algorithms that have
been devised in order to make possible the applications of the above described
ideas to a wide range of sensor and user conditions. In-the conclusion, I
speculate on other applications of this technology.

The important aspect of joining acoustic measurements and EM wave
scattering measurements is that the two techniques are statistically
independent, in a measurement sense, from one another. As a result the
statistical accuracy of the non-acoustic techniques can be joined with the
statistical accuracy of the conventional acoustic techniques to provide an
improved method of accurately recognizing human speech. For example,
there are many sounds that can be identified by EM scattering alone, which
illustrates this notion of statistical independence (it also makes possible the
concept of "soundless" speech recognition). There is another class of spoken
words that are acoustically difficult to differentiate from one another (e.g.
"saline" and "sailing"), but through EM scattering from the participating
speech organ(s), are quite distinctly recognizable. This "saline etc." example 
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differentiated through tongue-palate position measurements. See reference 3
by Olive et al for a review of speech organ sound relationships.

Our initial measurements indicate that recognition of needed organ positions
or motions can be accomplished with high accuracy (exceeding 99%
depending on the measurements). We also note that many of the errors
contributing to the present 95% acoustic recognition accuracy can be readily
corrected with the addition of EM sensor data, and thus the joint accuracy can
be improved to better than 99%. This level begins to approach the quality of
present human recognition of speech. In summary, the non-acoustic
algorithms described in this document can be used separately to identify
words (completely non acoustically) or can be joined with conventional
acoustic recognition techniques to yield a new, very high accuracy recognition
system for recognizing speech in all environments and in all languages. .

For this document I use the following abbreviations: Conventional Acoustic
Speech Recognition is CASR, and Non Acoustic Speech Recognition is
NASR. l~or the basic description of the algorithms in this document, I will
use the convention of identifying English words by the sound units that
make up the words. They are called "phonemes" or "PLU"s. Other
groupings of word sounds can be used and are discussed.in texts on
Conventional Acoustic Speech Recognition. There are 40 to 50 of these PLUs
in the English language (depending on whose definition you use). Appendix
A of this document shows a list of English PLUs, which is taken from Rabiner
and Juang "Fundamentals of Speech Recognition" Prentice-Hhll, 1993. Later
in this document, I describe other algorithms that use combinations of PLUs
(e.g. diphones, triphones, etc.) and those that use wh.ole words, especially for
use in specialized vocabularies. The algorithms in this document are not
restricted to the English language, however for convenience, the examples
chosen and the PLUs used are for English.

once sensor signatures are identified (e.g. acoustic microphone outputs or
radar outputs) that correspond to a given PLU with high accuracy, there are
several procedures discussed in the literature for finding the words and
phrases made from sequences of identified PLUs. Two important procedures
that are well known to experts in the speech recognition community are the
"Statistical Pattern Recognition Model" and the "Hidden Markov Model".
See reference 1, and references therein for further descriptions of these
techniques. The algorithms in this paper show how to prepare EM sensor
data in such a fashion (i.e. in vector form) that one Or the other of the above
mentioned commonly used procedures (i.e. models) can be used to identify
the words and sentences to complete the recognition process.
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I A: NON ACOUSTIC SPEECH RECOGNITION ALGORITHMS:

The Non Acoustic Speech Recognition (NASR) algorithms described in this
paper are classified in generic groups from the simplest to the most complex.
The simplest generic algor.ithm described in this document is used to
associate electromagnetically detected single organ motions (not positions)
with simultaneously detected acoustic signals. I then show how this
algorithm provides background noise suppression, how it determines
whether a sound is voiced or non-voiced, how it determines the rate of
speech-unit delivery, the pitch of speech sound, and how it provides "on-set
of speech" timing. In contrast, the most complex generic category of the
algorithms described in this document involve many different EM sensors
and the sensors are positioned in many locations around the head and neck
(multi-position including side of face, etc.) operating on several wavelengths
and phase relationships. The example I use of the "complex" algorithm
describes a procedure for using three simultaneously working
electromagnetic speech organ detectors, two of them obtaining many ( e.g. 30)
positions of each individual organ during each 15 milli-second speech sound-
formation period. As a result, in conjunction with simultaneously detected
acoustic speech, this "complex" algorithm provides detailed position and
motion information on all of the major speech organs as each speech sound
is spoken. As a consequence, very high accuracy word-unit identifications can
be generated. We believe that eventually such "complex" algorithms can
"speech recognize" without the need for simultaneous acoustic speech
information, although their use in conjunction with acoustic speech
information will certainly be their first application. In addition, it is clear that
the detailed physiological motions associated with common words provides a
text independent means of unique speaker identification.

Two other generic types of non-acoustic speech recognition algorithms are
described in this document. They fall in categories of intermediate
complexity. They are "vocal tract model" algorithms and "word signature"
algorithms. These algorithms can be used separately or can be used in
conjunction with elements of the other algorithms (or of each other) 
optimize the recognition of spoken speech for the application and the
equipment at hand. Several other algorithms appear possible to develop and
will be described at a later date. Two examples are PLU-pair algorithms that
use both relative positions and relative velocities to provide unique PLU-pair
identification (of which 800 are commonly used in English) and another
makes use of variable wavelength and/or variable phase algorithms to
establish the presence or absence of tissue "contacts" or cavity dimensional
changes which characterized certain sounds quite exactly. The important
elements of all algoritl~rns mentioned in this document, including the two
just mentioned, have been demonstrated. Specific examples are shown for
the four algorithms described in this.document.
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The above described generic families of real time "speech recognition"
algorifhms were invented for the purpose of processing information outputs
from non-acoustic electromagnetic transmit-receive units (e.g. radars) which
report on the positions and/or motions of human speech organs as acoustic
speech is spoken. The association of speech organ locations with language
sounds is not new, and is described in detail in the book "Acoustics of
American Speech" by Olive et al. (Springer 1993) which is reference 2 of this
document. There is a long history of using mechanical, optical (e.g. TV
imaging), electrical, magnetic, and x-ray devices for observing the motions of
the human articulator system while speech is occurring. An early reference
to optical measurements of the vocal folds opening and closing and to x-ray
imaging is given in reference 4, by J.L. [~anagan "Speech Analysis, Synthesis,
and Perception" 1965. More recently, using moving x-ray images, many
authors, ( see for example Pacun in reference 5) have shown that tongue and
jaw positions correlate well with spoken speech and have used the
knowledge to generate improved acoustic speech recognition algorithms.
While these techniques have been of enormous importance in
understanding the human vocal system, they are intrusive, non-portable, and -
dangerous unless used by experts; therefore none are very useful for real time
speech recognition.
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I B ELEMENTS OF EM WAVE TRANSMISSION

Electromagnetic transmit and receive modules (radar sensor units) that are
optimized for speech recognition are low power for safety (<microwatts of
average power), provide centimeter to millimeter resolution, propagate
through human body tissue ( e.g. at 2 GHz frequency), can be optimized 
varying wavelengths for resonant structure sensing (e.g. 0.5 GHz to >4 GHz),
and can operate in FCC approved bands and at approved power levels. A
sensor module consists, usually, of a transmitter and a receiver located on a
single chip or on a small circuit board. The received signals are sampled,
averaged, quantized, digitized, phase compared, and low-pass filtered. This
"on-chip" processing is done for phase stability or timing reasons, for
economy reasons, and to reduce the information bandwidth for ease of
transmission of information to a separate processing unit. In an on on-chip
processor may be used with all or parts of the algorithms described in this
memo to preprocess and further simplify the data before it is sent on. A
separate digital processor, hardwired or software controlled, would use
algorithms described in this document, for further digital processing to reach
the desired speech recognized information goal.

The process begins by the EM transmitter sending one or several
electromagnetic waves from an antenna into the head or neck where the
waves reflect off of vocal organ interfaces (tissue-air or bone-tissue dielectric
discontinuities, etc.) and which are then detected by receiver units. See
reference 6 by T.E. McEwan. The EM probe signals in the experiments
referenced in this paper were sent out every 0.5 microseconds (e.g. 2 MHz, but
the rate can be changed by over a factor of 10 for more or less rapid sampling).
The reflected signal is received every 0.5 microsecond (delayed by the round
trip transit time of 1 to several nanoseconds from the transmitter to the organ
and back). It is averaged, sampled, digitized, and temporarily stored in
memory for subsequent numerical processing as governed by the algorithm
being used in the processing unit. The format of the transmitted pulses, the
sampling, the phase and wavelength variations (if used) and other controlled
functions are governed by a hard-wired or software-controlled "control-unit".
The example above yields 2000 samples of organ motion information each 1
millisecond. If we average the first 1000 values for good statistical reflection
values, and then the next 1000 values o- we obtain 2 values per millisecond.
A typical speech epic lasts 10 to 30 milliseconds (vocal folds excepted), thus 
have 20 to 60 measures of vocal organ conditions per sensor (per epic) for our
algorithm optimization. Vocal fold on-off epics are 4 to 8 milliseconds.
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Cut-away view of speech Organs showing typical locations of radar
module and the diirections of the transmitted and reflected EM waves.
Other locations of the radar units are expected to be very useful, such
as to the side of the neck, iaw. cheek, etc.

reflected wave

,©
microphone

Foreward Prol
EM-wave

In this example, there are 3 chip-size E M
transmit-receive modules 1,2, & 3 that measure
vocal organ positions as a funcition of time from
three views. This provides accurate position and
velocity information from all speech organs

New Ideas in Speech Recogniton 9



I-C INFORMATION PROCESSING:

Speech organs move relatively slowly. For example, the literature shows
(and we measure with radar sensors) 4-8 millisecond cycles for vocal cords
and 10-30 millisecond cycles (or longer) for tongue, jaw, throat, lip, and
velum muscles. For most of the examples in this document we will use a 15
millisecond time as the articulator time or the "speech-epic" being
considered; however each organ sensor would in practice be optimized for the "
desired information acquisition, such as the 5 millisecond cycles for the vocal
fold open/close times of a female speaker. In the typical speech-epic, up to
30,000 radar samples can be taken by each EM sensor unit (when sending at 
MHz) of each organ system before the organs change shape to start forming 
new sound. As the 30,000 pulses are received a wide variety of processing can
take place, depending upon the application. Procedures commonly used in
our demonstrations include the averaging of a 1000 received pulses for each
position in a time step within the sensor itself. Experiments show that 1000
received signals provides sufficient signal to noise to obtain a given organ’s
condition, thus one has time to perform 30 such averages within the time
that an organ moves to a new position. For example, we have moved a range
gate to present different reflection positions, each a few millimeters apart,
from one organ (jaw and tongue) during one period of observation. 
Section V of this document where a multi-organ algorithm is discussed, I
show an example of how the processing is accomplished. During the
available time between organ motions other measurements c~in be made in
addition to moving a range gate; two examples are: changing t~ansmit
wavelength to detect resonance effects (e.g. tongue touching palate
experiment produces giant resonance effect) and changing the phase of 
multiple wave transmission in a homodyne detector to detect movements of
nulls and fesonance’s.

After the data is taken for a given period (e.g. 15 msec) furtheraveraging and
normalization of the data from each time step can be done. Time adjustment
of distance positions (i.e. round trip reflection times) to a known fiducial such
as the front of the face can be done so that all data sets, as time progresses and
the sensors or the head moves, are commonly referenced. The fitting of the
p.attern over several 15 millisecond speech epics to a model of vocal organ
time motions, such as LPC models, can be done. Fourier transforming of the
data into frequency or position space for ease of identification of characteristic
periods such as vocal fold on-off frequencies for pitch information can be
done, The subtraction of patterns gathered from a previous time epic (i.e.
subtracted from the present step) can be used to generate motion
information of the organ interfaces. Finally, we form the information from a
specific speech unit into a pattern that can be matched against the PLU-EM
sensor patterns which are stored in a known digital library (also called code
book) of speech element patterns. When a match of the radar pattern to 
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known pattern leads to a sound unit or PLU recognition, I define the
algorithm as having rendered the spoken speech accurately (in real time) into
a computerized or printed symbol. Further post processing is required to
correct word spellings, sentence structure, identically spoken words (e.g. to,
too, or two) and other forms of information associated with the concept of
automatic speech recognition, but these are not described in this document.

I-D RECOGNITION:

In the simplest algorithm described in this document, a comparison is made
between the output from the radar speech recognition unit and a more
conventional acoustic speech recognition unit. If both systems have high
probabilities of their respective identification and they agree on the
identification, then the identified word will be more accurately rendered than
if just one system were working alone because the joint probability of
identification is higher. For example, present acoustic recognizers have at
least 5% error rates. Presently used EM sensors have estimated error rates for
detection of speech organ motions that are 5% to less than 1%, depending on
the sensor and application conditions. In addition, we have found that
certain PLUs or words are known to be more easily recognized by EM sensors
than by acoustic speech (and vice versa). This means that the probability 
identification of each sound can be associated (in the algorithm library) with 
known accuracy weight depending on the sensor used. This probability can be
used in the pattern matching algorithm for single or joint identification
describ.ed later in this document. In summary, word recognition can be
improved by appropriately weighting the output of the recognizer (EM or
acoustic) that is known to be accurate for the word sound being analyzed.

I-E FOREIGN LANGUAGES:

The speech recognition algorithms described in this document are language
independent in that the radar sensors can obtain vocal organ position and
motion, information from speakers using any language, (i.e. they work on
English speakers as well as Chinese and other language speakers). However
for each language, a non-acoustic speech recognition system’s radar-sensor-
suite and associated algorithms will need to be optimized for each language’s
specific speech organ motions. In addition, the required speech recognition
post processing systems will be chosen for correct spelling, proper grammar,
proper sentence structure, etc. in the relevant language. Another important
application of this tecl’mology will be the teaching and learning of foreign
languages, or the correction of speech problems by native speakers. The
information described in this document allows one to detect speech organ
misplacement, a major problem in language pronunciation.
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II. EM-SENSOR SIGNAL DESCRIPTIONS FOR ALGORITHMIC
PROCESSING:

II A. Principles of Radar Detection of Biological Tissue Positions and Motions

Electromagnetic transmit-receive modules (radars) designed for body organ
motion and position detection are optimized to meet the needs of the
application. For medical purposes, McEwan (6) has invented and optimized
specialized micro power radar sensors for the purposes of heart and lung
motion diagnostics. For our speech recognition experiments, similar radar
sensors were modified. For commercial speech recognition purposes, it is
expected that LLNL’s present micro power radars will be further optimized. It
is also expected that others will design new systems to optimize the
acquisition of the information needed from the speech organ being sensed
and for the algorithm used to convert organ information into recognized
speech information. Radar system parameters that are optimized include the
EM wave transmission properties from the antenna, through the air into the
head or neck tissue, reflection from the tissue interfaces (e.g. tissue-air, tissue-
bone, tissue-teeth, ~etc.), transmission through the tissue, and back
propa.gation to the receiver antenna. Additionally, resolution requirements
on interface positions lead to transmit and received EM-wave time-resolution
and wave-phase requirements. Also "speckle" issues pertaining to coherent
interferences between scattered signals from multiple locations and from
multiple parts of the transmitted wave need to be resolved, as well as receiver
signal to noise requirements and repetitiveness of pulse transmissions need
to be defined. Additional considerations such as relafive interface locations
and vocal cavity dimensions, and locations in the surrounding tissues
influence the selection of the radar’s wavelength(s). Finally, safety
requirements and user sensitivities, such as FCC regulations limiting the
power and the frequencies available for use, define the design of EM sensors
for speech information gathering.

Most experiments conducted by the author and T. McEwan used 2.0 GHz
pulsed radars in a variety of transmit and receive modes. They transmit less
than 1 microwatt of average power which is 10 to 1000 fold lower than all
accepted (US and international) safe continuous rf and microwave power
exposure levels. While this frequency is convenient because of the
availability of experimental equipment, and it has been used to demonstrate
the elements of the algorithms described in this document, the 2.0 GHz
frequency !s not optimal for all speech organ information gathering
requirements. I provide a short description of radars optimized for speech
recognition applications.
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II B. Some Radar Electromagnetic Wave Properties:
The wavelength ~ = c / v is assumed (for this document) to be the

transmitted wavelength from the radar transmitter. It is defined by the time

period, "~, of a single wavelength or by the period of a half wavelength, "~/2,

which define the frequency v = 1 / ~. The wavelength is ~, = c / v = c’t . Issues
associated with definitions of the wavelengths, frequencies, and bandwidths
of single (i.e. impulse) 1/2-wave-pulse transmissions, of gated wave packages,
of multiple waves, of chirped waves, of phase varied waves, etc. are described
in texts on radar. For example, see reference 7 by M. Skolnik "Radar
Handbook". I will not discuss these definitions in any detail because they do
not strongly influence the algorithm descriptions in this document. For most
of the examples in this document, I use v = 2.0 GHz which leads to:

~,air = ( 3 X 1010 cm/sec) / (2.0 X 109 Hertz) = 15 centimeters in 

~,water = ~,air / ~]£w ’= 15 centimeters/q64 = 2 centimeters in water

where I approximate the dielectric constant of water to be 64

~,tissue = ~-air / ~/gt = 15 centimeters / ~/25 -- 3 centimeters in tissue
where I approximate the dielectric constant of muscle tissue to be 25

Another important property of EM wave propagation is the diverging of a
transmitted wave as it leaves an antenna and as it propagates from one
dielectric medium into another. These issues are discussed in detail in the
above mentioned book on Radar and in any text on EM wave theory. In
particular, a transmitted wave from an antenna diverges from an antenna
with a full angle 0, where 0 = ~, / d, and d is the dimension of the antenna.
Thus a wave leaving a dipole antenna that is 1/2 wave in total dimension
diverges very rapidly and, if positioned far from a head, the wave would be
much larger than the organ or organ interface targeted for measurement. A~
a result, little energy will reflect from the organ. In addition, at the interfaces
between air and a high dielectric material such as water filled tissue, strong
reflections occttr with typically only 10% of the wave being transmitted into
the high dielectric constant (i,e, gt ) medium, However once inside the
tissue, the EM wave divergence rate is reduced by the ~]~t (i.e. the index of

refraction) and the wave diverges much more slowly. Its propagation is
governed by the principles of physical optics which include diffraction,
scattering, constructive and destructive interferences, and related phenomena
which take place in the complex structures inside the head. Since many of
the structures of the speech organs and cavities are of the dimensions of the
EM waves used (e.g. 3 cm in tissue), very strong res6nant propagation effects

can occur and have been measured by us. By changing ~, one can optimize the
detection of desired resonance responses. These form the basis for a class of
detection algorithms based upon resonances or "standing wave" properties to

Ne~ Ideas in Speech Recogniton 13



enhance or simplify the information gathering properties of these systems.
These effects are also strongly dependent upon the polarization of the EM
wave being transmitted. Several techniques are used to optimize the wave
path for the measurements described in this document. They include the use
of shorter wave transmitters (consistent with propagation through tissue),
placement of the antenna close to the head or jaw before divergence has
developed, the use of dielectric focusing or ducting materials (e.g. high 
foams), the use of multiple-wave length antennas for focusing and narrower
beam formation, the use of quadrature techniques (6), and the selection of the
EM polarization and the angles of incidence of transmission into the throat
and head.

II C. Transmission and Reflection of EM wave from Vocal Box in Neck

The sketch below in Fig. II-1 illustrates the transmission and reflection of a
single linearly polarized EM wave pulse in a number of locations, each one
wavelength apart. An important observation is that the wavelength of the
wave as it enters the neck shortens and the propagation speed "c" slows down
by 1/~. This occurs because the tissue is a material with dielectric constant

~ greater than ~’,0=1 for air. In addition, the amplitude of the electric field
drops for two reasons. The first is that a significant fraction of the forward
propagating EM wave reflects at the first surface of the air skin interface, and
the second reason is that in a dielectric medium, the E field drops because of
the high dielectric constant. The shortening and slowing of the wave makes it
possible to measure the size and location of structures internal to the head
that are a small fraction of each radar pulse length in air. Since it is common
practice to measure distances to less than 1/10th of the EM pulse length
dimension, we can see structures that are 1/10 of a half wave pulse of 1.5 cm
of the wavelength in the tissue, or 1.5 mm. By seeing we mean that it is easy
to detect changes in the EM wave reflectivity associated with the absence or
presence of 1.5 mm structures, or more importantly, we can easily detect
changes in the positions (interfaces) of vocal organ structures down a 1.5 nun
scale as speech organ motion occurs between one se~ of pulses to. another set
of pulse~ after the motion has occurred. These position changes are
associated with motions of the vocal organs as they form themselves to
p)’epare for the next speech sound.
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wavelengths
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neck and vocal cords
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example
Fig. II-1 Schematic of a single EM 1/2-sine pulse being tra~tsmitted in the
direction of the vocal cords in the neck as time increases. The drawing only
shows forward propagating pulses, reflected pulses are discussed later. The
EM wave pulses slow in velocity as they enter the dielectric medium of the
neck, and begin to encounter the air tract (Larynx) and the vocal folds (cords).
Notice thaf the wave diverges rapidly from the simple dipole antenna and
most of the power misses the vocal cords. In actual practice the antenna is
placed closer to the skin, and dielectric "matcl~ing" or focusing materials can
be used to improve the direction and efficiency of coupling into the organ
being measured. Also note that the EM field is polarized in this example; the
scattering is sensitive to polarization angle and the reflection from interface is
a strong function of polarization angle.
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E-field
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Fig. II-2 Single EM wave being reflected from vocal folds in neck in many
locations as time increases and propagation toward the receive antenna. The
sketch does not sb, ow the scattered EM waves from tb.e air-sk[r~ interfaces
which are quite strong. The air-skin interface reflection is easily filtered
because it doesn’t move during a word sound, and the vocal folds do.
Designers use filters to detect faster intensity changes that are associated with
position changes in the vocal folds. For example if the vocal folds move
nearer to the antenna, a more intense signal is received.or if they move
further away, a less intense signal is received. Unwanted reflected signals can
also be filtered out by noting that the skin reflection returns earlier to the
antenna than the reflection from the vocal folds which are three wavelengths
into the neck. A range gate can reject pulses which return too early, and accept
those parts of the wave (e.g. positive part) that return on time.
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IID. EM wave Reception and Processing2

After the radar pulse is received it must be processed, correlated with other
pulses from other organs and correlated with acoustic data and fed to an
algorithm which automatically selects a word-unit (i.e. PLU), and displays 
to the user or customer. Because these radar sensors easily generate
approximately 2000 pulses each millisecond (our experiments have been done
at 2 MHz transmit rates), one can average 1000 pulses for each reflected range
position or for each wavelength, etc., then one can change to a new range,
wavelength, etc. and average another 1000 pulses, and thereby measure up to
30 parameters during each sound formation epic of 15 milliseconds. The
Figures II-3 and II-.4 (see below) show conceptually simple ways of measuring
the locations of all of the organ interfaces from the front of a face through the
back of the throat. The locations at a given time can be associated with a given
speech PLU and by knowing all of the organ locations for each sound epic (
e.g. about each 15 millisecond window except for vocal folds which open and
close each 3 milliseconds) one can identify the sound being spoken. By
associating the PLUs identified using the EM sensors (NASR) and comparing
with the PLUs identified by conventional acoustic techniques (CASR), one
has a very high probability of identifying the correct PLU. Our data and
calculations (so far) indicate greater than 95% accuracy for all NASRs organ
measurements (and > 99% for certain on-off measurements). Experiments 
LLNL and elsewhere indicate 95% or greater for CASKS. We estimate that the
joint recognition statistics of both systems together will lead to speech
recognition accuracy-error rates of less than 0.1%. This is higlily accurate
word recognition, approaching human hearing standards. However, as
discussed below and later in this document there are many speech
recognition situations where complete organ location and motion
information is not necessary. Their conditions are described in several of the
algorithmic descriptions later in this document. In addition, there are several ¯
other algorithms which use the special information available from the EM
sensors to provide new ways of recognizing speech in both specialized and
generalized situations. They are described later in this document as word
signature algorithms and as motion pattern a!g6rithms.
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FIG. 11-3: Cut-away view of speech organs showing location of a
range gated radar module diirecting its transmitted beam into the
mouth horizontally and a reflected EM wave from the back of the
tongue.
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In this example, there is one chip-size E M transmit-receive module that
measures face front, lips, teeth, tongue parts, velum, and pharynx
conditions as a funcition of time from a horizontal view. This provides up
to 30 or more accurate position locations during each speech epic. By
subtracting the locations obtained during one epic from the next epic,
and dividing by the time between epics, one obtains horizontal velocity
component information from all speech organs.
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.FIG. 11-4 Short transmit pulse and scanned range gate configuration, showing
typical received ,and processed data by hoizontal EM sensor in scanned range gate
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We have obtained very useful information on speech organ motions by
measuring whole organ motions. This type of very simple, yet informative,
information on whether an organ has moved from one speech epic to
another can be understood by considering the range gate in the Fig. II-4 above
to be about 5.nanoseconds in duration so all of the reflected signal signals
from all of the horizontal interfaces are averaged over 30,000 times, digitized
and stored into one bin. This processing algorithm causes all interface data
from one horizontal mouth configuration to be averaged over one speech
epic and stored in the first bin (#1) location. Then the process is repeated and
another speech epic is averaged and stored in the next bin 2. By comparing
one bin number to the next (e.g. by subtracting or by ratioing one to the next)
one finds a correlation that is a consequence of the different total path
reflection of the single transmitted wave with all of the speech organ
interfaces associated with the formation of a given sound in the 15
millisecond epic being measured. The next mouth configuration, measured
one or more speech epics later, gives a different average-reflected EM signal
value because there is a different cumulative reflection of EM waves from the
new set of speech organ interface locations. For example, this technique was
first used by Holzrichter and McEwan to measure the motions of vocal folds
(i.e. vocal cords) as they "burst" open and then close thereby exciting the vo.cal
resonator system. This technique provides very useful information on the
presence of "voiced" (i.e. vocal fold active) sounds, which with the proper
algorithms, enables the simple discrimination of similar sounding acoustic
sounds units such as "b" and "p", the first voiced (i.e. vocal folds moving)
and the second not voiced (i.e. vocal folds still).

There are additional combinations of transmitting EM pulses for the speech
recognition application. They include transmitting multiple pulses (i.e.
several waves of a pulse train over a given duration such as 3 nsec.) and
using a short duration, medium duration, or a completely open range gate to
collect the reflection EM waves. Another important configuration uses the
above configuration in Fig. II-3, but compares the reflected EM waves to a part
of the transmitted wave (suitably delayed) in such a configuration
(homodyne) that both the phase and amplitude change between the
reflections and the fixed transmitter phase (from speech-epic to speech-epic) 
detected and used for signal processing. Other techniques include changing
the transmitted wavelength from sample to sample during a given speech
epic to detect resonance effects in the reflections from the vocal cavities and
organ configurations. Another technique is to move the phase of transmitted
single or multiple pulses relative to a fixed transmit gate and to a fixed
receive range gate and by using a homodyne mode one can inteferometrically
measure distances from the antennas to the speech organ interfaces and back.
Many conventional radar techniques and several new techniques can be used
to obtain speech organ information, which when processed by appropriate
algorithms, can provide very valuable information for accurate, economical,
and rapid speech recognition.
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All of the algoritlzms described later in this document use the property of
obtaining speech organ position or motion information through transmitting
and reflecting EM waves from the speech organs. The basic ideas of these new
ways of processing the EM information, often in conjunction with
simultaneous acoustic information, are described in this document as
algorithmic procedures. In addition, new algorithms built from the basic
building block,s (i.e. procedures) described in this document can be devised
and applied to specific applications.
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IlL SINGLE ORGAN NON-ACOUSTIC SPEECH RECOGNITION
ALGORITHMS

III Introduction:
The actions of single speech organs can guide important decisions made by
traditional acoustic speech recognition systems, however it is not possible to
use the non-acoustic (radar) signature from a single speech organ motion 
uniquely identify a word-sound. Thus these algorithms are used primarily in
the joint speech recognition mode ( where EM plus Acoustic recognizer
sensor & algorithms are used together). However, as discussed in Section V.,
several such single organ sensors and algorithms can be combined into a
multi-organ, multi-location system for either complete non acoustic
recognition or for very accurate joint non acoustic and acoustic recognition
systems. Single organ motions provide important information that aid
conventional acoustic speech recognition algorithms to provide more
accurate, faster, and more economical overall speech recognition. In addition,
single organ information is the key to speech recognition (and synthesis)
based upon vocal tract recognizer models, which are described in Section IV.
By single organ motion we mean signals associated with the organ moving as
a whole (e.g. vocal folds opening and closing or resting); we also include
methods using time differentiation of organ motion (e.g. the tongue tip
moving at rates faster than the tongue body), and we include methods where
during a given sound epic (e.g 15 milliseconds) several measurements are
made of specific organ-part locations (e.g. tongue tip vs tongue back) 
several resonance effects are measured by using one or more Wavelengths of
the EM sensor to measure the tongue-palate dimension, or the tongue-tip to
the aleovelar-ridge palate contact, etc. Conventional .acoustic speech
recognition systems (CASRs) have problems other than speech recognition,
which lead to their nominal 5% error rates in quiet office environments, but
whose error rates exceed 10% when used in noisy environments, when used
by stressed speakers, or when used by dialectual speakers, Several of the
algorithms described here are used to cancel ambient noise effects, and to aid
in determining the start and stop of speech.

Various manifestations of EM sensors were described in the introduction to
this document. When optimized for the single organ-information desired,
and in conjunction with single organ non-acoustic algorithms, they can
provide the following information:

1) onset of Speech time
2) background noise rejection
3) presence of voiced speech
4) pitch of speech
5) rate of speech

6) rhyming PLU differentiation
7) excitation dynamics and/or vocal

[ract shape changes vs time for
model based recognition systems

(see section IV)
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Figure III-1 Shows a simple rendition of a speech onset detector,
background noise suppresser, and voiced-unvoiced PLU discriminator, pitch
of speech, rate of speech, and rhyming discriminator in a simple version of a
non-acoustic acoustic speech recognition the system ( two example-sensors
are shown, one for vocal folds, the other for tongue positions.
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Figure III-2 (see below) shows two examples of vocal-fold radar- and acoustic
speech micophone-outputs. The top figure shows processed (averaged and
low pass filtered) EM reflection data from the vocal folds opening and closing
while they say the sound "eeeeee". The second shows a simultaneous vocal
fold and acoustic signal as the male subject says the two words with all voiced
PLUs "one" and "two". These examples show the fidelity, ease of detection,
and the information that is available with appropriate algorithms.

~ 0.2~- ................... ~..G,’.~. ........................... ~ ........................................................... ~ .....

.0..’I .................................................... ~ ...........................................................

-0.05 o 0.05

Vocal Chord vs Acouatlc Signaturll for "one two"

0,5
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Figure III-3 ( see below) shows another example of the word "two" as a female
subject says the word. In addition, it is Fourier transformed to show the
characteristic frequencies associated with vocal cord motions, with acoustic
sounds, and with the effect of acoustic sounds back on the vocal cord motions.
While the ’%ursting mode" motion of the vocal folds are not affected by the
influence of the acoustic resonator being excited, the small motion, higher
frequency vibrations of the vocal fold membranes and surrounding
membranes are "vibrated" by the presence of the acoustic waves in the vocal
tract. The radar sensors are so sensitive (due to the clever fil.tering and noise
reduction techniques) that they can pick up acoustic vibrations of the
membranes as well as the forced motions of the air flow. This information
can be useful for vocal-tract-model based algorithms where feedback of the air
column onto the glottis is important.

RF time waveform of the word (two)
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time (sec)

Acoustic time waveform of the word (two)
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III. A. ONSET- AND END-OF-SPEECH ALGORITHMS

III AI: Vocal Fold Motion Onset Algorithm:.
Vocal folds move when voiced sounds are formed. Most all English sounds
are voiced and most words contain one or more voiced sounds within each
second of speech. English speech usually contains about 3-7 word-sound
units (PLUs) per second and a non-voiced sound is statistically always
followed by a voiced sound every 1 to 2 PLU units. This property can be
exploited by noticing that the radar detector Fig III-4 below shows an
algorithm for detecting the onset of speech by using both an acoustic and
radar unit at the same time. The issue for this algorithm is that some words
begin with non-voiced sounds such as "s" in "sam", thus the algorithm must
be able to back up to catch sounds missing by the onset detection by the radar,
The following chart desribes such an algorithm which has been testing
manually.

Figure III-4a
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Figure III-4:
Flow Chart for Single Organ motion joint Acoustic non-Acoustic
Speech Algorithm e,g. the word "sam"
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III A2: Ton_~ue Motion Onset/End Algorithm:
The sketch shown above in Fig. shows the radar unit pointed at the

vocal cord area, and this has the same function as radar unit as number 3 unit
in Fig. 1 in the introduction. However one can use micro-radar number 2 in
Fig. I-1 in the introduction, and also in Fig. III-4 above, to measure tongue
motion and jaw motion. Tongue and jaw motion are in some respects better
indicators of the onset of speech than vocal cords because they move to start
unvoiced sotmds as well as voiced sounds. The same single organ arguments
use to describe vocal cord motions pertain to the use of the single organ
tongue (or tongue-jaw coupled motion). The only change.is that the radar 
Fig. III-4 is pointed upward through the underside of the jaw and the
processing boxes labeled 2 and 5 have their filters and other detector constants
changed to accomodate the fact that the tongue moves at a rate of less than
100Hz (much lower than the vocal folds at >250Hz).. In addition, the "wait-
for-speech" times of 0.5 sec in boxes 8,9, and 10 in Fig III-4 can be changed to
accomodate the statistical optinMzation of speech start times and tongue
motion for the vocabulary being used (e.g bond trading, etc.). We find
experimentally, that in fact, there is often tongue and jaw motion occuring
slightly before speech starts when the tongue parts move and the jaw drops
from a rest position to the needed speech configuration for the speaking to
begin. See Fig. III-5 below.

D~kL. Radar Module Response to Spoken "one"
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III A3: Dual Org~ Onset-of-Speech Algorithm:
If two EM tranmit-receive units are used together such as the sensor units

noted in Fig. III-1 above, then a vocal fold motion algorithm and a tongue
motion algorithm can be used in parallel (both described directly above in
IIIA1 and IIIA2). Their outputs can be joined and together with the acoustic
signal, a vote can be taken to decide on the start of speech. An example that
works is that if an acoustic signature plus either vocal fold or tongue/jaw is
present, then speech has occured. A variation of this algorithm is to use the
tongue/jaw motion to make a decision to start the speech recognition (rather
than using acoustics as in Fig. III-4 above, and then wait up to 0.5 seconds (or
the correct statistical delay) before a second vote is taken using the presence of
vocal cord motion or acoustic sound presence to validate the fact that speech
has started. Similarly, one decides on end-of-speech, by conducting a final
check for non-voiced frictive endings (e.g plural "s" ). If the vote from the
unit 8 in Fig. IiI-4 above shows that speech has started then the conventional
acoustic recognizer can start processing the 0.5 seconds of speech recorded in
the short term memory. If the vote is that speech has ended, the algorithm
stops recognizing speech until a new start condition occurs.
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FIG. III-6: Decision Tree for one Non Acoustic Speech Recognition (NASR)
algorithm and one conventional acoustic speech recognition (CASR).
algorithm. Decision accuracies shown are for illustration only. Examples of
top boxes below are box 5 in Fig. III-4 above for the NASR and box 7 also in
Fig. III-4 above for CASR. This decision tree is easily extendable to multiple
NASRs if several EM sensor are used as shown in the introduction to this
document in Fig. I-1.
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SCHEMATIC OF VOTING BETWEEN ONE RADAR ALGORITHM
AND CONVENTIONAL SPEECH RECOGNITION ALGORITHM,
using 97% as decision filter for this example.
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B. Background Noise Suppression Algorithm:

There are two issues in background noise suppression: IIIBI: Noise that
occurs when the speaker is not speaking but which a CASR confuses with
onset or continuing speech, and IIIB2 noise .that occurs during the speaker’s
speech period. In IIIB1, noise occurring while the speaker is not speaking is
eliminated as valid speech input by algorithm IIIA1 above.

In case IIIB2 the elimination of acoustic noise (from background) that enters
the microphone during speech is more difficult. If a constant high
background acoustic level is such that it is comparable to the acoustic input by
the speaker into his own microphone, then neither CSRAs nor the simple
radar noise rejection algorithms will work. This is equivalent to speaking in
a noisy room where your partner can’t hear what you are saying. In the case
that the exterior noise is short in duration or mostly low in level, it will
appear as a short epic of changed signal in the acoustic output of speech
processing algorithm illustrated in Fig. III-4 above. The only way to remove
this epic or to correct it is to have more accurate data from another sensor,
that is trusted so that either a vote can be taken to confirm the acoustic
identification Or the radar sensor provides such a clear identification that its
output is used for the PLU identification. The acquisition of such additional
data from radar motion sensors is described below in the multi-
position/multi-location algorithms in Section V. However, the algorithm for
case IIIB2 is described for use in eliminating short acoustic noise signals by
filtering the radar signal to automatically determine if an unfisual signal
condition happened during the epic that appears unusual to the conventional
acoustic speech recognizer.

Three filter algorithms are described below for dealing with a single noise
epic:
IIIB2i Radar amplitude change per bin beyond a given threshold (20%),
IIIB2it Fourier frequency of the dominant amplitude changes by 10%

(or other user-chosen percent threshold)
.IIIB2iii Sudden, unphysical, fitting coefficient change: Up to 20 or more
coefficients are used to fit vocal tract models (e.g: LPCs) to fit (and smooth) 
digitized radar data in short term memory from each speech epic. For the epic
(or epics) during which the noise occurred, the appearance of any change 
one or more of the fitting coefficients, greater than that permitted by the
normal continuous tract motion model, is labeled as suspect.

If none of the above filters show a discontinuity, then the radar signal
was continuous and consistent with ongoing speech, and the recognizer
algorithm can vote on the best PLU for the epic based upon the certainty
weightings of the radar signal and the acoustic signal or it can reject the
acoustic input and then ask the speaker to repeat his or her commands. If the
filters show an unusual condition, the radar will confirm the CASR’s output
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as an indecipherable case, the recognition of the suspect epic will not proceed,
and the speaker will be notified

III-C. Identification of voiced or unvoiced speech-PLC Algorithm:

Vocal folds.do not move when non-voiced sounds occur. Examples of 8
voiced and non-voiced PLUs pairs, which are confusing to CASRs, are shown
below in table III-1. They are confusing because each pair has the same vocal
tract formation, but one is voiced (vocal folds vibrate) and the other 
sounded by air rushing through vocal tract constrictions such as almost closed
lips as "p" is sounded.

TABLE IIIq
voiced

b

(from Olive et al., Acoustics of American English Speech p 24)
unvoiced voiced unvoiced

p v f
d t th (as in then) th ( as in thin)

d k z s
j c (as in chore) g ( as in garage) sh (as in shore)

If the CASR algorithm used in conjunction with the radar decision algorithm
(shown in Fig. III-6 in IIIA. above) is applied to this decision, it will yield 
signature for an acoustic sound that will be somewhat ambiguous between
the voiced or unvoiced version. That is, its probability of certainty of
identification will be confined to either one or the other PLC of the pair, but
the certainty as to which one will be low. The voiced-unvoiced algorithm
described here, simply directs the radar data filter in Fig. III-4 to note the
presence or absence of a radar signal from vocal fold motion and using the
algorithm in Fig. III-6 the CASR library will show two PLCs (e.g. "p" and "b"),
and it will test the output of the radar filter which will confirm whether it is
the voiced or unvoiced PLC in the epic being examined.

New Ideas in Speech Recogniton 33



III D. Pitch Determination Algorithm:

The output from the horizontal processor in Figure lII-1 above (also sensor 
in Fig. I-1) provides the fundamental open and close rate of the vocal cords.
The experimental data shown above in Fig. III-3 shows that the signal for the
word "two", when Fourier transformed, is easily available to a decision
algorithm that selects the peak of vibration above 100 Hz and less than lkHz.
Below we show additional vocal fold vibration data for the two vowels "e"
and "u". The algorithm for the pitch recognizer uses the speech epic from
unit 2 in Fig. III-4 above and performs first a smoothing filter (e.g. Hamming 
and then a Fourier transform. The algorithm performs a search for the
highest amplitude signal and then chooses the highest amplitude frequency
to be the fundamental pitch. The fundamental frequencies of the two
examples shown below differ by a factor of 2 which indicates that "e" is a
higher pitched sound than the "u" by the mal( speaker. This instantaneous
pitch information is used by conventional speech recognizers to aid in
identifying the PLUs, to train a recognizer to use the natural pitch of the
speaker, to determine the excitation function in model based recognition
systems, and is used in speech synthesizers to properly drive the vocal track
transfer functions used to create natural sounding speech.

fig. UI-7a

¯ Fig. rn-7b.
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III-D. Rate of Speech Indicator Algorithm:

The rate of speech is important for conventional acoustic speech recognizers
(CASRs) because they use frequencies derived from time rate of acoustic
information flow to identify PLUs. The CASRs use a technique called time
warping to a~gn the rates of segments of spoken speech so they can all be
recognized with the same recognizers no matter how rapidly or slowly they
were spoken. The NAC~R algorithms described here rises statistics to
determine the number of radar recognizable features associated with timing
of spoken speech. The general principle is to record the numbers of vocal
organ motion events that are uniquely (in a statistical sense) associated with
the vocal "flow" of known sounds for the vocabularies being utilized by the
user.

IIIDI: Voiced-Unvoiced Statistics Algorithm:
13y measuring the number of times the comparitors numbered 8 and 9 in Fig.
III-4 are used in a given segment of speech (e.g. every 4 seconds) one can
measure the rate of voiced vs unvoiced PLUs in the 4 second word sets and
compare this number against the number in "standard speech". In this
algorithm, standard is defined to be the speech rate for which the
conventional CASR is set for processing, without its "time-warp" algorithm.
being used. With this ratio between measured and expe.cted derived from the
radar vocal fold sensor, the CASR can be constantly updated with speecl~ rate
information.

IIID2: Tongue Motion Statistics Algorithm:
By usi[tg the tongue motion sensor 2 in Fig. 1 or the tongue.motion sensor
shown above in Fig. II:[-1, the rate of tongue motions above a threshold can be
measured for each time segment for which speech rate information is needed.
This algorithm simply uses a threshold detector in comparitor unit 5 in Fig.
III-4 above. The number of times the tongue motions exceed the threshold
each second is converted to rate of PLUs per second in the speech being
spoken. First sections of ~peech appropriate for the library-vocabulary being
used are read into the analyzer, the number of PLUs and the.number of
threshold triggers are counted for the time interval exercise. The two are
compared and a ratio is derived that associates tongue motion threshold
evens per second with the rate of PLUs being spoken.

IIID3: Combined Rate Algorithms: It is clear from the two examples
directly above that more complex decision trees can be formed by using more
than one NASR, each for its own statistical measurements of organ threshold
triggering, and then they are combined by statistical averaging to generate a
final number for the speech rate signal to the CASR.
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III-E. Rhyming or Difficult Sound Identifier Algorithm

Single organ motion detectors can be used to discriminate between naturally
spoken rhyming or otherwise difficult word recognition problems because it
is usually the case that the differences in "rhyming" PLUs are associated with
one organ motion. The example used in the introduction of the words
"saline" and "sailing" are rhymes distinguishable by noting that an EM signal
reflection from the tongue tip and the tongue back motions are easily
differentiable. Such differentiation occurs as different parts of an organ move
and thus reflect the signal at different times during the individual sound
epics (for each PLU) in each word cycle.

The use of a single detector is especially useful for limited vocabularies used
in specialized applications such as trading stocks or bonds, for banking, for
catalogue ordering, for airline system reservations, etc. where very high
accuracy on limited word sets are important. The decision tree shown in Fig.
III-6 above can be used in the following way. The CASR identifies the nearest
PLUs from its library; for rhyming sounds, it will find two or more library
PLUs that are statistically close to the incoming sound pattern. However, the
library contains along with the CASR identifiers, additional NASR
identifying parameters. The additional information contained could include
whether the PLU is voiced or not, whether it has front or back tongue
positions, etc. The NASR recognizer is consulted for its information from
the speech epic, and the PLU fitting both the CASR and the NASR ( in 
statistical sense) is chosen. In the example, "saline" and "sailing" the CASR
has trouble with "ine" and "ing". The NASR recognizer for the tongue
would recognize a front position if "ine" were spoken whereas if the tongue
were back and closed against the palate, the NASR would indicate "ing".
Such "paired" libraries can be built up for all rhyming sounds in a given
vocabulary, and in fact can be built up for all rhymed sounds in any language.
The number of extra information units to be added to the CASR library of
PLU words to accommodate the information for NASR comparison is the
number of organ positions being measured by each organ sensor, times the
number of PLUs. A typical example would be 4 organs (e.g. vocal folds,
tongue, jaw, lips) times 2 positions per organ (e.g. on/off, open/close,
up/down) for a total of 8 extra pieces of information per PLU. Since present
CASRs use 20 to 30 basis numbers in each characterization "vector" (e.g: in
each library location) for each PLU, the addition of 8 more per PLU for
comparison.to NASR is very easy to accommodate. The extra information
could in fact be used to reduce the processing time of the CASR to reach a
given accuracy because the NASR data is much more accurate for many
words than the CASR, thus less statistical processing is necessary.
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IV. SPEECH TRACT MODEL-BASED ALGORITHMS

IV-A: CONVENTIONAL MODEL BASED ALGORITHMS

The EM sensors described in the introduction to this document provide data
missing from presently used vocal tract models which are in turn used in
CASR systems. Presently used CASR systems commonly use LPC (linear
predictive coding) models. These models are based on the observation that 
given speech epic acoustic output is a linear combination of the outputs from
past.speech epics. (I use epics to be the time period, typically 10 to 40
milliseconds, during which speech organs change their configuration very
slightly, vocal folds excepted) They rely on the fact that the vocal tract organ
parameters are slowly varying as the speech organs move to produce each
new PLU. The LPC model is a linear polynomial with a series of coefficients
(al through an, where n = or > 20) that are fit to the acoustic information from
each speech epic. The fitting is done via an analytic, "all-pole" expansion of
the cepstral function. The cepstrum is the Fourier transform of the logarithm
of the speech power spectrum, which to a certain extent mimics the
responsiveness of the human hearing system. See p165, Rabiner and Juang
reference 1. The major advantage of this approach to speech recognition is
that it is a simple model, it is physical in that the coefficients are constrained
to vary slowly as the articulators (i.e. speech organs) change in time, and the
coefficients can be easily derived from acoustic spectral data that is obtained
during each speech epic. It is also been shown to work well, especially for
quasi steady state voiced speech. The reason that models of this nature are
desirable for use in real time speech recognition is that they rely on
calctflating 20 or 30 model based parameters from rather massive amounts of
very structured acoustic input information. These coefficients, once
calculated, make up the components of a 20 or 30 basis vector characterizing
each speech epic. This vector in turn is compared to alibrary (i.e. or code
book) of known vectors for each PLU to be identified, and a statistical speech-
PLU identification is made.

The problems with the present model approaches are that the algorithms
work backwards from the measured acoustic output to find fundamental
parameters which have a high probability of describing the human speech
system for each PLU vocalized. The model based algorithm must eliminate
the effects of the excitation souxce (voiced or non voiced)¢ the effects of varying
intensities of excitation, and use the remair~ing information to describe the
state of the vocal tract and determine the model (i.e. LPC) coefficients; This
approach ’is necessary when the only information available is acoustic output
from the mouth and nose. When additional information is available from
EM sensors, a variety of more complex system transfer models can be used. In
addition, different models can be used as the vocal tract changes shape to
produce quite differently articulated PLUs (sound units). For more detailed
descriptions of EM sensors and these models; see Ref. 8.
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IV-B: HUMAN VOCAL SYSTEM

Figure IV-l, below, shows parts of the human vocal system which change in
dimension as acoustic speech is formed. It is known from speech studies and
from speech synthesis experiments, that knowing the parameters of these
human speech organs one can determine the sound being spoken.

Schematic of Vocal Tract
after Rabiner & Juang Fig. 2.6, p. 17

Cavity , Output

Lung
Cavity

¯ By knowing the conditions (e.g. dimensions, time variations, etc.) of each 
these elements, the human speech sound can be predicted accurately. PLUs
can be identified (and, also a very important other application, human speech
can be accurately and pleasingly synthesized). EM sensors can determine the
conditions of the speech tract with increasing degrees of fidelity as larger
numbers of more accurate sensors are employed. This information can be
used to augment presently used CASR models such as LPC, it can allow the "
use of more complex CASR models such as ARMA models (see L. Ng for
Auto Regressive Moving Average models, or ARMA, discussions Refs. 8 and
9), it can be used to develop joint NASR/CASR models, or can be used to
predict the PLU units without using acoustic speech information at all.
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IV-C: MODELS:

The essence of a good model is that is easy to use and that it captures the
essence of the acoustical physics and the human brain-muscle relationships of
speech formation, using as few adjustable parameters as possible.
Furthermore, by "model" one often means a method of describing the
relationships between speech organ dimensions or motion conditions and
the model parameters describing the speech system model. For example, it
will be unphysical for the model to fit a sound with parameters that describe a
4 cm open tongue to palate dimension and a closed jaw. This is accomplished
by incorporating mathematical algorithmic constraints on how the model
parameters can evolve in time and how they are used as a function of an
intended speech unit. The algorithms that work well with EM sensors are
those where a small number of model parameters can be constrained by the
EM reflection information from a given organ condition. It is not necessary
that the EM sensor obtain "picture perfect" dimension information to
constrain a model parameter, bu[ that there is a strong correlation between a
returned EM signal anti the parameter of the model being constrained. An
example used below is to use the EM sensors and algorithms described in
Section III to measure vocal fold motion, and use this motion information to
describe (i.e. define) the excitation function for LPC or ARMA models as 
pitch, phase, and amplitude of the driving excitation.
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Figure IV-2
ACOUSTIC TRACT MODELS f
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Figure IV-2: Transfer ftmction 1 (top section) is the LPC transfer function
where an "all-pole" function is used to modulate the excitation functions to
generate speech. The inverse process allows one to determine the coefficients
of the LPC function from known speech. The EM sensor information can be
used to determined wl~ich excitation function is employed by the speaker, and
it can be used to constrain parameters in the vocal tract and thus restrict the
LPC coefficients more strongly that with the acoustic information alone.
Transfer function 2 (bottom section) describes a more complicated transfer
function that can include "zeros" and "poles" The letters (i.e. a,b,c,...o) show
locations for EM sensor information to be inputted to the transfer function to
constrain the model based PLC identification, or to signal the algorithm to
change the transfer function.
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IV-D: USES OF ADDITIONAL EM SENSOR INFORMATION:

The problem with using the simplest of the acoustic tract models is that the
information that is desired for use in the recognition procedure ( e.g. the a-
coefficients in the LPC model) are in the transfer function, not in the
excitation functions, the switches, the feedback, etc. Thus by working
backward from the out-put ( i.e. h in model 1 or p+q in model 2) one has 
great deal of excess information that obscures the functions one is trying to
determine. NASR systems greatly simply this problem by allowing the
NASR/CASR algorithm user to measure and remove the known functional
dependence ( i.e. referring to Fig. IV-2) functions a and/or b in models 1 & 
and h,i,l,n,f, r in models 2), and thus simplifying the identification of the
parameters in the transfer functions used. In reference 8, we show how to
obtain the excitation function, characterize it, remove its effects from the
acoustic output, and determine aspects of the feedback loop.

The essence of the NASR "vocal tract" algorithmic procedure is to use the
additional information obtained by one or more sensors and their associated
sub-algorithms to constrain the vocal tract transfer function which best
describes the vocal tract’s length, width, branching, stop locations, pitch,
tension, etc. during the speech epic for which a recognition effort is taking
place. Two generalized forms of linear transfer functions, H(z), that can 
used in speech recognition are as follows, see Refs. 8 and 9:

Equation IV-2: ARMA (auto regressive moving average) model- ratio of two
polynomials. In the z - variable, z denotes delays.

b0 + bl*z**(-1) + b2*z**(-2) + b3*z**(-3) ,.. + ... bm*z**(-m)
H(z) = ..................................................

a0 + al*z**(-1) + a2*z**(-2) + a3*z**(-3) ... + ... an*z**(-n)

Equation IV-3: Pole-zero transfer function model Here, z = e**(jwt), where
w is the frequency variable ranges from 0 to pi; bl ... bm are the zeros,
and al ... an are the poles.

(z-bi)*(z-b2)*(z-b3) . . .*(z-bm)
.......................................

(z-al)*(z-a2)*(z-a3)...*(z-an)

Efficient recognition will occur when a unique set of a’s and b’s for the
transform used are identified and associated with a known library (i.e. code-
book) value that identify the PLU being articulated. The reason that the
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"transform-used" may change is that the EM sensor (used in a single organ
mode, see Section III) can determine if the vocal tract is strongly modified.
Examples are opening and closing of the velum, opening and dosing of the
lips, closing of the glottis, etc., all of which dramatically change the length, the
boundary conditions, and the branching rations of the vocal tract model. See
Fig. IV-1 above. Trying to fit all of these configurations with one set of
parameters, as is now done with CASRs, leads to much poorer speech
recognition than desired; it also takes much more computing than desired.

IV-E; NASR VOCAL TRACT ALGORITHMIC PROCEDURES

The EM sensor system vocal tract algorithmic procedures are as follows:

IV-El: Using the algorithms described in the single-organ algorithms in
Section-III (e.g. onset-of-speech, voiced-unvoiced detection, and pitch) do:

a) Choose the excitation function.and its pitch for the speech
epic being fitted, i.e. choose a or b based on EM sensor data. If a
is the operative function, measure the pitch and amplitude.

b) Measure the excitation functions a once (b is known 
be white noise), model its functional form, take its transform,
and divide it into the transform of the measured output, S(t).
Use real-time measured pitch (Section III-D) or use an estimated
pitch to set the excitation frequency values before the division.

c) Measure the acoustically driven motion of the vocal folds
because of feedback. Using single organ algorithms in Section III
and appropriate frequencies which are imposed upon the vocal
cords by the acoustic pressure waves in the vocal tract resonator.
Use this information together with models of the vocal tract to
measure the feedback level f in model 2 in Figure IV-2 above.

IV-E2: Using input from the algorithms in Section III, determine which
transfer function is appropriate for the speech epic being analyzed. For
example, if the EM sensor/algorithm shows that the velum is open (e.g. 
nasal such as "n" is being spoken) and that the tongue tip is up behind the
front teeth, ~his means that the mouth cavity is closed and the nasal cavity is
open. This calls for a different transfer function than one which would be
used with a completely open, single tract system voicing "aah’. ( In principle,
one or the other of the generalized transfer functions shown above in
equation IV-l,2 could be used to describe tl~is tract variation and its
coefficients could be deduced from the data). This algorithmic step allows one
to select the best transfer function from a catalogue of transfer functions
optimized for the 4 or 5 important configurations of the vocal tract. It is
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interesting to note that if one only uses LPC polynomials (i.e. all "zero"
transfer functions) as CASRs use today, t2~e generalized vocal tract can not be
accurately modeled. It is clear tl~at pre-knowledge of the large changes of the
vocal tract through the EM sensors enables the algorithm fitting routines to
more rapidly converge to its characteristic identification parameters--the a’s
and b’s

IV-E3: By using sensors such as those in the numbered locations in Fig. IV-l,
determine the detailed organ conditions (e.g. positions, cavity dimensions,
velocities, etc.) and which are represented as transfer function parameters,
such as f in model 1, and g,k,o in model 2. Using input from the
algorithms associated with such sensors, which are described in Section III
and Section" IV, constrain and determine the a’s and b’s associated with the
appropriate transfer function chosen in IVE-2 above.

IV-E4: Form a charaterization vector for the speech epic being recognized by
using information from IV-E1 through E3. Choose the operative transfer
function, the calculated a’s and b’s, the excitation source functional form
together with its pitch and amplitude, the feedback level, and then form a
multi component vector. Compare this vector with the library (i.e. code
book) of vectors associated with known PLUs or PLU combinations. Select
the best NASR indicated PLU or combination of PLUs, and record the
probable error of identification.

IVoES: Use CSAR to do a statistically separate PLU identification. Use the
algorithm described in Section III, Figure III-6 to statistically determine the
most likely PLU identification of the joint identification and record the
associated error.

IV-F: SUMMARY:

A series of algorithmic steps are presented that.describe how reflected EM.
radiation from vocal organs can be used to enhance the accuracy, speed, and
range of speech recognition. When these procedures are followed.and
implemented using conventional system-engineering mathematical
procedures, enough additional information is available to the speech
recognition process that dramatic improvements in speech recognition will
occur.

NeW Ideas in Speech Recogniton 43



V. MULTIPLE ORGAN, MULTIPLE POSITION ALGORITHMS

V-A. MULTIPLE INFORMATION:
Short pulse, high repetition rate ultra-low power EM transmit-receive units
have sufficient information gathering capacity that many speech organ
interface conditions in the head and neck organs can be gathered within a
given speech epic. As discussed above in Section-IID, reflections from
typically 30 locations (or other conditions) along a defined EM wave path can
be recorded. As time progresses, and as the vocal organs move to new
positions for a new speech epic, the new organ interface conditions (e.g.
locations) can be recorded. By recording interface conditions, we mean
recording the reflected, processed EM signals associated with the new location
configuration. An example of a sensor that is measuring the conditions (in
this case distances from the sensor) of several jaw-tongue-palate interfaces
during a given epic are shown below in Fig. V-1. However, valuable
measurements need not be actual position locations in a photographic sense,
but may be complex convolutions of wave resonances, multiple-interface
interference effects, whole organ motions, or similar effects. These, less direct
data, nevertheless provide information that can uniquely characterize the
conditions of the observed organ(s) for the algorithms being used and for the
speech recognition market objective being sought. Examples, of very
informative, but more complex, convolved EM wave-organ interfaces have
been illustrated in Section III (Whole-organ algorithms). There we described
how sensors detect gross motions of the vocal folds or tongue motions, which
we then showed to provide very valuable irtformation for algorithmic speech
recognition decisions. In this section we show how information from
multiple sensors, observing several speech organs simultaneously (under
some .conditions using simultaneously recorded acoustic information) can be
statistically "fused" together to generate speech unit (PLU) identification.
These procedures also generate other important speech recognition
information such as speech start, speech stop, pitch, rate, word separation,
organ velocity, speech model coefficients, and others which are very
important in assembling the recognized PLUs into words and sentences.
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V-B RANGE GATED MULTIPLE INTERFACE DATA:

An experiment by Holzrichter and McEwan using a range gated radar directed
upward into the jaw (Fig. V-1 below) showed a variety of signatures 
reflected energy vs time (distance into the head) as function of the dominant
sounds from the sounds: "uh" and "uu" as in "two". These signals are
associated with differences in jaw up/down, tongue up or down, and the
tongue-body (middle tongue) distance to palate (roof of mouth) increasing
and decreasing causing changes in resonant reflections. These data clearly
show very noticeable changes with different PLUs, which would be
drammatically enhanced by subtracting the dotted line noted background.

Depth

.0.02
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V-C ALGORITHM CONCEPTS:
Given that we can obtain a large number of data from many sensors which
are sampling organ interface conditions with a variety of time windows,
wavelengths, phases, and processing algorithms, one needs a procedure for
integrating the information in such a way that efficient, accurate speech
recognition can take place. In this section we show how data taken from
demonstrated sensor configurations, together with data from more
sophisticated sensor systems which are in the development phase of our
work, can be joined together to form multi-component vector identifiers for
each speech unit (PLU). This data can be further processed by comparing the
data vectors to a library (i.e. code book) of known speech units for the
algorithm and sensor suite being used. Together with special weighting
factors (built into the library and discussed in Section III and illustrated in Fig.
III-6), one can obtain a much higher statistical probability of accurate speech
recognition than with present conventional speech recognition systems. In
fact, we claim that by using an optimum suite of sensors and algorithms as
described in this document, we can pro~,ide superior speech recognition to
human recognition, <1% error rates.

Below we show a synthesized example of a multi-sensor, multi-interface,
multi-organ speech algorithm. It uses a horizontally placed sensor which
propagates an EM signal path as in Section I, Fig. I-1 sensor 1. This data is.
similar to that shown experimentally in Fig V-l, only the concept is expanded
to show the potential of the data collection capability of such EM sensor
systems when applied to the speech recognition problem. Tills horizontal,
range-gated data set is joined in the algorithm by vocal fold motion data from
whole organ sensors (described in Section III). These collective sets of 
locations (e.g. many organs & many positions) can be correlated with known
locations for each phoneme in the set being used (e.g. the "Rabiner set" for
English PLUs in Section I, Appendix A) , and thus phoneme identification
can take place using either electromagnetic information alone, or in
conjunction with acoustic speech information. This algorithmic procedure is
described in this Section of this document under the category "multiple
organ, multiple position" algorithms, and is an extension of the algorithms
described in Section III. In addition, the total algorithm eventually used for a
working non-acoustic speech recognizer will consist of many sub-algorithm
procedures described in the different sections of this document.
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V-D AVAILABLE INFORMATION:

To provide an example of fhe amount of information available from this
multi-organ, multi-sensor technique, consider the available combinations of
organ motion and sensor information from yery simple technical conditions:

Table V-1
ORGAN ORGAN INFORMATION RELATIVE

CON DITI ON UN ITS TIME POSITIONS
i vocal folds -- 2

position open/closed
rate high/low 2

)harynx-glottis open/nearly 2 2
closed

velum open/closed 2 2
aw up/down 2 2
tongue -- body up~down tongue total: 1

tip up/down 6 data 2
back up/down 2

lips open/ 2 2
nearly closed

These organ position and velocity conditions all together provide 384
information combinations to be applied to the description of 50 PLU s (speech
phonemes) as they are spoken. In addition, the relative time position of each
organ condition relative to the other organ conditions within a given speech
time-epic also provides information. For a conservative estimate, we note
there are at least two important time identification bins per speech epic being
considered (1st half and second half). This adds 26 = 64 more identification
units than the 384 estimated above. The total (obtained by multiplying the
number of independent parameters together) is 24, 576 potential conditions
being described by the relatively simple (i.e.. technically not demanding) set 
measurements described above in Table V-l; This number of identifying
parameters approaches the number of words used in natural English speech
and vastly exceeds the number of speech units normally used for English
speech recognition. (e.g. 50 PLU’s, 256-512 acoustic units, 2000 English demi-
syllables, and 10,000 syllables..See Ref. 1, Rabiner p437.). The complete list of
syllables are not used, even .though they are the most basic of speech units
This is because it is too difficult to identify the measured acoustic
identification vector with 10,000 code book vectors. However, it is likely that
the NASR measured vector values themselves can be used as addresses to
rapidly narrow the search of a corresponding code-book vector in a space as
large as 10,000. PLUs are the present standard set used in speech recognition,
thus we us~ it as the reference set for this document. Research is still
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underway to deiermine the accuracy of determination of the PLUs by the EM
sensors-algorithm systems, but our experimental and algorithmic work show
that a large number can be uniquely identified. Together, with acoustic
information, there is ample data to accurately identify all phonemes and their
relationships .to the next phoneme in a word or sentence. The objective of
applications research will be to identify the minimum set for the market
objective, and to minimized the cost, while meeting accuracy, noise rejection,
and other conditions.

V-E ILLUSTRATIVE DATA ACOUISITION AND INFORMATION VECTOR
FORMATION:

As an example, by properly choosing a suite of sensors and their
wavelengths, as well as pulse format, direction of propagation, receiver
conditions such as sample-gate and/or homodyne phase, one can obtain a
collection of experimental data as shown above in Fig V-1 and in Section III.
The quantization, digitization, averaging, and storing in short and longer
term memory of the EM data is described in the following illustrative Figures
V-2 through V-4. In particular, these examples show lip-to-throat reflection
data vs time (and thus distance) for the spoken word "to", taken (primarily)
using a horizontal propagating wave as in Fig. I-1, sensor 1..However, to
illustrate the power of multiple-sensor multiple-organ information, vocal
cord motion data is added to this set by placing digitized data from its sensor
(Fig. Iq, sensor 3) in analog time bins 25 to 28 of the horizontal digital data set
illustrated in Fig. V-2 through V-4 below. The last Figure in the series, Fig V-
4 shows the strikingly different vector rendition of the data obtained from the
PLU "t" vs "o" in the word "to". This data is continuous enough, from bin 1
through 24, that it can provide strong constraints on the model parameters
needed for the Vocal Tract Model algorithms described in Section IV. Such.
models can be used to reduce the number of parameters from 30 in this vector
example, to perhaps 10 or 15 truly independent.parameters.
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PROCESSING OF NON ACOUSTIC SPEECH -ORGAN POSITION INFORMATION.
Shows illustrative example of quantized, digitized, averaged, and stored EM received
signal info(mation. An algorithm is shown to generate multicomponent vector
information for the phonemes "t" and "o" in the two-phoneme word "to". Vocal fold
information from a different ensor has been added to bins 26-26
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FIG: Formation of PLU vector for "o" in "to", see Fig, above and in in text for
description of vocal fold information addition.
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ThKdifference in vocal organ articulator positions from "t" to "o" is shown
in (~J below. In this case the scans 4(.4(~&(~) would have been 
about 40msec apart. The differences in position, shown by the transition
of the tongue, where the signal drops in bin 8 thru bin17, are very
straightforeward to detect. Such characteristic patterns as these, can be
used to distinguish between the two sounds "t" and "o" in this example.
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This array of values vs bin number for"o" forms avector of 30
components which are quite different than the vector for the sound "t".
These can be used to compare to a set of library values of all phoneme
values with the given sensor suite and algorithm.
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FIG:__ Illustrative Vector patterns for two phonemes "t" and "o"
taken using two sensor systems--Horizontal into mouth and Vocal fold
on-off, as described in the figures above.

Vector patterns between the phoneme sounds "t" and "o" in the
word "to", when compared to a relaxed vocal organ condition. Note
large differences in values as they change from positive to negative
as tile organs deviate in their EM wave scattering strength as they
form the articulator positions for each phoneme. If time were
included, one would see the "t" being articulated more rapidly than
the "o". The actual vector is the series of numerical values in each
bin. For example the "t" vector components are, starting with bin 1 :

(0, 0, 1.5, 1.5, 0.6, 0.6, 0.4, -1.2, -1.5, 0, ....;... etc.)

1,1,1.1.1.1_1_1 ,I IIIIllll ,Ill F I I I I I I I_1.1,1,I,,,,,.,.,,,,, i,,,l,lim,l ibin number 1,2,3,4,5,6, 7 .................

I III~I,,I.I,I.I.IIIIII II l.ll.l=l,l=l,l,l.IIlkl
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This above example shows how two sensors can b~ combined to obtain
multiple organ inforn-tation. We show one way to join the two data sets into
one set of data to obtain a signature PLU identifier vector (in this case a vector
with 30 basis.components). This vector would be used to compare to a library
of 30 component vectors for known PLUs (i.e. phonemes) to obtain 
identification of the best PLU fit. This library would be developed by asking
an individual speaker (in the case of a personalized recognition algorithm ) 
speak a series of words containing all of the PLUs using the above two sensor
systems. For an algorithm designed to accommodate a larger number of
speakers (for generalized recognition purposes) a cross section of appropriate
speakers would be asked to speak all of the phonemes, in appropriate word or
sentence situations, The data is then collected, normalized, averaged, and
stored in the 30 vector component PLU library. (note: In the library or code
book, the 30 component vectors in this example might be joined with more
information such as statistical weight, note markers to check other data, etc.
for use by the identification algorithm). As shown in section III, Fig. III-6,
this data can be statistically compared to simultaneous acoustic data to obtain
an improved word identification.

V-F LARGER INFORMATION SETS:

The above data manipulation shows how identification vectors for the PLUs
can be developed from a given suite of two sensors and two specific sets of
formats for EM wave transmission and reception (one range gate, the other
homodyne whole organ motion). The above algorithmic description can be
extended to a generic multi-organ, multi-position algorithm that uses
information from multiple sensors and multiple organs. For example, it can
be extended to incorporate several more sensors pointed in other directions,
each of which can provide 30 or more bins of data for each speech epic. The.
additional information can be combined into one vector with 60, 90, or more
components. Another approach is to carry several multi-component vectors
wi.th each PLU, each vector being especially useful for providing statistically
important information for a given set of PLUs and other speech recognition
signatures, such as start-of-speech information. In addition, the procedures
developed in Section III for combining EM information and acoustic
information can be applied directly to the above example where the vector
lengths from the sensors are longer ( 30 vs the 2 or 8 component vector
example of a single organ). In particular, h~ Section III, we showed how
NASR data sets (i.e. vectors) can be statistically combined with simultaneous
acquired acoustic data sets (CASR) in a fashion described in Section III-C and
III-E and in Fig. III-6.
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V-G SUMMARY:
The use of several sensors which are formatted to report on several speech
organ conditions and on the relationship of specific organ interfaces with
static vocal tract structures provides an abundance of data which has been
correlated with PLUs. These information sets when compared to libraries of
PLUs and their associated EM wave signatures will make possible acceptable
identifications of all PLUs in any language needed. This can be accomplished
with or without simultaneous acoustic information, however many of the
initial applications are likely to use simultaneously acquired acoustic data.
When all available information is used, including acoustic systems (i.e. CASR
systems), efficient and low cost speech recognition will be available with
almost any degree of desired accuracy. The application and the convenience
of use will dictate the system sensor suite, its formats, and algorithmic
structure.
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VI. WORD SIGNATURE ALGORITHMS

VI-A Introduction:

Many series of EM signals can be reflected from the speech organ system
during the articulation of a single word. They can be received, averaged, and
processed during the time of total word articulation. We often speak at about
2-3 words per second, or 0.500 sec. per word for this example. A word usually
consists of 3 to 6 PLUs which we have used in this document as the basic
sound unit for speech recognition. The PlUs are connected together in such a
way that we recognize them as a meaningful word entity. In an example
below, I use 5 PLUs per word. If we use data collection algorithms as described
in the Sections above, we described how to collect from 1 to 30 units of
information per 15 milliseconds sampling time between speech organ
movement. We showed in Section III how whole organ measurements can
give 1 unit of information per measurement time and we showed in Section
V how multiple organ/multiple interface measurements gave 30 units for
each 15 millisecond measurement time. We then described above how to
form this EM sensor information into vectors for use in the identification of
each PLU; however, we can use the information in a different manner to
describe whole words. For example, we may prefer to cgntinuously store ~e
EM sensor signal vectors every 15 milliseconds in a vector location in
memory. We then continue to sample, quantize, digitize, average,
normalize, and store the following EM sensor information sequentially in the
memory every 15 milliseconds, thus generating about 33 vectOrs per word
time of nominally 0.5 sec. These 33 vectors can be used to describe whole
words in increasingly complete ways. In the simplest way, we assume the EM
sensor information gathered each 15 msec. is represented by one number and
we form 33 of these numbers into a 33 component vector for each 0.5 sec
spoken word. We could also combine (by a-~eraging or by selecting a key
signature or by some other algorithm) the additional information gathered
during the 15 millisecond EM sensor acquisition time into one number and
store it in the memory location ("bin") to characterized the vocal system
condition at a time location during the word sound. We could do many
things with all of the data taken each 15 msec, including keeping all
information components (e.g. 30 in the multl-sensor, multi-organ example)
and arranging these data into 33 columns forming a matrix of information for
each moment of word sound. For algorithmic simplidty I describe in the next
sub-section an efficient and effective algorithm where single organ sensor
data is organized with one number per time time as a word is spoken.

If now we divide the example of 33 information units per word by 5 ( the
number of pLUs per word), we note that we are obtaining about 
identification vectors per PLU speech time unit. These 6 vectors per PLU
appear redundant, however when one looks at how PLUs are formed into
words, and how words are spoken one after the other there is a need for a
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great deal of additional information. Additional information is needed to
describe the starting of a new sound (i.e. or PLU), the holding of a sound, the
turning off a sound, ~ransitioning to a new sound, and pausing. In the word
formation sense, this "extra" information is needed to define word start, word
stop, word emphasis, rates of delivery for time "warping" and other
important cues for word and sentence construction for the speech recognition
process.

One of the outstanding problems of natural speech is the word-run-together
problem. This occurs when there is no break in the acoustic sound between
words. We observe this also in the vocal fold sensor information stream
when there is no break in vocal fold motion between words (however there is
often vocal fold transitions to new pitches, etc.). Only through the use of
additional information on articulator motion as provided by the EM sensors
and algorithms, can this outstanding problem be solved. The fact is: .every
change in human speech sound is accompanied by one or more speech organ
condition changes. This means that it is now possible for the first time to
identify PLU transitions (i.e., all word sound changes), all endings and all new
word beginnings using the NASR technology described in this document and
referenced documents.

In this document we can not discuss how to assemble PLUs into words; those
procedures have been worked out completely for conventional recognition
systems and work well once one knows the PLUs and therefore the word
starts and stops. They are described well in references on acotistic speech
recognition such as the work by Rabiner in Ref. 1 and the references
contained therein. However, the added information afforded by the NASR
systems discussed above makes possible en~rely new types of wgrd
identification algorithms which will be utilized by users of NASR systems.
Much of the additional information discussed above is illustrated below in
Fig V-1 which shows simultaneous acoustic and vocal fold motion data
taken by T.McEwan Ref. 10, as a male speaker spoke:

"the quick brown fox jumped over the lazy dog’s back"
One sees examples of many of the s~atements made above, including
simultaneous acoustic and vocal fold stops, emphasis changes, PLU breaks,
word starts and stops, pre-sound glottal tightening, and vocal fold rate
transitions. From other examples given here, and other data we have taken
we_~lways see a characteristic EM sensor signal for every sound change that
denotes the start or stop of a PLU and therefore the start or stop of a word.
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Simultaneous acoustic and EM vocal fold motion for the spokenFigure VI-l:
phrase "the quick brown fox j~qmped over the lazy dog’s back":

Tk~..

,4
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VI-B Word Signatures in Association with Conventional Speech
Recognition:

There are many applications where very high accuracy recognition of limited
vocabularies have great application. Examples are bond trading, airline
reservation taking, etc. The vocabularies used in these situations typically
have 1000 words or less. Present acoustic processors work on these
vocabularies by demanding that the speaker speak clearly, distinctly, and be in
a low noise environment. What is needed is additional information that is
statistically independent of the acoustic data, so this is probability of error can
be joined with that of the acoustic information to yield an acceptable quality.
Acceptable quality is usually defined to be human speech like which is 1 ~rror
in 10,000 words. Such accuracy can be attained by using acoustic speech (10-1

error) and two or more EM sensor/algorithm systems (each with 3 X -2

error rates) to obtain a joint recognition error, of somewhat less than 10-4.

The algorithm used for the defined vocabulary problem is to take two sets of
data, one with CASRs and the ot~er with two or more NCASRs. The word
definition and identification is done first by the CASR using an expanded
code book which has information in it referring to the expected NASR
validation criteria. The NASR data set for each word can contain several
types of information. The simplest is that the EM-sensor data is quantized,
digitized, averaged over 15 millisecond intervals, and stored in a memory
"bin". This continues from the beginning to the end of the word and is used
to form a vector of 33 components long (for a 0.5 second maximum duration
words). For shorter words, many of the components in the standard vector
will be zero, for longer words we use a longer standard vector length. An
example of the data that would be quantized, averaged, and stored is shown
below in Figure VI-3. In this figure, we show simultaneously sensed acoustic,
tongue-jaw position, and vocal fold motion as a speaker says the two words:
"sixteen" and "sixty". For this data we would use a vector for a 0.7 see word
length of 50 components, and average the sensor data every 15 milliseconds.
The tongue-jaw sensor easily notes the differences between the words. In
"sixteen" the word is longer and the tongueojaw ~ignal stays high longer than
in "sixty". Distinguishing between these two words is very importan~ in
financial trading. However, these two are often confused with each other by
conventional acoustic recognition systems optimized for financial trading,
but the words sixty and sixteen are not confused with other words often used
in this speech recognition application such as "dollars", "bank", etc. where.
the CASR does a good job. Note that relatively little extra information is
required to "help" the CASR to distinguish between the two acoustically
similar sounding words. (In rhyming words or in "difficult words"there is
usually only one relatively short information segment to distinguish them
from each other, see Rabiner ibid. p 291).
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Figure VI,3: Distinguishing whole word features for the words "sixteen" and
"sixty" as generated by an acoustic sensor, a vocal-fold relative-position vs
time EM sensor, and a tongue/jaw position EM sensor.
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Figure VI-4: A similar set of data which easily shows word distinguishing
features is shown below. The two acoustically rhyming words "saline" and
"sailing" are sensed with vocal fold and tongue-jaw motion sensors.

¯ O.S 0 0.5
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Figure VI-5:
SCHEMATIC OF VOTING BETWEEN EM SENSOR-ALGORITHMS AND A
CONVENTIONAL SPEECH RECOGNITION ALGORITHM, using 97% as initiat decision
filter for this example. Two, three, or more EM sensor algorithms outputs can be joined
as described. Final joint error probabality of 0.1% is illustritive only.

r NASR Units 1,.,,N ]

I
Is the Quality of the fit
between the processed EM
sensor data and the
decision filter high or is it
low?

> 97%? = high
< 97%? = low

CASR J

Does the conventional
acoustic speech recognizer
have a high probability of
.identification or low?

> 97%% = high
< 97%% = low

All Sensor Identification is]
High:

Identification has lower
than 0.1% error estimate

Proceed with Recogition|

NASR High & CASR Low

Checkto see it ambiguity
can be resolved, then
proceed with recogniton:

1st NASR low & CASR
High:
Check to see if ambiguity
can be resolved, then
proceed with recogniton

All sensors have
high errors:

Notify operetor,
and proceed

Check library for qualify of expected fit to
NASR Information, and for type of CASR
uncertainty. If CASR set is resolvable by
NASR let NASR chose the correct word from
the CASR defined range. Find combined
probability and if error is < 0,1% print. If not,
go on to next NASR sensor and repeat this
step. if error does not drop < 0.1% send
message to operator that word is uncertain

Check library for expectation of CASR
identification to be increased by one or
more NASR data. If high, choose correct
NASR sensor data, if error with CASR
data is < ,1% choose word. If not, use
data from next sensor and combine until
.1% error is reached. If don’t reach ,1%
probabiliy, print uncertainty note to
operator but continue with post
processing to use grammar and context
to increase probability of accuracy.

-,~.~
Send note to operator
with poor word.
identification, or try
another post processor to
find word from context,
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In summary, whole word description vectors can be compared, in a post
processor mode, to known vectors for other words in small vocabularies of
100 to 1000 words. That is, after a conventional acoustic speech recognition
system makes a decision, the decision is compared against the EM sensor
word data to validate the decision. If it is validated with acceptable
probabilities, then the word is accepted as recognized, if not, then a best guess
is made using the EM-sensor generated data set(s) to discriminate from the
subset of words constrained (but not uniquely identified) by the CASR system.
Because such acoustically confused words are usually only confused with one
or two other "rhyming" words in the constrained set, the EM data easily
allows the selection of the correct word with high probability. Above, we
show how to use the EM sensor data to resolve the ambiguity in the words
"sailing" vs "saline" and "sixteen" vs "sixty". It is straightforward how to
extend this algorithmic concept to usefully sized word sets of many hundred
to many thousand.

VI-C Large Vocabulary, Natural Speech Algorithms:

In natural English speech up to 60,000 words are used when names and
technical words are included with standard English. We noted above in
section V, that data is available from multiple sensors to distinguish 20,000
different word.-sound-units each sampling time period of 15 milliseconds.
With the over sampling, and additional information gathering time available
during whole word time periods (including pauses between PLUs) several
times the 20,000 PI_.U identifications, up to the 60,000 words needed, are
available for __. r_~d identification. These word identification vectors can be
generated by combinations of EM sensor systems and algorithms, and acoustic
sensors and their algoritl~-ns as described in previous sections. Continued
improvements in EM sensors and algorithms, including those to determine
word start, rate of speech, pitch, and noise reduction are occurring in our
laboratory, and continued reduction in costs of electronic processors and
related memories of over 2X per year are occurring in the electronics industry..
This leads me to envision that NASR or combined NASR/CASR systems
will provide rapid, accurate identification of naturally spoken speech. This

¯ will occur via whole word identification algorithms in a process identical to
that described in section VI-B ~bove or using PLU, or other sound unit based
systems described in Sections III through V above.
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VII. CONCLUSIONS

The above discussed techniques for obtaining speech articulation information
and for formatting it such that it can be conveniently associated with stored
"code book" information can greatly enhance the accuracy, reduce the
computational load, and lower the cost of speech recognition systems.
Several algorithmic tecl-miques were described above to do this "recognition".
Several more recognition algorithms are being developed and are mentioned
here to elicit additional ideas. They include using vectors of information
describing pairs of sounds ("diphones’) and/or triplets of sounds
("triphones") to use in comparing to the codebook information. These
multiple sounds will work especially well with EM sensors because the
"silence" phoneme has been a problem in acoustically based systems.
However in the EM systems, it is usually associated with a preparatory
motion or a relaxing motion of the vocal articulators and is thus useful for
the identification of the pair-sound. Similarly, it is known that as a speaker’s
vocal organs are completing one sound, the non-critical organs (i.e. vocal
articulators) are preparing themselves for the next sound. In addition, these
motions are sometimes incomplete resulting in poorly articulated sounds,
These specific sound pair articulator motions (both complete and incomplete)
are only detectable using the EM system described in this report. Another
important class of information that becomes available through the EM sensor
systems is the articulator "rate of motion" information. While the
algorithms described above in the text have’ mostly used position information
in devgloping the information vectors for subsequent code-book lookup, the
rate information as an articulator begins or ends a sound can provide
important information that has not been usable. As an example, the "t"
sound uses a unique, rapid motion of the tongue tip against the palate behind
the teeth. In addition, we have observed that the touch of the tongue to the
mouth roof results in a "resonance" as the dielectric tongue tip structure
"shorts out" the EM field against the roof of the mouth, and provides a
unique reflection of the EM signal. These motion and resonance signatures
will provide important information for effective EM speech recognition
using new algorithmic techniques.

Other Applications (see ref. 11 as well)

Speech Synthesis
The problems with present speech synthesizer systems are that they.

have very uninteresting voices (not lifelike), they can not simulate women’s
speech very well, they are unable to mimic very desirable voices such as those
of famous actors, and they have difficulty with complex, run together words.
The reason that they have these problems is that they rely either on stored
(i.e. recorded) words in a limited vocabulary or on word formation models
that are based upon associating acoustic sounds with es¢imates of the vocal
tract mathematical transfer function. Most vbcal tract transfer functions are
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based upon "all-pole" models, because they are derived from output speech.
By comparing with acoustic speech it is not possible to determine transfer
function "zeros" and glottal function "zeros". In other words, if no acoustic
energy is measured at a given frequency, one doesn’t know if it is a
consequence.of a zero in the transfer function, or if the sound simply wasn’t
voiced, i.e., a zero in the glottal function. The consequence is that speech
syn!hesizers are not very pleasing in their sound quality. The use of EM
sensors described above provides a method of separating the excitation
function of the human vocal model system from the transfer function of the
human model system, separating them by word units and by neighboring
word units, and storing the needed information in realistic data bases for
subsequent synthesis.

Security:
The information that becomes available through these new channels

of EM information provides additional specific information on the
idiosyncratic characteristics of each individual speaker. The organ position,
velocity, and size information can be recorded in real time along with the
acoustic speech information and compared against known information to
assist in user (i.e. speaker) identification. The described technology allows
one to do the identification with defined word sets or with natural language.

Speech Prosthesis:
Many forms of speech defects arise from physical and neurological

problems. Deafness makes it difficult for one to speak clearly because feedback
is unavailable. A speech organ detection system that identifies the word
being attempted and either provides corrective information to the speaker or
is used to synthesize speech directly can be of great assistance. Similar
applications apply to people with damaged vocal organs, for those who are
trying to learn a foreign language, and for those with neurological damage.
The EM sensor information can be used to augment or to teach the user to
effect improved speech. Feedback can be provided visually, acoustically,
tactically, via electrical stimulation, or other techniques.

Speech Coding:
The capacity to recognize and synthesize speech in real time, with high

accuracy and quality, makes possible many applications in which the spoken
speech is "coded" and transmitted as bit sets of vector information units. It is
known that the transmission of a written word requires a 100 fold reduction
in transmission bandwidth than the spoken word using present voice
telephony. Thus the recognition and storage of words, and related speech
cues (if needed), can serve an important function in compressed data storage,
telephony, and related applications. In particular the ability to measure the
human voiced excitation function and thus calculate and characterize the

vocal tract transfer function for each speech }anit inreal time, makes such
telephony possible.
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Animal Communications:
The use of the techniques described above should have important

applications to animal to animal and animal to human research. Vocal organ
motions can be monitored, acoustic communication frequencies can be
shifted from one species to another, and other important subjects studied.

Summary:
I believe that the use of micro power radar vocal organ sensors in

conjunction with acoustic sensors, with smaller, more powerful IC processors
and memories, and with wireless communication will dramatically change
the way we communicate with machines and with each other.
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Appen,~dix A S_et of Basic PLUs for American Speech*

1 h# silence 26 k kick
2 a a father 27 1 led
3 ae bat 28 m room
4 ah butt 29 n no
5 ao bought 30 ng sing
6 aw bough 31 ow boat
7 ax again 32 oy boy
8 axr diner 33 p pop
9 ay bite 34 r red

10 b bob 35 s sis
11 ch church 36 sh shoe
12 d dad 37 t tot
13 dh they 38 th thief
14 eh bet 49 uh book
15 el bottle 40 uw boot
16 en button 41 v very
17 er bird 42 w wet
18 ey bait 43 y yet
19 f fief 44 z zoo
20 g gag 45 zh measure
21’ hh ha g 46 dx butter
22 ih bit 47 nx center
23 ix roses
24 iy beat
25 jh judge

*Rabiner & Juang, "Fundamentals of Speech Recognition," p. 438
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