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A Parallel Multigrid Vethod for the Finite Element Analysis
of Mechanical Contact

J. D. Hales' and 1. D. Parsons’

Summary

A geometrical multigrid method for solving the linearized matrix equations arising from node-on-
face three-dimensional finite element contact is described. The development of an cfficient
implementation of this combination that minimizes both the memory requirements and the
computational cost requires careful construction and storage of the portion of the coarse mesh stiffness
matrices that are associated with the contact stiffness on the fine mesh. The multigrid contact algorithm
is parallelized in a manner suitable for distributed memory architectures: results are presented that
demonstrates the scheme’s scalability. The solution of a large contact problem derived from an analysis
of the factory joints present in the Space Shuttle reusable solid rocket motor demonstrates the
usetulness of the general approach.

Introduction

A combination ot several factors during the last fifty ycars has dramatically increased the speed
and accuracy of engineering analysis and design of complex systems. These include the development of
computers, the growth of analysis methods such as the finite element method, and the progress made in
the tield of linear solvers. Engineers now combine these three tools in ways that allow them to sotve
incredibly large. previously intractable problems. This paper explains how a multigrid method, finite
clements and parallel computers can work together to solve one of today's more difficult and important
engineering analysis problems: mechanical contact.

Finite element contact has received a significant amount of research attention. The fact that contact
problems are geometrically non-smooth as well as algebraically non-linear makes them difficult to
solve. The geometric multigrid method is an optimal iterative method for solving lincar matrix
equations since it is able to arrive at a solution with a computational effort proportional to the problem
size. Enabling a multigrid method to solve mechanical contact problems has the potential for
significantly increasing the power of the analytical tools available to the engineering analyst.

The mathematical formulation of finite clement contact employed, the geometric multigrid
method, and the parallel implementation of the combined multigrid contact algorithm are described in
the following sections. The paper also demonstrates the scalability of the resulting scheme on a
distributed memory parallel computer and presents results for a non-trivial test problem.

Finite Element Contact

In a finite element contact simulation. the goal is to identify specific instances of contact and to
model accurately the resulting contact forces. This section outlines the underlying mechanics adopted to
treat contact, the search algorithm employed to identify contact, and the governing equations that must
be solved to evolve a mechanical system that suffers from contact constraints.
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Contact Mechanics

When two bodies are in contact. forces develop that push the bodices apart. The amount of force
required to prevent the bodies from penctrating one another is directly related to how much the bodices
would penetrate if the contact forees were not present. Many formulations have been developed to
describe the contact torce. The most common are the penalty, Lagrange multiplier, and augmented
Lagrange multiplier approaches. The three approaches make different choices for the contact torce. ¢,
(in this paper, we focus solely on trictionless contact: however, the methodology employed should be
equally applicable when friction is included).

The augmented Lagrange multiplier approach largely avoids the ill-conditioning of the penalty
approach while providing an update scheme for the solution of the Lagrange multipliers. In this
approach,

1 =A+eg {n

Here, the penalty parameter & need not be extremely large for a good solution. When the gap 1s
removed, g =0. and the contact force is the determined value of the Lagrange multiplicr, A . A benefit
of this approach is the updating scheme for the Lagrange multipliers. Instead of the multipliers being
added to the list of unknowns. the multipliers are found scparately. In an iteration loop, the update
scheime

(11 N L Ll
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improves the multipliers. With the augmented Lagrange multiplier approach. the penetration can be
removed to within a user-defined tolerance simply by continuing in the iteration loop.

Contact Identification

A visual inspection of two bodies makes clear whether contact occurs. However, cnabling a
computer to recognize contact is somewhat complicated. The procedure employed in this study follows
the methodology in [3], and consists of three phases: exterior identification, locating nearby nodes and
checking whether contact exists.

The exterior of a finite element mesh is identified by assigning each face of each element a number
computed as n,,, +(n,, xn,,),where ,, isthe minimum node number of the face, n,,, is the node
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number diagonally opposite #_, . and », , s the total number of nodes. The exterior faces are those

nin nude

with unique identity numbers. Determining the exterior nodes is simply a matter of identifying the
nodes belonging to the external faces.

The next step is determining which exterior nodes are near an exterior face using a capture box. A
capture box is an imaginary box built around an exterior face large enough to capture all exterior nodes
that may penetrate the face in a given time step. A binary search identifies the nodes at the maximum
and minimum coordinates of the capture box, thereby locating all of nodes in the bounding box.
Excluding the four nodes belonging to the face from this list of nodes identifies the nodes that may be
in contact with the element face.

For each exterior node. a list of exterior faces near that node is created. Then. which, if any, taces a
node has penetrated is determined by computing the point of projection of the node to the face (i.c., the
contact point) and whether the node is above or below the face. Thus. a list of contact node-face pairs is



created. Buach of these puirs constitutes o contuet element that produces w contact force and contuet
stiftness.

Contact Governing Equations

Computation of the contact stiffness and force follows the methodelogy given in [2]. In summary.
the variational statement of the problem is wntten as

Guv)y+G (uev)y=0, (3)
where u are the displacements, v belong to the set of admissible test functions, G(...) is the usual
expression for internal and external virmal work, and G (...) is the virtual work done by the contact

forces. For a lincar clastic system, standard implicit finite clement discretization produces the equation
of motion

Mo " +Ku ~=f">+f" (4)

attime 7+ Ar, where M and K are the mass and stiffness matrices, respectively, fis the external applied
force and f s the force resulting trom contact. Discretization in time using Newmark's method

produces

(/;L, M+K)u’ = frr fon +M{ﬂ’7u" +,+wa‘+(+,,-1>u’). (3
which can be written as

K =f . (6)

Since the contact forces depend on the amount of penetration, Equation (6) is nonlinear in u.
Linearization allows Newton iteration to be used for updating estimates of #«"* with the addition of

(i

increments Au'"' obtained by solving

(l?“’—Kf“)Au“'=r'“=l?'“u"‘—f"', (7)
1y
where the contact stiffness matrix K =->-.
cu

Review of Geometric Multigrid Solvers

Multigrid methods are based on the following observation: basic iterative methods are quick to
reduce the high frequency components of the error in an approximate solution but slow to reduce the
low frequency components. The low trequency components can be represented on a coarse grid. where
solution is relatively inexpensive. The combination of fine grid smoothing and coarse grid correction
forms the basis of multigrid methodology [1,5]. Recursive application of this approach to the coarse
mesh problem produces a true multigrid method, which has the property that a problem can be solved in
O¢n) operations, where n is the number ot unknowns on the finest grid. This makes it particularly
suitable for large-scale discretizations. In summary, a relaxation method (usually preconditioned
conjugate gradients) is applied on fine meshes to smooth the errors in the solution. A restriction
operator transfers forces trom a fine mesh to a coarse mesh. whereas an interpolation operator transfers



displacements between the meshes. (A solution of a small system of incar madrix cquations 1> reguired
on the coarsest mesh.

The majority of the computational cffort is expended in computation of matrix-vector products of
the torm Kp during the conjugate gradient fine mesh relaxations. Generally, an clement-fevell matrix
free algorithm is used to minimize the number of operations and the storage required so that Kp i3
computed as

Kp=ZK'p‘ . (%)

A Geometric Multigrid Method for Mechanical Contact

The section explains how the geometric multigrid method was used to solve Equation (7), the
linearized form of the governing equat ns. Specifically, it addresses the issue of enabling the multigrid
method, built upon the idea of multiplc meshes. to manage contact stiffness matrices, matrices which
are inherently finest mesh objects.

The work required to determine K p on a given mesh is aiways independent of the number of
deurees-of-treedom on the current mesh and always dependent on the number of contacts. Thus. the
work associated with the contact stiffitess will not decrease as the mesh hicrarchy is traversed trom tine
to coarse. unlike the remainder of the computations. To avoid this difficulty. clement-level contact
stiffness matrices from each contact condition are formed on the finest mesh and assembled. For cach
coarser mesh, the matrices are transformed and assembled into that mesh’'s global contact stiffness
matrix. This produces K specific for each mesh in a compact storage form, which can then be used to

compute K p when necessary.

In summary, the portion of the stiftness matrix on each mesh resulting from the contact conditions
present on the finest mesh is computed as tollows.

e Compute the contact element stiffiess matrices on the finest mesh, K° .
o Compute the contact clement stiffness matrices on the coarse meshes. K'  using the
constraints employed for inter-mesh transfers. ic.. K =T K" ,T.
e Assemble the coarse mesh contact stiffness K from K stored as a vector representing the
non-zero entries of the upper triangular partof K, denoted as K|
Then, the computation of K__p, on a given coarse mesh is
K. p =K. +K' -diag(K ))p. . (9
Note that the diagonal part ofthe stiffness matrix is stored separately to be used as a preconditioner.

Parallel Implementation

Metis [4] i1s used to produce a volumetric partition of the finite element mesh as part of the
preprocessing stage. This partition is constructed to provide load balancing in terms of the number of
clements assigned to cach processor. thereby producing a scalable implementation ot the geometric



multigrid solver. However. this volumetric partition is unsuitable for the contact calculations. Recursive
coordinate bisection (RCB) is emploved to give each processor an equal portion of the work associated
with contact detection [3]. RCB divides items based on geometric information; this is ideal for contact
detection since nodes and faces near one another are contact candidates. A significant amount of
communication must occur during the contact identification phase. Communication occurs to evenly
distribute the contact identification work; further communication is required so that every processor
knows which nodes from which processors are in contact with its faces and which of its nodes are in
contact with which other processors. Communication for the calculation of K p is also required.

Parallel Performance

The parallel performance of the multigrid contact algorithm described above is measured using a
fixed size problem in which a given hierarchy of meshes are partitioned for different numbers of
processors. The specific problem consists of two square plates, one on the other. Each plate is 80 units
square and 10 units thick and was discretized with eight node hexahedral elements. A three-mesh
hierarchy was built with each plate on the coarsest mesh having one element through the thickness and
being eight elements square. Using uniform refinement, each plate's finest mesh is 4x32x 32 elements,
for a total problem size on the finest mesh of 8,192 elements.
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Figure 1: Timings for the fixed problem size problem.

Figure | reports the timings for a single linear solve on an Origin 2000. Timings are shown for the
contact mechanics computations (“Kc™), the total solution time (“Total™) and the RCB time (“RCB”).
The ideal times for perfect scalability for the contact mechanics computations and the total solution
time are also shown (“Kc Ideal” and “Total Ideal”. respectively). The two straight lines give the
theoretically perfect times based on the time for a single processor. The figure clearly shows excellent
performance. The time required for RCB is significantly lower than even the contact time, which is
much lower than the total time.
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Figure 2: Finite element model of simplified solid rocket booster joint.




Demonstration Problem

The analysis of the factory joints present in the Space Shuttle reusable solid rocket motor are used
to demonstrate the usefulness of the general approach described in this paper. In order to simplify the
modeling and reduce the problem size, the analysis model involves the tang, clevis and pin in a factory
joint. A model of part of the circular joint involving just one pin is shown in Figure 2. The complete
model consists of 177 pins around the circumference. A small detail called a leak port prevents cyclic
symmetry. The complete model has two meshes consisting of 867,520 nodes and 664,120 elements on
the finest mesh. The upper face of the tang is restrained against vertical motion and a downward
pressure field is applied to the lower face of the clevis. The dynamic simulation, employing a consistent
mass matrix, used 256 processors on the Origin 2000.
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Figure 3: Percent of soltion time for several categories of time step 27.

Figure 3 shows the percentage of the execution time various portions of the code required for time
step number 27. The total execution time for that time step was about 13 minutes. “Non-contact™ is the
time required for all calculations not directly associated with contact. “Kc” is the time required for the
K_p calculation. “RCB” is the time spent for recursive coordinate bisection. “Kdiag” represents the
time for determining the contact stiffness diagonal, and “Force” is the time spent calculating contact
forces. “*Other contact” is the time associated with work required for contact that does not fit into one of
the other categories. The sum of all contact categories totals less than 4%. The dominant contact cost is
the cost for the K p, as expected. This simulation shows that the methodology presented in this paper

can solve practical implicit contact problems large enough to require the use of parallel computers.

References ‘
I Briggs, W. L., 1987. 4 Multigrid Tutorial. Society for Industrial and Applied Mathematics.

2 Cristield, M. A., 1997. Contact with friction. In Non-Linear Finite Element Analysis of Solids and
Structures, Volume 2: Advanced Topics, Chapter 23, pp 411-446. John Wiley & Sons.

3 Heinstein, M. W., S. W. Attaway, J. W. Swegle, and F. Mello, 1993. A general-purpose contact
detection algorithm for nonlinear structural analysis codes. Technical Report SAND92-2141.
Sandia National Laboratories.

4 Karypis, G., 2001. METIS: Familv of Multilevel Partitioning Algorithms. hup://www-
users.cs.umn.eduw/~karypis/metis/.

5 Parsons. I. D.. 1997. Parallel adaptive multigrid methods for elasticity, plasticity. and eigenvalue
problems. In Parallel Solution Methods in Computational Mechanics, M. Papadrakakis
(editor). Chapter 4, pp 143-180. John Wiley & Sons Ltd.



http:i�\bww

