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A Parallel Multigrid Method for the Finite Element Analysis 
of Mechanical Contact 

J I) Hales' and I. D. Parwns' 

Summary 

A geometrical multignd method for solving the linearized matrix equations arising from node-on- 
Face thrcc-dimensional finite elenient contact is described. The devclopmcnt of an cfficicnt 
tmplcmcntation of this combination that minimizes both the memory requirements and the 
computational cost requires careful construction and storage of the portion of the coarse mesh stiffness 
matrice5 that are associated with the contact stiffness on the fine mesh. The multigrid contact algorithm 
is parallelizcd in  a manner suitable for distributed memory architectures: results are presented that 
demonstrates the scheme's scalability. The solution of a large contact problem derived from an analysis 
of the factory joints present in the Space Shuttle reusable solid rocket motor demonstrates the 
usefulncss of  the general approach. 

Introduction 

,4 combination of sevcral factors during the last tifty years has dramatically increased the speed 
and accuracy of engineering nnalysis and design of  complex systems. These includc the development of 
computers, the growth of analysis methods such as the finite eleinent method, and the progress inadc in 
the field of linear solvers. Engineers now combine these three tools in ways that allow them to solve 
incredibly large. previously intractable problems. This paper explains how a multigrid method, finite 
elements and parallel computers can work together to solve one of today's more difficult and important 
engineering analysis problems: mechanical contact. 

Finite element contact h a s  received a significant amount of research attention. The fact that contact 
problems are geometrically non-smooth as well as algebraically non-linear makes them difficult to 
solve. The geometric multigrid method is an optimal iterative method for solving linear matrix 
equations since it is able to ainve at a solution with a computational effort proportional to the problem 
size. Enabling a multigrid method to solve mechanical contact problems has the potential for 
significantly increasing the power of the analytical tools available to the engineering analyst. 

The mathematical formulation of finite clement contact employcd, the geometric multigrid 
method, and the parallel implementation of the combined multigrid contact algorithm are described in 
the following sections. The paper also demonstrates the scalability of the resulting scheme on a 
distributed memory parallel computer and presents results for a non-trivial test problem. 

Finite Element Contact 

In a finite element contact simulation. the goal is to identify specific instances of contact and to 
model accurately the resulting contact forccs. This section outlines the underlying mechanics adopted to 
treat contact. the search algorithm employ-ed to identify contact, and the po\;eming equations that must 
be solved to evolve a mechanical system that suffers from contact constraints. 



Contact Mechanics 

\\.lien two botlie\ JI-C i n  contact. f k e h  debclop that push the botlica apart. Thc ;mount o f  t ime 
required to prcccnt the bodies tiom penetrating one  another i b  ciirectl) related to ho\v much the hodic.; 
u-oultl penetrate if the contact forces u ere not present. Many fkiiulations have bccn dc\ clopcd to 
describe tlir contact force. The most common are tlie penalty. Lagrange multiplier, and augnientect 
Lagrange multiplier approaches. The three approaches make different choices for thc cont;ict force. I ,  

(in this paper. kve focus solely on tiictionlcss contact: however. the methodology cmployd should be 
equally applicable when friction is included). 

The augmented Lagrange multiplier approach largely avoids the ill-conditioning of the penalty 
approach while providing an update scheme for the solution of the Lagrange multipliers. In this 
approach. 

Here. the penalv parameter E need not be extremely large for a good solution. When the gap I S  

removed, g = 0 . and the contact force is the determined value ofthc Lagrange multiplier, i. . A benefit 
of tliis approach is the tiptinting scheme for the Lagrange multiplier.\. Instead of the multipliers being 
added to the list of unknouns. tlie multipliers are found scpai-atcly. In  an iteration loop, the upCI:rtc 
scheme 

improves the multipliers. With the augmented Lagrange multiplier approach. the penetration can be 
removed to within a userdefined tolerance simply by continuing i n  the iteration loop. 

Contact Identification 

A visual inspection of two bodies makes clear whether contact occurs. However, enabling a 
computer to recognize contact is somewhat complicated. The procedure employed in this study follows 
the methodology in [ 3 ] ,  and consists of  three phases: exterior identification, locating nearby nodes and 
checking whether contact exists. 

The exterior of a fnite element mesh is identified by assigning each face of each elcment a number 
computed as 1 7 , , , ~ ~  + (n,,,,,, x I ? , , , ~ , ~  ) , where )7,",,, is the minimum node number of the face, nJ,,,x is the node 

number diagonally opposite !z,",,~. and ii,sk,c is the total number of nodes. The exterior faces are those 
with unique identity numbers. Determining the exterior nodes is simply a matter of identifying the 
nodes belonging to the external faces. 

The next step is determining which exterior nodes are near an exterior face using a caphire bos. A 
caphire box is an imaginary box built arotrnd an exterior face large enough to capture a l l  exterior nodt.s 
that may penetrate the face in a given time step. A binary search identifies the nodes at the maximum 
and minimum coordinates of the capture box, thereby locating all of nodes in the bounding hos. 
Excluding the four nodes belonging to the face from this l i s t  ofnodes identifies the nodes that may be 
in contact with the element face. 

For each exterior node. a list ofexterior faces near that node is created. Then. which, if any. faces ii 
node has penetrated i s  determined by computing the point ofprojectioii yf the node to the face (Le., the 
contact point) and whether the node is above or below the face. Thus. a list ofcontact node-face pairs is 



c r c a r d .  L:,icli 0 1 '  ~lic\c p i i >  con\[ittitc, .I c~1111:ict clcincn[ [ h i i t  p~-udt~cc. .  , I  ~ O I I [ J ~ L  l i i rcc ; i n d  contLiL1 
\ t i  t't'ii cs 'I. 

Contact C;o\erniiig Equations 

Computation of thc c ~ n t a c t  stiffness and force folious the mcthociology givcn in [2] .  In .;urnmar).. 
the wriationnl statcincnt ut'thc problem i h  wnttcn as 

G( u ,  v) + c; ( 11. L' ) = 0 , (.<) 

where II are thc displacements. v belong to the set of admissible test functions, G( ...' ) is the USII;II 

expression fur internal and external Lirtrial work, and G, (...) it,  the virtual work done by the contiict 
forces. For a lincur clastic system, standard implicit finite element discretization produces the equation 
of motion 

.Wii ' ' + Ku = f '  + ,f ' ( 4) 

:it time / t At , nhcre .If and K are thc mass and stiffness mati-iccs. respectively. f is thc external applied 
force :mi f 1s the force resulting froin contact. Discret17ation in  time using Ncumark'\ method 

pruduccb 

which can be written as 

Since the contact forces depend on the amount of penetration, Equation (6) is nonlinear in it. 

with the addition of Linearization allows Newton iteration to be used for updating estimates of u' 

increments An'" ' obtained by solving 
- 

(7)  (K(Ll - K < [ A  1 ) ~ ~  , ,  = r l i I  = , - f I . 
.If where the contact stiffness matrix K ,  = + . 
( U  

Review of Geometric Multigrid Solvers 

Multigrid methods are based on the following obsenjation: basic iterative methods are quick to 
reduce the high frequency components of the error in an approximate solution but slow to rcduce the 
low frequency components. The low frequency coinponents can bc rcprescnted on a coarse grid. where 
solution is relatively inexpensive. The combination of tine grid smoothing and coarse grid correction 
forms the basis of multigrid nicthodology [ I  ,5]. Recursive application of this approach to the coarse 
mesh problem produces a true multigrid mcthod. which has the property that a problem can be so l~cd  in 
Oln) operations, where n is the number of unknowns on the finest grid. This makes it pnrticularly 
suitable for large-vxle discretizations. In summary, a relaYation method (usually preconditioned 
conjugate gradients) is applied on fine meshes to smooth the errors i n  the solution. A restriction 
operator transfers forces from a fine mesh to a coarse mesh. whereas ;in interpolation operator transfers 



A Geometric Multigrid ;\lethod for Mechanical Contact 

The section explains how the geometric multigrid method \vas used to solve Equation ( 7). the 
lincarizcd fonn of the governing cqiiii:,. 11s. Specifically, it addresses tlie issue o f  enabling the multigrid 
method, built upon the idea o f  multiple meshes. to manage ccmtact stiffness matriccs. matrices \\ hich 
are inherently tinest mesh objccts. 

The tvork required to determine K ,  p on a given mesh i s  alwa!.s independent o f  tlie number o f  

~12~rce~-i)t '-frCcdoii i on the cui-rent ini.511 .mi ~ l \ \ a y s  clcpcndcnt 011 tlic i i i i n i l w  of  coiit;ict\. PliLi\. tlic 
work associated with the contact stiffiicss \r i l l  not decreusc as the mehh hierxchy is ti-a\ei-xd from tine 
to coarse. unlike the remainder of the computations. To a k o i d  this di f t iculF.  clcment-level cont;ict 
stiffness matrices from each contact condition are formed on the finest mesh and assembled. For each 
coarser mesh, the matrices are transformed and assembled into that mesh's global contact stiffness 
matrix. This produces K ,  specific for each mesh in a compact storage fonn. which can then be used to 

compute K ,  p when necessaiy. 

In summary. the portion o f  the stiffness matrix on each mesh resulting from the c o n t x t  conditions 
present on the tincst rncsh i s  computcd as follows. 

Compute the contact clement stiffness ma t r i~cs  on the coarse meshes. K : ,  using the 

Compute the contact element stiffiess matrices on the finest mesh. K '  . 

constraints employed for inter-mesh transfers. Le.. K: , = T r K ;  , T . 

h s e m b l e  the coarse mesh contact stiffness K ,  , from K : ,  stored as a vector representing the 

non-zero entries o f  the upper tricingular part of K ,  ., , denoted as k ,  . 

Then, the computation of K,, '  p, on a given coarse mesh i s  

Note that the diagonal part ofthe stiffness matrix is stored separately to he used as a precondtioncr. 

Parallel lrnplementation 

Met i s  [J] I S  used to produce B \olumctric partition of the tinitc clement mesh part o t  the 
preprocessing stage. This partition i s  conztnictsd to provide load balancing in  term:, of  the number of 
elements a>bigncd to w c h  proccssvr. therebq producing ;t scalable iiiiplenientation of the gcunictric 



multigrid ~ o l v c r .  Ho~-cvei-. t h i h  ~~olitiiictric partition i h  unsuit;hlc rot thc cc)ntiic[ calculatiun~. Rccurzi\c 
coordinate bisection (RCB) is employed to give each processor an equal portion of thc work associated 
with contact detection [;I. RCB divides items based on geometric information: this is ideal for contact 
detection since nodes and faces near one another arc contact candidates. A significant amount of 
communication must occur during the contact identification phase. Communication occurs to evenly 
distribute the contact identification work; further communication i s  required so that eveiy processor 
knows which nodes from which proccssors are in contact with its faces and which of its nodes are in 
contact with which other processors. Communication for the calculation of K ,  p is also required. 

Parallel Performance 

The parallel performance of the multigrid contact algorithm described above is measured using a 
fixed size problem in which a given hierarchy of meshes are partitioned for difkrent numbers of 
processors. The specific problem consists of two square plates. one on the other. Each plate is 80 units 
square and IO units thick and was discretized with eight node hexahedral elements. A three-mesh 
hierarchy was built with each plate on the coarsest mesh having one element through the thickness and 
being eight elements square. Using uniform refinement, each plate’s finest mesh i s  4 x 3 2 ~ 3 2  elements. 
for a total problem size on the finest mesh of 8.192 elements. 

1 .OEt03  , 
~ +- KC +Total  

100 10 

Number of Processors 

Figure 1:  Timings for the fixed problem size problem. 

Figure I reports the timings for a single linear solve on an Origin 2000. Timings are shomm for the 
contact mechanics computations (“Kc”). the total solution time (“Totar’) and the RCB time (“RCB”). 
The ideal times for peifect scalability for the contact inechanics computations and the total solution 
time are also shown (“Kc Ideal” and “Total Ideal”. respectively). The two straight lines give the 
theoretically perfect times based on the time for a single processor. The figure clearly shows excellent 
performance. The time required for RCB is significantly lower than even the contact time, which i s  
much lower than the total time. 

Figure 2: Finite element model of simplified solid rocket booster joint. 



Demonstration Problem 

The analysis of thc factory joints present in the Space Shuttle reusable solid rocket motor are used 
to demonstrate thc usefulness o f  the general approach described in this paper. In order to simplify the 
modcling and reduce the problem size, the analysis model involves the tang, clevis and pin in a factory 
joint. A model of part of the circular joint involving just one pin i s  shown in Figure 2. The complete 
model consists of 177 pins around the circumference. A small detail called a leak port prevents cyclic 
symmetiy. The complete model has two meshes consisting o f  867.520 nodes and 664,120 elements on 
the finest mesh. The upper face of the tang is restrained against vertical motion and a downward 
pressure field is applied to the lower face of the clevis. The dynamic simulation. employing a consistent 
mass matrix. used 256 processors on the Oiigin 2000. 
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Figure 3: Percent of sobtion time for several categories of time step 27. 

Figure 3 shows the percentage of the execution time various portions of the code required for time 
step number 27. The total execution time for that time step was about 13 minutes. “Non-contact’’ is the 
time required for all calculations not directly associated with contact. “Kc” is the time required for the 
K L  p calculation. “RCB” is the time spent for recursive coordinate bisection. “Kdiag” represents the 

time for determining the contact stiffness diagonal, and “Force” is the time spent calculating contact 
forces. “Other contact” is the time associated with work required for contact that does not fit into one of 
the other categories. The sum of all contact categories totals less than 4%. The dominant contact cost is 
the cost for the K < , p ,  as expected. This sirnulation shows that the methodology presented in this paper 
can solve practical implicit contact problems large enough to require the use of parallel computers. 
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