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Abstract

Target location is a common problem in acoustical imaging using either passive or active data
inversion. Time-reversal methods in acoustics have the important characteristic that they
provide a means of determining the eigenfunctions and eigenvalues of the scattering operator
for either of these problems. Each eigenfunction may often be approximately associated with an
individual scatterer. The resulting decoupling of the scattered field from a collection of targets
is a very useful aid to localizing the targets, and suggests a number of imaging and localization
algorithms. Two of these are linear subspace methods and mammum-entropy imaging.

PACS numbers: 43.20.Fn, 43.30.Gv f

1 Introduction

Time-reversal acoustics (Fink, 1997; 1999) has become an important research area in recent
years because of the many potential applications associated with it and envisioned for it. In
biomedical applications, the prototype is the detection and destruction of kidney stones by
ultrasound. By ‘insonifying the kidney with pulses of ultrasound and measuring the returs
signal, it is possible to localize one or more kidney stones and then to send a return signal back
to the scatterer with high enough amplitude to cause the stone to fragment, and the remaining
pieces then eventually to pass harmlessly from the system. Training the sound to find the
kidney stone automatically is the main function of time-reversal acoustics in this application.
Analyses of why it works so well and means of improving its performance have been studied
by many authors (Prada et al., 1991; 1995; Prada and Fink, 1994; Mast et al., 1997; Devaney,
1999; Blomgren et al., 2001; Tsogka and Papanicolaou, 2001). Most of these analyses have
concentrated on focusing on or imaging of small point-like targets. ‘

Chambers and Gautesen (2001) have recently shown that a single extended spherical acoustic
scatterer has from two to four eigenfunctions associated with it. To understand this result, it
might help to put it in a larger context by considering scattering from a single spherical elastic
scatterer imbedded in an otherwise homogeneous elastic medium. Then, it is well-known that
the principal scattering terms arise from changes in bulk modulus (K), density (p), and shear
modulus' (u). Bulk modulus changes produce monopole scattering; density changes produce
dipole scattering; and shear modulus changes produce quadrupole scattering. There is at most
one contribution from monopole scattering; at most three from dipole scattering; and, for
acoustics, there is no quadrupole scattering, as there are no viable shear waves. The scattering
multrplimty found by Chambers and Gautesen is then understood as, at most 1+ 3 = 4,
while some of the dipole terms may not be excited because of the scatterer-to-sensor array
orientation. The monopole term is the one usually treated in analyses of time-reversal acoustics,

“but for some situations — such as air bubbles in liquid — ‘the dipole terms should also be
considered. Nevertheless, we will only consider the monopole contributions in this paper. The
genera.hza.tlon of the ‘methods to be presented here in’ order to mcorporate other modes is
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Isaacson (1986), Gisser et al. (1990), Cherkaeva and Trip (1996a,b), Colton and Kirsch (1996),
Kirsch (1998), and Briihl et al. (2001).

Section 2 presents a review of the relevant issues in acoustic scattering and time-reversal
signal processing. Section 3 discusses the linear subspace methods of imaging including the well-
known MUSIC algorithm, as well as some modifications of MUSIC, and related algorithms. Sec-
tion 4 introduces the maximum-entropy imaging approach which is often the preferred method
when data are sparse. Section 4 also gives examples and Section 5 discusses our conclusions.

2 Acoustic Scattering and Time Reversal “

Time-reversal acoustics can be studied either in the time domain or in the frequency domain.
The two domains have complementary advantages and disadvantages.

Pluses and minuses for the time domain include: Acoustical experiments are generally
performed in the time domain. Self-focusing in any acoustic medium can be achieved using
time-reversal processing in the time domain. Delay-time windowing easily distinguishes. ar-
rivals from well-separated scatterers in the time domain. But, if we want to understand the
eigenvector/eigenvalue structure of the acoustic scattering operator in the time domain, we can
only obtain one eigenvector at a time, and to obtain more eigenvectors (after the first one) a
rigorous orthogonalization procedure must be followed.

Advantages of the frequency domain include the fact that eigenvector/eigenvalue or singular
value decomposition (SVD) is quite easily done in the frequency domain, although it is then
done one frequency at a time. Thus, all eigenvalues/eigenvectors or singular values/singular
vectors are obtained simultaneously. Linear subspace imaging methods are then also most easily
applied in the frequency domain. The main disadvantage of the frequency domain is that it
is not simple to take advantage of target separation in space (and therefore in time) in this
domain.

We will return to discuss more about time domain processing later in the paper, but for
now we assume that all measured time traces have been Fourier transformed into the frequency
‘domain, and that the pertinent equation to study is therefore the Helmholtz equation.

2.1 Acoustic wave scattering

We assume that the problems of interest are well—appromma,ted by the inhomogeneous Helmholtz
equatlon

[V2 + E3n?(x)] u(x) = s(x), ' (1)

where u(x) is the wave amplitude, s(x) is a localized source function, ko = wfco = 2xf/co =

2x[A is the wa.venumber .of the homogeneous background, with w bemg angular frequency,
f frequency, o the assumed homogeneous ba,ckground wa.ve speed a.nd A wa.velength “The
a,coustlc index of reffactionis.
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measures the change in the wave speed at the scatterers.
Pertinent fundamental solutions for this problem satisfy:

[V + #3] Go(x, %) = —6(x - ') (4)

[V + K3n?(x)] G(x,x) = —6(x — x), (5)

for the homogeneous and inhomogeneous media, respectively. In both cases, we assume the
radiation (out-going) boundary condition at infinity.
The well-known solution of (4) for the homogeneous medium in 3D is

eiko lx—xl I

no_ '
. Go(x,x) T Arjx - x|’ (©)
The fundamental solution of (5) for the inhomogeneous medium can be written in terms of that

for the homogeneous one (in the usual way) as
G(x,x') = Go(x,x) + kg / a(y)Gq(x, y)G(y,x) d3y. (7)

Note that the right hand side depends on the values of the G, which is to be determined by
the same equation. So this is an implicit integral equation that must be solved for G(x,x’).
The regions of nonzero a(y) are assumed to be finite in number (N), in compact domains £,,,
all of which are small compared to the wavelength A. Then, there will be some position y,
(certainly for convex domains) inside each domain 2, characterizing the location of each of
the N scatterers. We also call these scatterers “targets,” since it is their locations that we seek.
With these assumptions, it is a good approximation to set the y arguments of Gg and G
inside the integral equal to y, for all y’s inside domain ,,. Then, the fundamental solutions .
can be moved outside of the integral. There remains the integral over a(y), incorporated into
the scattering coefficient o

. | g =kj / a(y)d’y, _ (8)

whlch then characterizes the strength of the scattering from the nth target domain.
Wlth these definitions, we finally have

G(X, I) Go(x, X’) + Z QnGO(x, Yn)G(yn’ ) (9)

n=1

fFurthermore, if the scatterers are suﬁicaently fa.r apart a.nd the sca.ttermg strengths gn are not:
too large, then G(ym x") on the far nght can be replaced by Go(yn,x'), glvmg the exphcat
formula, e : ,




2.2 Acoustic time-reversal data analysis

Time-reversal acoustics can be understood in a straightforward way from the scattering theory
presented so far. First, define a complex vector H, relating scattering at point y, with all M
of the acoustic sensors in a sensor array located at positions xj,Xg,...,X»m. Then,

HT = (Go(¥n,x1) ... Go(¥yn,XMm))- (11)

By analogy to (11), we define a general vector of the same form H,, indexed by a general
location in the model space r, such that y
HI = (Go(r,x1) ... Go(rsxm)). , (12)

We will term H,; a “trial vector” at r, and H, one of the set of N “solution vectors.”
With these definitions, the fundamental solution in the Born approximation can be rewritten
form,m'=1,...,M as

G(xms xm') g Go(xmv xm’) + K(xm,xm')’ ) (13)

where the “response matrix” (or transfer matrix)

N
K=Y ¢H,HL. (14)

n=1

Elements of the matrix K are given by

N |
Kmmt = K(Xm»Xmt) = Y 4aGo(Xm; Yn)Go(Yn> Xm?) (15)

n=1

Clearly, the response matrix K is complex and symmetric.

3 Iinaging and Inversion Using Linear Subspace Methods

One class of i magmg methods available for. tlme-reversa.l imaging of small targets may be called
linear subspace methods, of which the best known method is probably MUSIC (Schmidt, 1979;

Marple, 1987; Stoica and Nehoral, 1990; Xu and Kaveh, 1996; Stoica and Moses, 1997). The
term MUSIC stands for MUltiple SIgna.l Classification scheme. The methiod determines whether
or not each vector in a set of vectors is fully or only pa.rtla.lly in the range of an operator. If
T = KK* is the operator of interest (i.e., the time-reversal operator), and the complete set of
 eigenvectors in the range of the operator (i.e., having nonzero eigenvalue) is given by {V.},
then we can choose a test vector H, [see (12)] and define the squa.re of the direction cosine
between H, and any one eigenvector V,, to- be
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8.1 MUSIC and variations

In the present application, r is a vector ranging over all or some discrete subset of the positions
in the model space (usually a set of grid points). Then, there are several functionals we could
plot in order to produce an “image” of the scatterers. The most common choice is the MUSIC

classification functional
1
1- Zg=1 C082 (Vn, H‘I‘) ’

Another closely related possibility that has similar characteristics (but does not require nor
malization of H, in some implementations) is

esc’({Va}, Hr) = (17)

¥ _ Zﬁ—_l cos?(Vn, Hy)

ot Vah i) = T o (Vi ) (9)
The interpretation of these functionals as cosecants and cotangents in the subspaces determined
by the eigenvectors should now be clear. By plotting these functionals, we find that the targets
are located at those points where the denominators approach zero, and therefore in locations
where the trial vector in entirely in the range of the scattermg operator K, or equivalently in
the range of T.

Now we can ask the question, how do we make use of these ideas if the data available to us
are limited? In particular, it might happen that some of the nonzero eigenvalues are quite small
compared to the others, and we do not know whether to include the corresponding eigenvectors
in the set {V,,} or not. In this case, we can use a variation on the MUSIC scheme by only
considering a subset of the eigenvectors, say # = 1,..., N’ < N. In this case, either of the two
schemes just described is easily modified by restricting the sums to

1

- Zf-_il cosz(Vn, Hr) ' (19)

csc*({Vn}, Hy) = 1

and

! = 6082 Vna Hr .
cot¥({Va), H) = - Eﬂz:‘:’_'l =0 (leir) ()

This approach can then be used to test whether certain exgenvectors are really in the range or
not by replottmg these functions for different values of N'. The 'scheme just described could
also be used to do crude imaging if only a single elgenvector is known, as might ha.ppen if we
have used time-reversal processing in the time domain and had found only the first eigenvector.

When viewing eigenvectors as measurements, we see that using fewer eigenvectors will result
in poorer resolutlon, as less mforma,tmn is then avallable to constrain the images.




determine the scattering coefficients. The resulting algorithm will then be distinguished as an
“inversion method,” rather than imaging.

Our data are again the matrix elements of the response matrix K. We know that K can be
represented equally in two ways by its scattering expansion and its SVD so that

K= Z Qan Z omVmV. (21)

n=1 m=1

recalling that there are M sensors in our array, N scatterers, and that the singular vectors are
assumed to be normalized to unity. ’
- One formulation of the inversion problem that is very similar in spirit to MUSIC is therefore

to find a maftrix

K= quH,H,T | (22)

r=1

whose elements agree with those of the measured K according to some criterion such as least-
squares. The sum in (22) is taken over grid points in an L x L (pixel units) model space in 2D.
Generalization to model spaces having other shapes and/or to 3D is straightforward, as there
is no use made here of any symmetries in the choice of sensor array arrangement, or of the
locations of the test pixels chosen as possible targets and indexed by r. We will want to take
advantage of the orthogonality of the singular vectors V,,. So we suppose that it is possible to
solve an equation of the form

12 M
S eHHT & Y 0mVm Ve, (23)
r=1 m=1

in the least-squares sense for the coeflicients g, a.ssocla,ted with some set of points (pixel or

voxel centers) in the model space.
Applying the singular vectors V7, to both the right and left sides of (23), we find

Lz . 2 ) )
3 4 (B -V2) = om, e

r=1

which can then be rewritten in matrix notation as

(H; ._v;): F Vl)z &\ (o
=] Vi) ... (H{,,;V‘;(,)z' dr oum




parameters are the slownesses in the cells.) Note that the elements of the present matrix are
in general complex, as are the scattering coefficients §,, while the singular values o,, are all
nonnegative real numbers.

The computational situation can be improved significantly by noting the similarity of the
matrix elements to the direction cosines already treated in MUSIC. In fact, if we take the
magnitude of each matrix element, we have the square of a direction cosine. Furthermore, if
we sum these magnitudes along the columns of the matrix, then we have obtained exactly the

quantity

M ¢
[H.2 )" cos?(Vem, Hy),  (26)
m=1
which — except for the norpalization factor |H, |2 — is the sum over all the direction cosines
associated with the vector H,. This column sum is therefore a measure of what we might call
the “coverage” of the pixel centered at r. If there is no coverage, this column sum is zero and
the pixel does not contain a measurable target. If the normalized coverage is close to unity,"
then this pixel is one that MUSIC will clearly identify as a target. For intermediate values,
the situation is somewhat ambiguous, as it is in the normal MUSIC algorithm, but clearly the
closer the normalized sum is to unity, the more likely it is that the pixel contains a target.
Now we have a clear pixel selection criterion available, based on these column sums. Thus,
we can reduce the size of the inversion problem posed in (25) very quickly by throwing out all
pixels that have small column sums, and/or, equivalently, those whose values are << |H,|%.
We can classify the remaining pixels by the magnitudes of the normalized sums, choosing to
keep only (say) those pixels having the M largest normalized column sums. Or if there are
clearly only N << M singular values that are nonzero, then we could reduce the problem still
further, and keep only those pixels having the N largest normalized column sums. If we have
an M x M matrix when we have finished this selection process, then we can simply invert the
matrix to find the values of the remaining §’s. If on the other hand, we have an M X N matrix
that is not square remaining after this process of elimination, then we will again have to solve
the inversion problem, by using overdetermined least-squares.
Another possibility when the singular values have a gradual fall off in magnitude as m — M,
but no precipitous drop to zero, is to multiply (25) on ‘the left by a diagonal matrix whose
nonzero elements are the singular values to'some power p. Then, the resulting equation is

L2 '
Zﬁragz (H? ‘ V:;;)2 = _O'g;H’ o _ (27)
r=1 i T

or, in vector/matrix nofatibn, 4 A
| a”(Hi V‘)2 o‘”(H | \ P+l
ofta - \(




contributions from those singular vectors of negligible importance to the inversion. For exam-
ple, when p = 2, these column sums of the magnitudes of these elements are just |K*H,|?,
which is the matrix element of the time-reversal operator with vector H.,.

4 Maximum-Entropy Imaging

4.1 Motivation

If we consider the structure of the response matrix K, whenever the number of targets is much
less than the array size so that N << M, the matrix information is very redundant. The
matrix is then rank N, where N is the number of targets to be imaged. Yet, the matrix K
for M sensors in our array is M X M, with M(M + 1)/2 distinct complex elements. The
total number of distinct data present is therefore M (M + 1), which is to be used to determine
the z,y, z-coordinates in 3D of each target and possibly also its scattering strength ¢q. For
complex g, this means we need to find at most 5N numbers from M(M + 1). In the presence
of noise or strong inhomogeneities in the background medium, the redundancy may be needed
to resolve several or many targets. In homogeneous backgrounds, the overdetermined nature of
this problem is something we need to consider.

Examples of situations in which limited data are available include: (1) Only one transducer
is available. Assuming that the transducer is moveable, then it would be possible to collect data
in a “synthetic aperture” mode as is commonly done in radar applications (SAR). (2) Only two
transducers are available, but some triangulation is then possible. (3) Only one ping is allowed,
but many transducers are available (multistatic case). Here, we can collect only one row of
the response matrix. (4) Only the primary eigenvector has been found, as in iterative time-
-reversal processing in the physical domain, but no attempt ha.s been made to find eigenvectors
associated with secondary targets.

How much of the information in the scattering data is really needed to solve the inverse
problem in these situations? With limited data, how much data is essential to collect to locate

-and possibly identify the targets of most interest?

Having posed the general problem, we will not try to answer it completely here. Instead,

we will show some examples of what can be done to image with restricted data sets.

4.2 Maximum-entropy imaging

One approach to imaging with corrupted data or relatively small data sets is known as Maximum-
Entropy Imaging (Gull and Daniell; 1978; Schmidt, 1979; Gull and Skilling, 1984). I-will now
describe this method briefly, although another method that is also based on the maximum
entropy concept is the main.focus: of this section.
. Perhaps the most common use of -entropy imaging arises in astronomy, and espe-
cially in radmastronomy (Gull and Da.mell '1978). The goal is to find a map of the distribution
of radlo bngh €65 across. th ' d a.nd the methods used can produce a




thought of as the “true” map of the sky in this context, but rather as a map that does not
lead to conclusions for which there is either very little or no evidence in the data. The analogy
to our problem in acoustics of finding relatively isolated targets in an otherwise homogeneous
background is also apparent.

The reader interested in understanding the general context of entropy and its role in sta-
tistical mechanics and information theory would do well to read the paper by Jaynes (1957).
The history of maximum-entropy in astronomy is also beyond our scope here, but I will point
out that Gull and Daniell (1978) introduced this algorithm in part as an alternative to the
CLEAN algorithm (Hégbom, 1974), which is another popular imaging algorithm (although nof
as popular now as is the maximum-entropy approach) for use with incomplete and noisy da.ta

Following Gull and Daniell (1978), we define an intensity m;; at the pixel in the (%, ) position
of a test map and let 172z be the Fourier transform of m;;. Then, suppose further that the data
come to us in the form of m&asurements fiy; of the Fourier transform fi;. Assuming that these
measurements have Gaussian errors, with standard deviations o, the data fitting part of the
algorithm is a weighted least-squares error term of the form Yy |k — fixt|?/0%;. The objective
constraint applied is that the entropy functional (§' = —37;; mi;ln m;;), determined by the
nonnegative intensities in the final map, is a maximum. This maximum-entropy objective is
natural for imaging a sparsely occupied field because it corresponds to a situation where all the
intensities have the same value, thus, providing a sky map with no information in the absence
of data. Using these two terms to form an overall objective functional, including a Lagrange
multiplier for the data constraints, gives

A . .
Qmij; \) = =D mijlnmi; — 53 I — [y (29)
i3 kl .

One advantage of the second sum in @ is that it satisfies a x? distribution, and, therefore,
the value of this sum can be used as a measure of goodness of the data fit. In particular, the
expected value of the sum is equal to the number of terms in the sum. The disadvantage of this
sum is that it requires prior knowledge of the standard deviations. For other imaging problems,
the second term in (29) could be replaced by an output least-squares functional together with a
tolerance criterion as in Morozov’s discrepancy principle (Morozov, 1967; 1984; Tikhonov and
Arsenin, 1979; Groetsch, 1984; Hanke, 1997; Haber et al., 2000). '

'We will not pursue this approach further here, but instead introduce another approach that
makes use of the maximum-entropy imaging concept. '

43 A new ‘maximum-entropy imaging mef‘hod- :

We assume that a set of data has been produced usmg active sources, that the time series
response has been measured as a time series, and that these data have been Fourier transformed
to prodl_lce the se matrix. _At this point, there a.rel two poss1b111t1es (1) We could make
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eigenvector (computed or measured directly) of the time-reversal matrix as our data. We assume
at first that there is a single target present. Then, for the eigenvectors, the diagonal entries
will be real and positive numbers, but they will all contain a constant normalization factor
associated with the norm of the eigenvector. For the response matrix, the diagonal entries
will be complex and contain a constant factor associated with the scattering strength of the
target. We eliminate the unit magnitude phase factor in response matrix diagonals by taking
the magnitudes of these entries. Then, we see that in all the cases considered these diagonal
data have (for homogeneous 3D media) the form

fn:m for n=1,...,N, (30)
where 7; is the magnitude of the scattering strength for the response matrix data, or the norming
constant for the eigenvector data. The location of the target is r; and the location of the nth
element of the acoustic array (having a total of N elements) is ry,.

Using these data, we want to construct a figure of merit that will identify the target location
by producing either a noticeably high or a noticeably low value for any point in the imaging
region to sca.nned To accomplish this, we form the numbers

¢n(r) = fu(47)[r —1ul® (31)

where r is the location of any point in the imaging region. Then, we see that when r = r; is
located at or very near to the target, then

Sa(r:) =% (32)

for all N functions ¢,. So we want to construct a figure of merit that gives special significance
to functions that are positive and constant. But it is precisely this feature that distinguishes
the maximum-entropy approach to imaging. If we define an entropy functioinal H such that

H(ps,. --,pzv) = —k anlnpu, (33)

n-l

with the constraint that the probabilities p,, 2 0 and 3" p, = 1, then we construct a maximum
principle based on the cst or objective functional

J(pla . ’pN7A) = H(pla °'7PN) + ’\(an - 1), | (34)

~ where A is the La.gra.nge multlpher for the constraint. The minimum occurs when. the constraint
is sa.tlsﬁed a.nd when -

“Pn =e("'1)/’= » forall ‘ ﬁ:. 1,...,\]V‘.. (35)




where ¢ = Y, ¢, we see that the maximum-entropy functional can be used as a means of
identifying spatial locations at which the various ¢, values converge to a constant. The constant
k is not important for this application and can be taken as unity. The value of the Lagrange
multiplier at the maximum can be determined using (32) and (35) to be

A=1+I(y/c)=1-In(N), 37)

since ¢ = Nv; at the target location. Near the maximum of J, we can approximate it in either
of two ways: )

%

2w () v ()

ar
1=-7 (G- )

For our present purposes, the second of these forms has proven to be somewhat preferable
over the other. The normalizing constant N in this expression has no effect on the result, and
whether we look for the minimum or maximum of our function is an arbltra.ry choice, so we

can choose instead to study
=y ¢:\1°
n %

which still requires that we know the scattering strength or norming constant vi, which we may
or may not know.

If we know «;, then we can image the target using (39) directly. If we do not know +;, then
we need an estimate of it. One convenient way of obtaining an estimate is by picking any one
of the ¢, values as the estimate. Clearly, this choice gives a good approximation to the right
result at the target, but it will also cause some smearing of the image. The imaging algorithm

in this case is then based upon
' b 2 .
J, = In —’i)] , . (40
q ;[ .(¢q | ] ( )

where ¢ is any one of the values n = 1,..., N. This approach works and gives the results shown
in Figures 3 and 4. In these Figures, we chose ¢ to be the transducer coordinate of the one
that measured the largest amplitude of all the transducers. We see that the results are a little
‘peculiar in the sense that the region of disturbed values near the target location has a teardrop
shape, and the center of the teardrop also has some curvature directed away from the center .
of the array. This observation suggests that it might be prefera.ble not to make any particular
choice of ¢, but mstead to consuler them all equa]ly We can do so: by symmetrizing the result
sssibly sharpen the image. Thjs cntenon

-
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The result of using this criterion is shown in Figure 5, which should be compared directly to
Figure 4.

To understand a little better what this symmetrized maximum-entropy imaging scheme is
doing to map the data into an image, we will expand (41) so that

J =3 [n¢n—Ing,)*

n,q

=2 [Z(lnqsn) —Zln%Zln%]

=2 [NZ(lndan)z - (Emm) ] (42)

By defining an averaging operator over the functional values at the locations of the N trans-
ducers such that < - >= x 3°+, we see that (42) is of the form

J=2N?[<|lng|* > - <|lng|>’] (43)

and therefore shows that J is a measure of the fluctuations in |[In¢| at each location in the
region being mapped. At the target location, the fluctuations vanish identically, since they
become equal to the constant In+;. Equation (43) is very useful for two reasons: (1) it shows
how the modified maximum entropy imaging criterion is related to fluctuations in ¢, and (2)
it points out that the form J could have been postulated as our imaging criterion in the first
place, independent of the derivation provided here, since it uses exactly the same features of
the data to distinguish the location of the target.

5 Conclusions

After describing a well-known method in radio astronomy called maximum-entropy imaging,
I introduced a new method fhat also uses the maximum-entropy concept but in another way.
The main distinction between these two approaches is that the well-known approach uses the
entropy functional as a means of regularizing the data inversion in order to produce well-
resolved images of point objects — stars in the case of radio astronomy. The new method uses
the entropy functional not as a smoother or regularizer, but rather as the imaging criterion.
When the entropy functional is maximum, or equivalently when our modified functional vanishes
at some point in space, that is the location of a target. By plotting the inverse of this modified
functional, we arrive at a method that has much in common with the MUSIC algorithm for
imaging, but the new method uses different data. MUSIC requires the computation of tie SVD
of the response matrix. The new method can make use of this information if available; but
does not reqmre it. Furthermore, the new method ca make. use of Just the’ dxag onal e‘lements ,
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_' Figure 1: Time-reversal imaging fora single target using (38).
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Figure 2: Response matrix imaging for a single target using (39).
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Figure 3: Time-reversal imaging for two targets using (38).
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Figure 4: Response matrix imaging for two targets using (39).
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Figure 5: Response matrix imaging for two targets using (40).
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