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1.0 Background 

Energy released during natural earthquakes and underground man-made nuclear explo- 
sions manifests in the form of propagating seismic waves which radiate away from the 
energy source at high velocity. These propagating waves can generate significant motions 
at the ground surface for a widely distributed geographic area. Earthquakes and under- 
ground nuclear tests are both capable of generating ground motions levels that are poten- 
tially damaging to structures over a region of hundreds of square kilometers. To ensure 
adequate and economical protection of property and life-safety, it is essential that accurate 
predictions of ground motion levels and structural vibration amplitudes be generated for 
potential future events. 

As seismic waves emanate from an energy releasing source, there are complex interactions 
between the waves and the highly heterogeneous geologic medium which constitutes the 
earth’s upper crust. The waves reflect and refract at geologic discontinuities such that even 
for a very simple source function, e.g. a short duration explosive point source, the 
observed ground surface motions exhibit waveforms of significant complexity. The field 
deployment of modern seismic instrumentation has provided insight into the complex 
waveforms, the spatial variability of generated ground motions, and the dependence of 
observed motions on propagation path geology and local site soil conditions. For example, 
the observed amplification and extended time duration of ground motions in soft sedimen- 
tary basins, owing to the effects of low velocity near-surface soil sediments and trapping 
of the seismic wave energy in the basin, is of particular concern when estimating the seis- 
mic hazard for a particular region. A major scientific and engineering challenge is to accu- 
rately estimate the regional variation of ground motions, and to predict the expected 
response of structures to these motions throughout the region of interest. 

In the work reported on herein, a numerical simulation based framework for regional esti- 
mation of ground motions and structural response is described. The computer simulation 
framework which has been developed provides a tool for regional scale simulation of seis- 
mic wave propagation and structural response. The simulation framework development is 
focused on a case study application of the Southern Nevada region encompassing the 
Nevada Test Site and Las Vegas. This region was choosen because a large database of 
regional ground motion measurements exist from the era of underground nuclear testing, 
and ground motion hazard in this region continues to be of interest to the National Nuclear 
Security Administration for future underground test readiness. This focus will provide a 
tool for immediate programmatic application of the research results in future DOE pro- 
grams. However, once successfully developed, the methodologies described could readily 
be extended to application in any seismically active region. 

2.0 Southern Nevada: a unique “laboratory” for regional response 
studies 

From 1951 through 1992,904 nuclear tests were conducted at the Nevada Test Site (NTS), 
located approximately 100-150 KM north of Las Vegas in southern Nevada (Figure 1). Of 
these tests, 100 were atmospheric events and 804 were underground events. Starting in 
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1962, with the implementation of the atmospheric test ban, all nuclear tests at NTS were 
performed deep underground either in horizontal tunnels or vertical bore holes to achieve 
geologic containment of the event by-products. With the advent of underground testing, 
substantial amounts of energy were coupled into the geologic strata which effectively 
resulting in man-made earthquakes. Figure 2 provides graphic illustration of the enormous 
energy released by a 104KT device emplaced at shallow depth of burial in 1962. The 
Sedan Plowshare event investigated the peaceful usage of nuclear devices for engineering 
construction purposes and the intent of the Sedan event was to demonstrate the ability to 
create a large man-made excavation. 

During the underground testing era, particularly in the 1970’s when large Megaton TNT 
equivalent events were being conducted at NTS’, the effects of event induced ground 
motions on major structures became of concern and a program was implemented to 
address the risk of structural damage. This concern was added to by the fact that Las Vegas 
is located in a deep sedimentary basin and ground motion measurements indicated that 
seismic waves propagating from NTS to the Las Vegas Valley were trapped and amplified 
in the low velocity sediments of the soft basin. To measure the event induced ground 
motions and assess structural response, a significant number of ground motion sensors and 
structural response sensors were deployed throughout the Las Vegas Valley by the Depart- 
ment of Energy. The extent of the historical ground motion and infrastructure instrumenta- 
tion is shown in Figure 3. Throughout the years of underground testing, the motions from 
a large number of nuclear tests were captured on the Las Vegas instruments. The data from 
13 representative events has been processed, digitized and written to compact disk by the 
Nevada Operations Office of the NNSA. This data, which encompasses a range of events 
in terms of explosive yield and source location, provides a unique suite of data on the 
response of a sedimentary basin and the response of structures in the basin on a regional 
scale. Given the large number of nuclear events, this regional response dataset is extensive 
when compared to natural earthquake data where only one or two major earthquakes have 
been measured owing to the infrequent nature of natural earthquakes. 

The historical nuclear test data clearly illustrates the effects of sedimentary basin response 
in Las Vegas. Figure 3 shows ground acceleration time histories at four selected sites for 
the Barnwell underground nuclear test of 1989. The rock sites on the edges of the basin 
(site #1 and site #3) exhibit significantly smaller motions than sites located in the middle 
of the sedimentary basin (sites #2 and #4) despite the fact that these sites are nearly equi- 
distant from the source location at NTS. This is clear evidence of the amplification of 
motion by the soft soils in the basin. One issue of concern for future NNSA test readiness 
interests is the fact that none of the historical ground motion sites were placed in what is 
now know to be the deepest part of the basin. The dark purple region in Figure 3 indicates 
the deepest portion of the basin as determined by recent gravimetry studies performed by 
the United States Geological Survey. The figure key indicates soil depth in kilometers. It is 
expected, and the existing dataset indicates it is indeed the trend, that the largest amplitude 
motions correspond to the deeper part of the basin. The northeastern portion of the basin 

1. The largest megaton level underground tests (for example the NTS “Boxcar” event of 1.3 MT in 1968) 
generated energy release equivalent to a M=6+ natural earthquake. 
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FIGURE 1. Regional geologic setting and location of NTS relative to the Las Vegas Valley. 
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FIGURE 2. Creation of the Sedan crater from a 104 KT Plowshare device in 1962. a) Ejecta 
from detonation of device buried at 195m depth; b) overhead view of resulting crater (370 
meters in diameter, 97 meters deep); c) view from edge of crater. 
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FIGURE 3. Instrumented ground sites and structures in the Las Vegas Valley (until 1992), 
ground accelerations from the Barnwell underground nuclear test of 1989. 

7 



was largely undeveloped in the 1970’s and unfortunately the legacy ground motion instru- 
mentation network was not extended into this area. Estimation of the motions in this deep- 
est part of the basin is an issue for close examination with the tools described in this report 
in future programmatic application of the tools. 

The historical underground test data provides an important body of observational knowl- 
edge critical to validation and calibration of regional based models. Comparison of 
regional scale models with such regional data is essential to quantifying the ability of 
complex, large-scale regional models to provide accurate estimates of regional response. 
The historical underground test data incorporates many events with simple source func- 
tions at approximately the same distance and direction from Las Vegas. This eliminates 
the source complexities associated with extended-source natural earthquakes and allows 
investigation of trends within the large number of events available. 

3.0 The regional simulation environment 

The simulation environment incorporates geophysics and structural models into a mas- 
sively parallel computational framework that permits regional calculation of ground 
motion and structural response. The regional simulation framework is named “NEVADA” 
in recognition of the first regional case study application. Ground motions are computed 
with the LLNL E3D elastic, three-dimensional finite difference wave propagation code, 
and structural response to ground motions is computed from a suite of Fortran subroutines 
tailored to the linear and nonlinear analysis of planar building structures. For regional 
scale three-dimensional problems, the geophysics computational domain is quite large 
with on the order of 400-500 million zones. This total domain is divided into subgrids with 
each subgrid devoted to a specific node on LLNL parallel compute engines. Once the 
ground motion simulation is completed for a specific event, the computed ground motions 
at selected Las Vegas Valley grid points are applied to the building structure under consid- 
eration. The building analyses are also performed in parallel with one building analyses 
delegated to each computer processor. 

The ground motion hazard is characterized in a structure-specific fashion whereby a build- 
ing designed pursuant to the appropriate building code is analyzed at predetermined grid 
points throughout the region. This directly defines the hazard in terms of building 
demands. Building demands are specified in terms of interstory drift ratios, i.e. the relative 
displacement between adjacent floor levels for each story of the building. Interstory drift 
demands from the building analyses can be readily compared to damage thresholds devel- 
oped from destructive laboratory tests of building segments. This process is shown sche- 
matically in Figure 4 and Figure 5. 

This report documents the theoretical foundation of the components of the regional simu- 
lation model. Future work will include detailed comparisons between the developed 
regional model and the historical test data. Sensitivity and parametric studies will also be 
performed with the developed regional model to ascertain how various parameters influ- 
ence basin response. 
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4.0 Seismic wave modeling 

E3D is a 3-D finite-difference seismic wave propagation code that serves as a component 
of the NEVADA simulation environment. E3D simulates the propagation of elastic and 
acoustic energy generated by a source (e.g., nuclear explosion, earthquake) through a 3-D 
geologic model of the earth or other material (Figure 6). The surface ground motions com- 
puted by this propagation can be used to drive the response of buildings and other struc- 
tures. 

FIGURE 6. Seismic waves propagate from the Nevada Test Site (NTS) to the Las 
Vegas Basin (LVB). 

E3D incorporates a number of advanced computational and physics-based features. These 
features include full 3-D elastic, viscoelastic, and topographic modeling, low-level optimi- 
zation, propagating and variable density grids, hybridization, parallelization, and run-time 
visualization. This code runs on a number of computer platforms and takes advantage of 
high performance computing and massively parallel processing. This makes 3-D full- 
physics simulations of large seismic problems feasible. In addition, E3D offers 2-D mod- 
eling capabilities, which often serve as a mechanism for prototyping larger three-dimen- 
sional simulations. 

4.1 General equations 

E3D is based on the elastodynamic formulation of the full wave equation on a staggered 
grid (e.g., Madariaga, 1976; Virieux, 1986; Levunder, 1988). In this formulation, the 
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velocities and stress tensor components are solved by an explicit finite-difference scheme. 
The focus here is on wave propagation in a three-dimensional earth; two-dimensional for- 
mulations are easily obtained by decomposing the three-dimensional equations. 

4.1.1 Wave equation 

A number of formulations are used to describe the linear propagation of wave energy in an 
acoustic or elastic medium such as air, water, earth, human tissue, or an engineering solid. 
For example, the 1-D propagation of acoustic energy in a water volume of constant 
medium velocity is given by the 2nd-order partial differential equation 

a 'P 

at2 ax2 
- -  a 'P - c.- 

where P is the pressure at spatial coordinate x and time t ,  and C is the wave propagation 
velocity. In this case, the propagation velocity is the parameter that uniquely defines the 
medium. It can be a constant for simple problems, or it can be a function of the spatial 
position( C(x)  ). Similarly, the propagation of acoustic energy in 3-D is given by 

2 

- -  at2 a - c ( x , y , z ) . [ $ + $ + $ ]  

where P = P(x,y,z,t), C = C(x,y,z), and x, y, and z are the spatial coordinates. More com- 
plex equations exist that allow C to be a function of the density of the medium. 

Wave propagation in the solid earth depends on acoustic and elastic properties. The 3-D 
elastodynamic formulation of the wave equation is given by the set of 2nd order equations 

1 a 'u, 37, azxy  a z x z  - = +- +- + F ,  
at2 a y  a z  

n 

1 a a z x z  a 7 y z  a 7 z z  - = +- +- + F ,  
at2 a y  aZ 

(EQ 3 d  

and 
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au, au, au 
ax = ( h + 2 p ) . -  +ha(& + z z ) + s x ,  z x x  

= ( h + 2 p ) . - Y + h . ( ; i ;  au au, +zz)+syy  au 
zYY aY 

au, au, au, 
aZ (ai + & ) + S Z Z  

zzz = ( h + 2 p ) . -  + h e  

au, au, 
z x y  = P.(& + z ) + s x y  

au, au, 
5, = F(=& + & ) + S , ,  (EQ 3i) 

where Ux, Uy, and Uz are particle displacements of the ground and 
ZXX’ T y y ,  TZZ’ = x y ,  7 x 2  and zyz are the 6 components of the symmetric stress tensor. The 

parameters p, h and p uniquely describe the medium, which in this case is the geology of 
the subsurface. In addition, U = U ( x ,  y ,  z ,  t )  , z = z(x, y ,  z ,  t ) ,  p = p(x, y ,  z )  , 
h = h(x, y ,  z )  , p = p(x, y ,  z )  . The terms Fx, Fy, Fz, and Sxx, Syy, S u ,  Sxy, Sxz, and 

Syz are forcing or driving functions that will be discussed later. 

The acoustic or compressional velocity Vp in the medium is given by 

v p  = J(h + 2 - p)/p 

and that the shear velocity Vs is given by 

v p  = JcL/P 

(EQ 4 4  

(EQ 4b) 

These relationships are most useful because seismologists and geophysicists often define 
medium properties in terms of the rock density and the propagation velocity of seismic 
waves. 

In essence, EQ. 3a through EQ. 3c represent the momentum equations (F = MA), while 
EQ. 3d through EQ. 3f represent the constitutive relations or Hooke’s Law (F  = kX). This 
coupled set of 2nd-order partial differential equations can be written as a coupled set of 

13 



1st-ordered differential equations by using the relationship V = dU/dt and talung deriva- 
tives with respect to time. Hence, 

Y 1 -, av = l / p . ( z  a7xy +- a 7 y y  +- a 7 y z  + F  
a t  ay az 

1 - avZ = l / p &  azx, +- a 7 y z  +- azzz + F ,  
a t  ay az 

and 

av, av, av 
a z x x  = (h+2p) . -  +$)+M,, 
a t  ax 

a7 av av, av, 
a t  y y  = (h+2p).--Y+h. a Y  (x +az ) + M y y  
- 

avZ av, av, 
= ( h + 2 p ) . -  + h .  (x + a y ) + M z ,  

- a 7 z z  
a t  aZ 

azxy av, av, 
- a t  + & ) + M , ,  

a7 av, avz 
a t  - y z  = P(=& +;j;)+M,, 

where V is the particle or ground velocity as a function of space and time (V = V(x,y,z,t)), 
and the source term M = dS/dt. Note that Vx, Vy, and Vz are state variables (along with 
Tm, Tyy, Tzz, Tg, Txz, and Tyz), which are different than the wave propagation velocities 
Vp and Vs that partially define the medium. 

Equation 5a through EQ. 5i defines the set of 1st-order partial differential equations used 
by E3D to simulate wave propagation in three-dimensions. This particular representation 
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is extremely useful because the equations are staggered in time, and the state variables can 
be staggered in space. Note that the velocities in EQ. 5a through EQ. 5c depend only on 
the stresses, and that the stresses in EQ. 5d through EQ. 5i depend only on the velocities. 
Hence, a valid numerical scheme is to explicitly update the velocities based on the stresses 
at the previous time, and then use the new velocities to update the stresses at the next time. 

4.1.2 Discretization and staggered grid 

Equation 5a through EQ. 5i are numerically solved by discretely approximating the equa- 
tions on a regular but staggered grid. An explicit updating scheme is used to advance the 
solution in time. The spacing between identical variables in the grid is given by dh, which 
is the same in all three dimensions. 

A staggered grid is used so that the known variables in EQ. 5a through EQ. 5i are centered 
around the variable being solved. For example, in EQ. 5a, the discrete grid can be spatially 
organized so that the variables T u ,  T q ,  and Txz are centered around the variable Vx. The 
spatial staggering is 1/2 of the grid spacing in one or more dimensions (Figure 7). In addi- 
tion, the equations allow the variables to be staggered in time. The known variables in 
Figure 5a (TAX, T q ,  and Txz, which are computing during a previous step), are staggered 
by 1/2 timestep from the variable being solved during the update (Vx) and the same vari- 
able computed at the previous time. The spatial and temporal staggering permits higher 
numerical accuracy using a coarser grid (i.e., a grid with smaller computational require- 
ments). 

In E3D, the grid is constructed so that the normal stresses (TAX, Tyy, and Tzz) fall on the 
same staggered grid point, and this point is central to the grid system. The other variables 
are shifted by 1/2 grid point in one or more directions. The medium parameters A, p, and p 
are coincident with this central point, although there are situations when this is not desired 
(discussed in a later section). 

Unless otherwise stated, integer indices are used when referring to all grid points. For 
example, grid point Vx = Vx(i,j,k,t) refers to the velocity variable 1/2 grid point in the x 
direction from the variables Txx, Tyy, and Tzz at grid indices i, j ,  k, and time t, even though 
a more robust terminology would refer to this variable as Vx(i+1/2,j,k,t). This formulation 
is used because this is how it is represented in computer memory (array indices must be 
integers). 

4.1.3 Update mechanism 

An explicit finite difference scheme is used to update EQ. 5a through EQ. 5i. In particular, 
E3D uses a scheme that is 4th-order accurate in space and 2nd-order accurate in time. The 
update equations are given by 

Vx(i, j ,  k, t) = Vx(i, j ,  k, t - 1) + dt  (04(Txx) + 0 4 (  T x y )  + 04(Tx,) + F , ) / R  (EQ 6a) 
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Vz(i ,  j ,  k,  t )  = Vz( i ,  j ,  k ,  t - 1) + d t  (D4(T, , )  + D4(T, , )  + D 4 ( T z z )  + F , ) / R  (EQ6c) 

and 
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Tzz( i ,  j ,  k ,  0 = TZz( i ,  j ,  k,  t - 1) + 
dt ( E  1 - 0 4 (  V z )  + E2 (04 (  V, )  + 0 4 (  V,)) + M z z )  

T,,(i, j ,  k,  t )  = TXy( i7  j ,  k,  t - 1 )  + dt ( E 3  - (04 (  V , )  + 0 4 (  V,)) + M,,) 

T X Z ( i ,  j ,  k, t )  = Txz(i ,  j ,  k,  t - 1) + dt - (E3  . ( 0 4 (  V, )  + 0 4 (  V,)) + M X z )  

T y z ( i 7 j ,  k , t )  = T y z ( i , j , k , t -  1)+dt~(E3~(D4(V,)+D4(Vz))+MYz) 

where dt is the finite-difference sampling rate in time and 

El = h(i, j ,  k) + 2. *p(i, j ,  k )  

E2 = h(i, j ,  k) 

E3 = p(i ,  j ,  k)  

R = p(i, j ,  k) 

and 

04( W) is the 4th-order spatial difference of the function W given by 

04 (W)  = cl.(W(i,j,k,t)-W(i,j,k,t))+C2-(W(i,j,k,t)-W(i, j , k , t ) )  (EQ7) 

where C l  and C2 are 4th-order finite-difference coefficients given by 

C1 = 1.125000000 (9.43) 

and 

C2 = -0.041 666667 (- 1 ./24). 

4.1.4 Computational requirements 

Equation 6a through EQ. 6i operate over a discretized domain. The number of grid ele- 
ments or nodes required for a simulation is a function of the problem size and the grid 
spacing dh. The problem size depends on the scientific region of interest. The grid spacing 
depends on the ability to numerically approximate the wave equation at sufficient accu- 
racy. As a rule of thumb, it is desired that there be at least 5 and preferably 10 grid points 
per minimum source wavelength in the simulation. 

The number of grid points or grid nodes required for a 3-D simulation is L M . N , where 
L, M, and N represent the number of grid points in the x, z, and x directions, respectively. 
For purely elastic problems, 12 variables are required at each grid node for 3-D simula- 
tions ( 8  variables for 2-D problems). In almost all situations, sufficient precision is satis- 



fied using 32-bit floating point arithmetic, or 4 8-bit words. Hence, 3-D simulations 
require 4 - 12 L M N bytes of computer memory. This makes it possible to perform 
simulations on the order of 200x200x200 grid points (384 MBytes) on a typical desktop 
workstation, lOOOxlOOOxlOOO grid points (48 GBytes) on a moderate parallel machine, 
and 5000x5000x5000 grid points (8 TBytes) on a world class computer system. 

The time step interval dt depends on the Courant condition, which is the maximum 
timestep that can stably propagate seismic waves in the medium. The Courant condition 
depends on the maximum geologic velocity in the medium (Vmax), as well as the grid 
spacing. The Courant condition is given by 

dt < ( C F  d h ) / (  Vmax)  (EQ 8) 

where CF = 0.606 for 2-D problems and CF = 0.494 for 3-D problems. In general, it is 
desired that the timestep increment be as close as possible to the Courant limit. 

Depending on how the algorithm is structured, 2-D simulations may require 64 floating 
point operations per grid point at each time step, and 3-D simulations may require 141 
floating point operations per grid point at each time step. Typical 3-D simulations require 
1 to 20 hours of simulation time on a computer system appropriate for the problem size. 

It is important to note that for 3-D simulations, memory scales as the 3rd power of prob- 
lem size, while simulation time scales as the 4th power of problem size. Hence, doubling 
the dimensions of the problem, doubling the source frequency, or decreasing the minimum 
propagation velocity in the medium will require an 8-foZd increase in computer memory 
and a 16-foZd increase in simulation time. For 2-D problems, memory scales as the square 
of problem size, while simulation time scales as the cube of problem size. 

4.1.5 Geological representation (averaging) 

The medium parameters (p, A, p) are normally defined at the central location of the stag- 
gered grid. That is, they are defined at the same grid element that contains the normal 
stress variables (Txx, Tyy, Tzz). This definition is used as a means to minimize computer 
memory and CPU time. However, this is not always desirable because other representa- 
tions tend to produce more accurate results. 

For more accurate simulations, the medium parameters can be defined at the grid element 
containing the variable being updated. For example, in EQ. 5a, the density (p) can be 
defined on the grid element containing the Vx variable. Two methods are used to imple- 
ment such a scheme. In the first, the density p(i + 1/2, j ,  k )  can be obtained by simply 
averaging the densities between adjoining grid points. That is, 
p(i + 1/2, j ,  k )  = ( p ( i ,  j ,  k )  + p(i + 1, j ,  k))/2.  This averaging is required at each time 
step in the simulation, and hence it can require a significant increase in CPU time. In the 
2nd method, the densities are defined and stored at each of the appropriate grid points. 
That is, there are separate density values assigned at the Vx, Vy, and Vz grid elements. This 
permits faster execution, but requires significantly more computer memory. Similarly, the 
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p values can be defined at each of the three shear stress elements ( T q ,  Txz, and Tyz) by 
simply averaging these values at each timestep (harmonic averaging is used in practice), or 
by storing these values in separate memory locations for the entire simulation. 

Medium averaging is normally not performed because of the increased CPU time and/or 
memory requirement. When it is performed, a cost analysis must be made to determine 
which averaging scheme is optimal. 

4.1.6 Attenuation 

Seismic waves are intrinsically attenuated as mechanical energy is converted into heat as 
the waves propagate through the earth. This attenuation can be small and insignificant, 
which is often the case for waves propagating through rock, or it can be large and impor- 
tant, which is often the case for waves propagating through soft sedimentary material 
characteristic of basins and the near surface. 

Seismologists use an attenuation factor, or Q, for quantifying the magnitude of seismic 
attenuation. Q is defined such that the amplitude of an attenuated seismic wave and is 
given by 

{SI 
A = A o . e  (EQ 9) 

where A, is the original amplitude, h is the wavelength, and x is the distance in wave- 
lengths the wave has traveled. In others words, Q is the number of wavelengths a wave 

must travel before it’s amplitude is reduced by a factor of e-n. If Q is large, the attenuation 
is small. If Q is small, the attenuation is large. Q is a property of the medium, similar to the 
density or the compressional or shear velocities. Often, there are separate Q definitions for 
P and S wave energy (Le., Qp and Qs). Q is most often considered to be independent of 
frequency. Since the attenuation depends on the attenuation and the frequency, this means 
that high frequency energy tends to be attenuated more than low frequency energy. 

In E3D, attenuation is approximated using relaxation mechanisms and memory variables 
[e.g., Robertsson et al., 1994; Blanch et al., 19951. Basically, one or more memory vari- 
ables are associated with each stress state variable (Txx, Tyy, Tzz, T q ,  Txz, Tyz). These 
memory variables contain information about the strain state in the finite-difference sys- 
tem. This information is added to the stress updates defined by EQ. 5d - EQ. 5i and EQ. 6d 
- EQ. 6i. The memory variables are updated at each timestep. The equations used in this 
process are defined in the above references. 

Currently, E3D uses one relaxation mechanism with 6 memory variables (one for each 
stress state variable). This means that attenuation is approximated over a frequency range 
of approximate 1-2 octaves. This is satisfactory for most applications. The medium param- 
eters Qp and Qs are defined at each grid point, as well as a reference frequency @where 
the attenuation will be most accurate. 
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Typical Q values might be 10-100 of soft sediments, and 100-10,000 for rock. Q is most 
often considered to be independent of frequency. In sedimentary basins, where the effect 
of attenuation is most pronounced, the quality factor Q is often defined as a function of the 
shear velocity. For example, a typical representation is given by 

QS = 20 * VS,  V ,  < 1.5 (EQ W 

QS = 100 * VS,  V ,  2 1.5 (EQ lob) 

when Vs is given in k d s ,  and 

Attenuation becomes important for problems with low ground velocities, such as sedimen- 
tary basins. This is especially true at frequencies greater than 0.5 to 1.0 hz. Attenuation is 
often not important for regional seismic problems in rock. 

Viscoelastic numerical modeling with Q is often significantly more memory and CPU 
intensive than purely elastic modeling. Instead of 12 variables per grid point as is the case 
with elastic modeling, finite-difference simulations with attenuation (one relaxation mech- 
anism) require 22 variables per grid point (12 elastic variables, 6 memory variables, 4 vari- 
ables containing the medium parameters defining Q). Depending on the system and how 
attenuation is implement, CPU time may be 25-50% longer. 

4.1.7 Anisotropy 

Seismic wave propagation can be either isotropic or anisotropic. Isotropic propagation 
implies that the propagation parameters are the same in all directions. For example, at any 
given homogeneous subregion in the model, the wave propagation velocity is the same in 
all directions. Anisotropic propagation implies that the propagation parameters are or can 
be direction dependent. For example, the shear velocity in the horizontal direction may be 
different than the shear velocity in the vertical direction. Anisotropic modeling is impor- 
tant for accurately modeling subtle features of wave propagation, and is particularly useful 
in highly fractured rock where cracks and voids may be partially or completely filled by 
water or other material. 

Anisotropy is generally not important for hazard related problems such as those in the 
NEVADA simulation environment. In addition, anisotropic simulation using E3D is a cur- 
rent development issue. For these reasons, anisotropic propagation will not be discussed 
here. 

4.2 Boundary conditions 

Seismic energy numerically propagates through the E3D finite-difference grid. However, 
this grid has finite dimensions and so the seismic energy that reaches the grid boundaries 
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is reflected back into the grid domain. This is undesirable because this reflected energy can 
be misinterpreted as real signal. Methods must be utilized to minimize or eliminate this 
reflected energy. The simplest method is to increase the grid size, but this is usually 
impractical because of limited computational resources. Another approach is to use 
boundary conditions that absorb or damp the seismic energy as it approaches the grid 
boundaries. The most common method in E3D is paraxial boundary conditions. Paraxial, 
damping, or attenuation boundary conditions can be used simultaneously. Another issue is 
the top boundary of the grid. Usually, this is aligned with the earth’s surface and hence 
boundary conditions must be utilized that physically match this free-surface. 

4.2.1 Surface conditions 

For most earth propagation problems, E3D uses free-surface conditions for the top bound- 
ary of the grid. These boundary conditions are that the vertical-component stresses (Tzz, 
Txz, Tyz) are zero at z=U. Algorithmically, this can be implemented by defining these 
stress terms as odd functions centered at the top boundary. That is, Tzz is at the top bound- 
ary and can be set to 0; the point above the boundary is equal to the reflective image of the 
point below the boundary. 

Free-Surface 

FIGURE 8. Free-surface condition reflects and mode converts seismic energy. 

These surface conditions allow seismic energy to be reflected back into the grid domain 
(Figure 8). This reflection is desirable because it correctly matches the physical conditions 
at the surface of the real earth. It should be mentioned that energy is converted along the 
surface. That is, compressional energy is partially converted to shear energy, and shear 
energy is partially converted to compressional energy. Also, these boundary conditions 
support the propagation of surface waves (Rayleigh and Love) along the top boundary. 
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An alternate mechanism for implementing boundary conditions at the surface is to incor- 
porate an air medium layer above the surface. Although theoretically acceptable, this 
method generally is not used because the acoustic propagation velocity in air is usually 
less than the seismic propagation velocity in the earth and hence a finer grid sampling 
would be required. In addition, the air density is significantly less than the ground density, 
which can cause undesirable numerical instabilities. 

4.2.2 Paraxial side boundaries 

Paraxial boundary conditions are used to absorb the seismic energy as it reaches the side 
and bottom boundaries of the grid [Clayton and Engguist, 19771 (Figure 9). As imple- 
mented by E3D, the wavefield is assumed to be propagating normal to each boundary. 
Hence, the wavefield can be extrapolated outward by a one way operator. 

As an example, for waves propagating in the positive x direction and striking the right 
boundary of the grid, the conditions along the boundary must satisfy 

and 

a v ~ + l , v , . - y  av = 0 
ax at 

3% 8% - +l/V;- = 0 ax at 

These equations are fairly easy to implement and discretize at the side and bottom grid 
boundaries. 

While these paraxial conditions absorb 100% of the energy that propagates normal to the 
boundary, they absorb less than 100% of the energy that propagates at a non-normal angle 
to the boundary. Hence, energy is still reflected back into the grid. In general, more energy 
is reflected for greater incidence angle deviations from normal. However, energy that is 
nearly parallel to one boundary will often reflect off that boundary and hit another bound- 
ary at a more perpendicular angle. Nonetheless, artificially reflected boundary energy is 
almost always of at least some concern in E3D simulations. 

4.2.3 Other boundary conditions 

E3D uses other techniques to minimize artificial boundary reflections. Two common tech- 
niques are sponge or damping conditions and intrinsic attenuation using Q values. These 
techniques can be used either separately or jointly with the paraxial technique. 
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Reflecting 
Boundary Conditions 

Paraxial Absorbing 
Boundary Conditions 

No Reflected Energy 

FIGURE 9. Paraxial absorbing boundary conditions prevent 
energy from being reflected back into grid 
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The damping technique [e.g., Cerjan et al., 19881 is a simple reduction in wave amplitude 
as it approaches the boundary. A “sponge” zone of N grid points is placed around the 
boundary. At each point, the amplitude of the velocity state variables (Vx, Vy, Vz) is 
reduced by a small factor. That is, 

v = V . ( l - ( n / N . ( l - f ) ) )  (EQ 12) 

where n is the number of grid points from the beginning of the damping zone, andfis a 
damping factor from 0. to 1. In practice, N is usually 20-50 grid points and f is between 
0.95 and 1 .OO. An advantage of the damping technique is it’s simplicity. The disadvantage 
is that the seismic energy isn’t really absorbed. Instead, it is reflected back into the grid. 
This reflection is distributed over a fairly wide zone so it’s impact is minimized. 

Another method to prevent artificial reflections is to put a highly attenuating low Q region 
in a buffer zone around each boundary. In practice, such zones are typically 20-50 grid 
points in width and typical Q values are between 2 and 10. The advantage of this method 
is that it intrinsically absorbs the wave energy (Le., no reflection). The disadvantage is that 
it must be used with attenuation simulations, and hence requires about twice the computa- 
tional resource. 

4.3 Topography 

E3D simulations can be performed using numerical models that have a topographic upper 
boundary representing the surface of the earth (Figure 10). This is important because seis- 
mic waves can be significantly influenced by large variations in surface relief (e.g., moun- 
tains, hills, valleys). Seismic energy can be focused and/or defocused by these topographic 
features. Topographic simulations can be performed for both 2-D and 3-D problems. 

FIGURE 10. The propagation of seismic waves can be influenced by the 
topography (hills, mountains, valleys) on the surface. 

E3D uses a density extinguishing technique to represent a non-horizontal free-surface 
boundary [e.g., Schultz, 19971. In this technique, the densities above the surface are expo- 
nentially reduced to zero, although numerical considerations require that the densities be 

24 



constrained by a very small minimum value. The medium density at a point above the sur- 
face is given by 

where p(z = 0) is the geologic/medium density at the surface, R is the taper rate, and n is 
the distance in grid points from the point to the free-surface. A typical value for R is 0.25. 
The compressional and shear wave propagation velocities above the surface are con- 
strained to equal the velocities at the surface. Hence, the medium parameters p and h are 
modified as appropriate. The value n is the shortest distance from the point to the surface 
(in noninteger grid points). A relatively time consuming search algorithm is required to 
determine this minimum value. 

From a users perspective, a grid of points representing the surface boundary is the only 
topographic-specific input required by E3D. From an algorithmic perspective, the density 
extinguishing technique is elegant because the grid updates are performed without regard 
to whether a point is above or below the surface. This method is also highly parallelizable. 

However, topographic simulations tend to be more CPU intensive because they require 
finer grid resolution to produce accurate results. A rule of thumb is that 15 grid points per 
wavelength are required for topographic simulations. This compares to 10 grid points per 
wavelength for non topographic simulations. Because of the power law memory and CPU 
scaling relations, this means that topographic simulations require approximately 3.5 times 
more memory and 5 times more CPU time than non topographic simulations of the same 
size. In addition, topographic problems are considerably more difficult to set up and ana- 
lyze. 

4.4 Source terms 

A seismic source(s) is needed to initiate and drive the propagation of acoustic and/or elas- 
tic wave energy that is modeled by E3D. This source is defined by applied force terms (Fx, 
Fy, and Fz in EQ. 5a - EQ. 5c and EQ. 6a - EQ. 6c) or by moment rates ( M u ,  Myy, M u ,  
Mxy, Mxz, and Mzz in EQ. 5d - EQ. 5i and EQ. 6d - EQ. 6i). Two types of seismic sources 
are considered here: an explosive source and a point double-couple or earthquake source. 
Both of these can be defined as a function of moment rates. Other types of sources include 
pure shear, applied force, and distributed slip on a finite-length fault (these are not dis- 
cussed here). In addition, hybridization is an alternate source mechanism whereby the 
wavefield computed by a separate finite-difference simulation or another technique can be 
used to drive the finite-difference model. 

4.4.1 Moment tensor 

The Mxx, Myy, Mzz, Mxy, Mxz, and Mzz terms define the moment tensor, or more precisely 
the moment rate tensor. These terms are given in units of dyne-cds (or N - d s ) ,  and are 
frequently used in seismology. A seismic source is often defined by symmetric moment 



tensor, and is given by Mo(t)*M, where Mo(t) is a time-dependent scaling or amplitude 
factor and M is the moment tensor. 

The time-history function, Mo(t), is defined to represent a realistic source. For example, it 
might be defined by a Ricker wavelet 

2 
where Mo is the amplitude, and I- is a functional factor given by r = (n: - f ( t  - t o ) )  , 
withfthe central frequency of the source and to is an offset time. Alternatively, a time-his- 
tory function might be defined by a Gaussian wavelet 

A Ricker wavelet is frequently used in seismic exploration because there is no permanent 
ground displacement (the integral of the function is zero), whereas a Gaussian wavelet is 
appropriate for explosive or earthquake problems because the ground is permanently dis- 
placed (the integral of the function is proportional to the static ground displacement). 
There are many other types of source time-history functions. 

In E3D, it is important that the source-time function be appropriate for the grid sampling. 
That is, the frequency content of the time-history function should be such that there are at 
least 5 to 10 grid points per maximum frequency of the source. Alternatively, the synthetic 
data can be filtered after they are computed. 

4.4.2 Explosive source 

An explosive source is given by Mo*M, where M is a diagonal tensor of unit 1. This type 
of source produces purely compressional waves, although these waves can be converted to 
shear energy at medium boundaries and the free-surface. 

For nuclear explosions, a series of empirical relations can be used to convert from explo- 
sion size (in KT) to moment [Patton and Walter, 1993, 1994; Murphy, 19961. So for exam- 
ple, 

logM, = 1.12mb+9.55 (EQ 16a) 

mb = 0.751ogW + 4.05 (EQ 1 6 ~ )  
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where Mo is the moment of an explosive source in Newton-m, rnb is the body wave magni- 
tude of the event, and W is the source size in KT. These are for NTS explosions below the 
water table. So for example, 

TABLE 1. 

1.0e13 N-m 3.0 -40 tons 
l.le14 N-m 4.0 -1 KT 
1.4e15 N-m 5.0 -20 KT 
1.9e16 N-m 6.0 -400 KT 

A 150 KT explosion is equivalent to a magnitude 5.7 earthquake. 

4.4.3 Earthquake source 

An earthquake point source can be defined by a double couple, which is described by the 
diagonal and non-diagonal components of a moment tensor. The moment is given by 

where p is the rigidity, A is the fault area, and 0 is the displacement of the fault. For finite- 
difference calculations, a point source operates over a region equal to the grid spacing. 
Hence, the fault area A is given by the square of the grid spacing. 

The moment tensor components can be determined from the strike, dip, and rake of the 
fault. Using standard seismological notation [Aki and Richards, 19801, the components are 
given by 

M ,  = M ,  (sin 1 0  cos 1R cos2S + 0.5 sin20 - sin 1R sin2S) (EQ 18b) 

M,, = - M ,  - (cos 1 0  - cos 1R sin 1S - cos20 sin 1R e cos 1 S) (EQ 1 8 ~ )  

M = -M, (sin 1 0  cos 1R - sin2S + sin20 sin 1R - sin 1 s  sin 1s)  (EQ 18d) 
YY 

M y ,  = - M o . ( c o s l O - c o s l R .  c o s l S + c o s 2 0 .  sin1R. sinlS) (EQ 18e) 

M,,  = M ,  (s in20 sin 1R) (EQ 180 

where s in10 = sin(dip), sin20 = sin(2 - dip), 
sin2S = sin(2 - strike) , 

sin 1 S = sin (strike) , 
cos 1 0  = cos(dip) , sin 1R = sin( rake), 
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cos20 = cos(2*dip) ,  coslS = cos(strike), cos2S = cos(2.strike),  and 
cos 1 R = cos (rake) . In this case, strike is the fault direction clockwise from north, dip is 
measured down from the right of the strike, and rake is the angle between the slip and 
strike directions, where the slip is the direction of the hanging wall relative to the foot wall 
(a positive rake is a reverse fault, a negative rake is a normal fault). For example, a strike 
of O., a dip of 90., and a rake of 0. corresponds to a north-south left-lateral fault or an east- 
west right-lateral fault. Note that the above equations use notation where the x and y axes 
are reversed from the notation used in Aki and Richards [1980]. That is, E3D defines x to 
the east and y to the north. 

The moment amplitude Mo can be computed from the earthquake magnitude M ,  by the 
empirical relation 

M ,  = l~g(Mo) / l .S  - 10.73 (EQ 19) 

where Mo is in dyne-crn. For example, a moment amplitude of 1.24e25 dyne-crn is equiva- 
lent to a magnitude 6 earthquake. 

4.4.4 Hybridization 

Hybridization is a mechanism that combines wave propagation (or other) simulations 
using two different techniques. For example, a computationally inexpensive technique 
such as reflectivity can be used where the geology is defined by a simple 1-D layered 
model, while a computationally expensive but more robust technique such as finite-differ- 
encing can be used where the geology is more complex and must be defined by a 3-D het- 
erogeneous model. E3D offers a hybridization mechanism to utilize as source input the 
wave propagation output from other simulation techniques. However, this functionality is 
not well formulated and it is not used in the NEVADA simulation environment. Hence, it 
will not be discussed here. 

4.5 Inputloutput 

E3D offers several features that facilitate model input and allow simulated or synthetically 
computed results to be displayed and saved in a variety of data representations. Input fea- 
tures include simple ASCII-text parameter descriptions, ASCII-text parameter representa- 
tions of the geologic model, gridded binary representations of the geologic model, source 
time history functions, distributed fault representations, and data compression. Output fea- 
tures include run-time visualization, point ground motion time history at selected points 
(seismograms), ground motion time history at multiple points (traces), volumetric repre- 
sentation, and image planes of seismic wave propagation. 

E3D has restart capabilities, although this feature is nonrobust and is not often used. 
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4.5.1 Input 

The basic input to E3D is an ASCII text file that defines the simulation parameters, geo- 
logic model, source function, and output formats. Other files, both ASCII and binary, can 
be referenced by this input file. Runtime simulation parameters such as grid size, grid 
spacing, timestep interval, and number of timesteps are defined in this input file. 

For 3-D problems, the geologic model can be defined in one of three ways. For simple 
geologic models, it can be defined in the input file as a set of simple statements. For simple 
or more complex geologic models, it can be defined as one or more binary input files. The 
seismic velocity (Vp and Vs), density, and optionally Qp, Qs, and Qfcan be set at each grid 
point in the grid (or a subsethperset of the grid). Because the 3-D model is often large, 
these binary input files can be run-length-encoded compressed. The third method to define 
the geologic model is via an ASCII text file of a parameterized 3-D model. The parameter- 
ization method will not be described here. 

One or more seismic sources can be input. The source parameters are defined in the input 
file, and the source time history function is either preset or input via a binary input file. 

4.5.2 Output 

Synthetic data computed via E3D can be output as time histories at individual points, or as 
a collection of points in multiplexed trace format. E3D can output all state variables (Vx, 
Vy, Vz, Txx, Tyy, Tzz, T q ,  Txz, Tyz), as well as the compressional and shear potentials. In 
addition, synthetic data can be output as a set of 2-D gridded time slices that are useful for 
constructing movies or animations of the seismic waves as they propagate through the 
geologic model. These 2-D gridded planes can be oriented at an arbitrary position in any 
of the 3 axis dimensions. The model variables (Vp, Vs, density) can be output in addition 
to the state variables. Also, the maximum horizontal velocity and the energy content of a 
simulation can be obtained. Volumes or data cubes can be output, although this feature is 
seldom used due to the shear volume of most 3-D models. 

A runtime visualization is available with E3D that allows the user to observe the progres- 
sion of the wavefield in real time during the simulation. The observables are the compres- 
sional and shear potentials. This is particularly useful as a means to observe mode 
converted energy, as well as a mechanism to debug a model when a problem occurs. 

4.5.3 Receiver and output formulations 

Synthetic data for each state variable (e.g., Vx, Vy, Vz) can be output at arbitrarily located 
positions within the finite-difference grid. Where these data do not fall on a grid point, a 
simple 1st-order interpolation scheme of the surrounding points is used to compute the 
value at the specified position. 

The compressional and shear potentials are often output at selected points or as a gridded 
file used to construct images. The compressional component P at a given point is com- 
puted from the divergence of the velocity wavefield. That is, 
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av, av, av, 
ax ay a, p = -  +- +- 

Computation of the shear component S is ambiguous, but in essence it is computed from 
the curl of the velocity wavefield. In the NEVADA simulation environment, it is given by 

4.6 Computational issues 

E3D has been designed and optimized to simulate large 3-D problems in minimal time. 
The most significant aspect is parallelization, which allows extremely large models to be 
simulated using massively parallel computers. In addition, E3D was designed to be self- 
contained, making it highly portable to a variety of platforms. 

4.6.1 Platforms 

E3D runs on a variety of computer platforms, from desktop workstations to high perfor- 
mance systems that use more than a thousand CPU’s and communicate via a very high- 
speed communications network. E3D has been successfully ported to a number of work- 
stations (e.g., Sun, HP, and SGI), Linux-based Intel platforms, vector processors (e.g., 
Fujitsu 7600, Cray C-90), shared memory processors (e.g., SGI Origin, Sun Enterprise, 
DEC Alpha clusters), and massively parallel processors (e.g., nCube-2, Meiko CS-2, Cray 
T3D, Cray T3E, IBM SP-2, DEC/Compaq, Sun and Linux clusters). In general, it requires 
approximately 1 hour to 1 day to port E3D to a new system. However, optimization tech- 
niques on a given platform can be much more time intensive. 

4.6.2 Low-level optimization 

E3D is designed to take advantage of cache coherent computer architectures. The compu- 
tational sections of the code are highly vectorized, which significantly boosts performance 
even on desktop workstations. The data arrays are sequentially accessed from memory. 
The core computations consist of floating point additions and multiplies. There are no 
floating point divisions. E3D is written in ANSI C. However, FORTRAN subroutines are 
used for the low-level numerical computations that perform the finite-difference stencil 
operations (with optional C routines, if FORTRAN is not available or less efficient on a 
given computer architecture. 

4.6.3 Variable density grid 

Fundamentally, E3D uses a structured regularly spaced grid. This is often inefficient 
because the grid spacing is a function of the lowest geologic velocity in the earth model, 
and hence regions with significantly higher wave propagation speeds will be over sam- 
pled. This can be significant for many earth models that tend to have low velocities in a 

30 



narrow zone near the surface and much higher velocities for the rest of the model. It is not 
uncommon to have a factor of 8 disparity between the slowest and fastest regions of a geo- 
logic model (e.g., 1 k d s  near the surface and 8 k d s  at depth). In this situation, the high 
velocity regions will be over sampled by a factor of 8. In a limiting case, this produces a 
computational inefficiency that is more than 500 times more inefficient than it needs to be. 

A variable density grid is one with a grid spacing that is mapped to the geologic velocity. 
That is, a computationally intensive fine grid is used in regions of low geologic velocity 
and a computationally efficient coarse grid is used in regions of high geologic velocity. 
Because the high velocity regions tend to dominate the model, a variable density grid can 
result in a considerable savings of computer resources. For typical problems, it is not unre- 
alistic for a variable density grid to be 10 or more times more efficient than a uniformly 
spaced grid. 

E3D features a rudimentary variable density grid structure. Sections of the grid can be seg- 
mented in computational cubes, with each cube having a grid spacing appropriate for the 
geology. In practice, the grid spacing from one cube to the next will vary by a factor of 
two. Each computational cube communicates with it’s neighbors via interpolation. The 
variable density grid structure in E3D is not robust and it is not parallelized. Currently, it is 
not part of the NEVADA simulation environment. 

4.6.4 Propagating grids 

E3D features four propagating grid mechanisms. In the first, which is most important for 
the NEVADA simulation environment, regions of the finite-difference grid not yet acti- 
vated by seismic energy are void of numerical computations. This mechanism saves CPU 
resources, especially in the early stages of a simulation. In some situations, it is possible to 
decrease the simulation time by a factor of two by using this propagating grid. This feature 
is less efficient in parallel applications, depending on how the computational domain is 
distributed over the parallel computer system. 

The second propagating grid mechanism is similar to the first, except that regions of the 
grid that will not contribute to synthetic data collected along the grid surface also will be 
void of numerical computation. This reduces CPU time near the end of a simulation. The 
third mechanism allows the user to specify a propagating region that travels at a certain 
velocity. It is used to track a specific phase and is most useful in regional simulations of 
wave propagation. The fourth mechanism allows the user to computationally activate 
regions of a grid as a function of time. It is the most robust mechanism, but also the most 
difficult to formulate. 

4.6.5 Parallelization 

E3D is parallelized to run on massively parallel computer systems. The explicit finite-dif- 
ference formulation that is discretized on a regular numerical grid is well suited for paral- 
lelization. The numerical grid is spatially decomposed over the individual processes 
activated in a parallel run-time environment. Each decomposed subgrid communicates 
with it’s neighbors using MPI or an equivalent message passing interface. The 4th-order 
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differencing scheme requires that each subgrid have two rows of boundary or ghost zones 
that virtually overlap it’s neighbors. Communication occurs twice every timestep: once 
after the velocity updates and once after the stress updates. 

4.6.6 Performance 

The observed single CPU performance of the core computational elements of E3D are a 
significant fraction of the peak CPU performance. On a Fujitsu 7600 vector processor, for 
example, a sustained performance of 57% peak processor speed was observed. On most 
architectures, a sustained performance of 25-40% peak speed is observed. Two-dimen- 
sional simulations tend to be faster (more efficient) than three-dimensional simulations. 
Performance can be significantly reduced in conjunction with intensive UO, run-time visu- 
alization, and certain boundary conditions. 

The performance on massively parallel processors is equally impressive. Although E3D is 
not yet optimally configured for parallel processing, it is not uncommon to achieve sus- 
tained speeds of 25-30% peak on these systems. E3D tends to scale well with problem 
size. That is, a large problem using many CPU’s is as efficient as a problem half the size 
using half the number of CPU’s. However, a small problem using many CPU’s may not be 
very efficient. 

E3D tends to be memory limited. That is, problem size is determined by the available 
computer memory. However, since simulation time scales at a faster rate than memory uti- 
lization, larger problems are beginning to become CPU limited. 
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5.0 Structural response modeling 

The ultimate goal of seismic hazard analyses is to quantify the risk associated with sub- 
jecting major structures to seismic ground motions. The second principal component of 
the NEVADA simulation environment is a finite element based program for simulating the 
linear and nonlinear response of structures. The structural response component of 
NEVADA is based on a finite deformation model which explicitly tracks the displacement 
of the structure through time. The model also incorporates elasto-plastic material behavior 
for the structural elements and utilizes path-independent integration for update of the 
member forces. The time stepping solution for the equation of motion employs a classical 
Newmark-Beta algorithm with Newton-Raphson equilibrium iterations within each time 
step . 

The structural model was developed to allow efficient linear and nonlinear analyses of 
building structures within the same solution framework. This approach was followed so 
that the application space of the NEVADA framework would span from nuclear event 
evaluations, where the structural response is expected to be well within the linear range, to 
large natural earthquakes where the response of structures would typically enter the non- 
linear range due to physical nonlinearities (material damage) and geometric nonlinearities 
in the structure (large lateral displacements in a tall building). The structural model also 
has robust nonlinear static analyses capabilities to allow static push-over computations for 
building structures. The application space of the structural model is shown schematically 
in Figure 11. 

Simulating weak-motion 
nuclear events Simulating strong-motion earthquakes 

Interstory drift 

Linear dynamic analysis Nonlinear static analysis Nonlinear dynamic analysis 
1) Eigenvalue solution for 1) Time-stepping nonlinear anal- 
natural modeshapes ysis with finite deformation and 
2) Direct integration of equa- elasto-plastic material response. 
tions of motion with jnfini- tal loading with Newton- Newton equilibrium iterations 
tesimal deformation and Raphson equilibrium itera- within a time step 
linear material tions 

1) Push-over analysis with 
finite deformation and elasto- 
Plastic materials. hxemen- 

FIGURE 11. Application space and capabilities in the structural simulation model. 
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The details of the structural model solution algorithms are summarized in this section. 

5.1 Global nonlinear solution algorithms 

Transient seismic analysis of building structures requires efficient time stepping algo- 
rithms which are capable of solving the equations of motion over extended time periods. 
For example, a large earthquake may induce 30-60 seconds or more of strong structural 
vibration. In cases where the structure remains in the linear regime, time history solutions 
are most economically obtained by exploiting the orthogonality properties of the natural 
modes of the structure and transforming to normal mode equations. As a result of the fact 
that a relatively few modes can capture the response of typical building structures, the 
modal transformation effectively results in a significant reduction of degrees of freedom. 
Modal equations of buildings subjected to piecewise linear ground acceleration time histo- 
ries (Le. time histories created by “connecting the dots” of digital ground motion records) 
are readily and accurately solved with closed-form analytical solutions for piecewise lin- 
ear forcing functions. 

Typically designed buildings are expected to incur some level of damage, with the poten- 
tial for corresponding nonlinear response behavior, during severe earthquakes. In order to 
understand and predict the full response of buildings subjected to extreme earthquake 
motions, it is desirable to develop nonlinear computational models capable of simulating 
the response into the nonlinear range. Amplitude dependent nonlinear equations of 
motion, where the nonlinearities arise from either large displacements, material nonlinear- 
ities, or both, must be solved with direct time history integration schemes. Because of the 
relatively long duration time scales associated with earthquakes, explicit time integration 
schemes prove prohibitively expensive for structures because of the time step size require- 
ments imposed by Courant stability considerations. Unconditionally stable implicit time 
integration schemes are generally significantly more economical and are typically 
employed in nonlinear time history simulations for earthquake loading. The implicit inte- 
gration solution framework applied to the building equations of motion and employed in 
the nonlinear building simulation program NEVADA is described in this section. 

5.2 Static solution framework 

For purposes of discussion of the solution algorithms, reference will be made to a dis- 
cretized finite element model of a building structure. In general, the building structural 
model may include many different element types in order to represent frames, floor slabs, 
shear walls, curtain walls etc. (Figure 12). Regardless of the element types included, the 
global variables of interest include the nodal displacements and rotations, denoted by the 

global displacement vector { D} E Rm, the externally applied nodal load vector { P }  E Rm 

and the internal resisting force vector { Q }  E Rm where Rm denotes the vector space of 
dimension “m” (Figure 13). 



FIGURE 12. Components of a building and computational building model. a) Building 
structure; b) building numerical model. 

5.2.1 Linear response analysis 

The static equilibrium of a structure responding in the linear regime can be stated in terms 
of a balance of externally applied loads and internal resisting forces in the structure, i.e. 
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Where { Q { D } }  is the vector of internal resisting forces and { P }  is the vector of 
applied external forces (see Figure 13). 

For a structure responding to static loading in the linear response regime, the internal 
resisting forces of the structure { Q ( D ) }  in global coordinate directions are linear func- 
tions of the structural displacements { D }  , which can be expressed, 

k+2 

Pk+l 

External 

Resisting 
I Forces 

f H P k + 2  

’ * Pk+l 
1 

External 
pk Applied 

Forces A 

Qkl , 

71 Qk+i 

Forces 

Qk+2 Internal 
Resisting 

FIGURE 13. External and internal forces in global coordinates. 
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(EQ 23) 
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are constants and represent the rate of change of where the stiffness coefficients - 
aD, 

internal force “i” with respect to displacement “f’. The matrix of EQ. 23 is the classical 
stiffness matrix of the elastic system and EQ. 23 can be written 

aQ j 

Thus the equilibrium equations expressed in EQ. 22 can be written 

and the solution of this system of equations for a given load vector { P }  provides the total 
system displacement vector { D }  . The one-step solution procedure for the linear system is 
indicated schematically in Figure 14. 

t 
, ,to 

FIGURE 14.One-step solution of linear system model. 

5.2.2 Nonlinear response analysis 

For the case in which a building structure responds in the nonlinear regime, the internal 
resisting forces of the structure are no longer linear functions of the structure displac- 
ments. Consequently, the global equations of equilibrium are nonlinear, precluding a 
direct one-step solution. The nonlinear character of the system model necessitates an 
incremental or iterative solution of the equilibrium equations. If the computational model 
residual vector is defined as the difference between the external applied forces and the 
internal resisting forces, the residual can be written, 



where Q{ D }  is now a nonlinear function of displacements as a result of large displace- 
ment induced geometric nonlinearities or material nonlinear behavior. Then a displaced 

shape at an equilibrium configuration of the structure, denoted { D } , would result in a 
null residual vector, i.e. 

* 

" If { D }  is the jth approximation of { D } , and { D }  is assumed "near" the equilibrium 
configuration, then a Taylor series expansion of the residual vector about { D} yields, 

Where, 

r 1 

aR,  aR,  

a D ,  aD2 ' o m  
... ... -- 

and from EQ. 26 then, 

r 1 
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Neglecting higher order terms in EQ. 28, and invoking the fact that the residual is zero at 

the equilibrium state (i.e { R{ D } }  = { 0} yields, * 

For the nonlinear system the stiffness coefficients in EQ. 31 are no longer constant but 
vary with amplitude, the instantaneous (or tangent) stiffness, denoted [ K I {  D } ]  is defined 
as the amplitude dependent rate of change of the internal resisting forces with displace- 
ment, and 

and EQ. 32 can be written 

or 

(EQ 33) 

(EQ 35) 

and the displacement update after each iteration is then 

EQ. 34 provides the basis for a Newton-Raphson solution algorithm in which the exter- 
nally applied loads are applied incrementally and equilibrium iterations are performed 
within each load increment to drive the equilibrium residual to an acceptably small value. 
For systems with strong nonlinear behavior, it is typically necessary to not only perform 
equilibrium iterations within a load increment, but to also divide the overal load into a 
number of increments, i.e. a one-step solution will often not converge even with equilib- 
rium iterations when strong nonlinearities are present. It may also be necessary to perform 
load incrementation to adequately track path dependency when nonlinear material behav- 
ior is present. Letting "n" denote the nth load increment, the equation for incremental dis- 
placements can be written, 

and 



An incremental and iterative solution procedure is shown schematically in Figure 15. 

5.2.3 Linear time-history analysis 

The fundamental problem in transient dynamic analyses is establishing a procedure for 
efficiently stepping from time "n-1" to time "n" as indicated in Figure 16. Applying New- 
ton's law to the building system model at time n yields the coupled dynamic equations of 
motion of the system model, 

[ M ] { E } "  + [Cl{O}" + [ K l ( D } "  = { P I "  (EQ 39) 

where 

[ M I  { 0 }" = the vector of nodal inertial forces, ( [MI  = system mass matrix) 

[ C] { O}" = the vector of nodal damping forces, ( [ C] = system damping matrix) 

[ K ] {  D}" = the vector of internal resisting forces, ( [ K ]  = system stiffness matrix) 

{ P}"  = the vector of applied external loads 

For the NONLINBLDG program, classical Newmark formulas are utilized to arrive at an 
unconditionally stable implicit solution algorithm (Newmark, 1959). The Newmark for- 

n-2 n- 1 n n+ 1 

FIGURE 16. Time stepping increments. 

mulas provide relationships for the forward displacement and velocity, 

"-1 At2 .. " - 1  
{D}" = { D } " - ' + A t { b }  + 2 ( 1 - 2 P ) { D }  + A t 2 p { E } "  (EQ 40) 

. n - 1  {d}" = { D }  + A t ( l  -y){b}"-l + A t y { E } "  (EQ 41) 
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FIGURE 15. Incremental-iterative solution of a nonlinear system. 
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where y and P are constants which can be chosen to control stability and accuracy of the 

integration scheme (y = - and P = - correspond to utilizing an average acceleration 

across a time step). Solving EQ. 40 for the forward acceleration yields 

1 1 
2 4 

and introducing this expression into the forward velocity of EQ. 41 yields 

{ f i } n  = { d } " - l + A t ( l  - ~ ) { f i } ~ - '  Y +-{D}"--(D}"-' Y 
AtP AtP 

- i { D } n - ' - A t y ( $ - -  1){D} n - 1  

(EQ 43) 

Substituting EQ. 42 and EQ. 43 into the system equation of motion, EQ. 39, yields 

EQ. 44 provides a recursion relationship for solving for the forward system displacement 
vector in terms of the forward load and the system displacement, velocity and acceleration 
vectors from the previous time steps. As a result of the linearity of the system, each time 
increment can be accomplished with a single step solution which requires an inversion to 
solve the system of equations indicate in EQ. 44. It is noted that the equation solution 
directly provides the total displacement of the system, and since the stiffness matrix of the 
linear system is constant (i.e. [K] is constant), the matrix on the left hand side can be 
formed, factored and stored in memory. Thus after the first time step, solution for subse- 
quent time steps simply requires back-substitution with a new right hand side vector. 

An alternate form of EQ. 44, in terms of displacement increment, can be obtained by rec- 

ognizing - [ C ] { b ) n - l - [ M ] { D }  
.. n - 1  

= - { P } " - ' +  [ K ] { D ) n - ' ,  then 

and 

(EQ 45) 
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and as before the constant matrix on the left hand side can be factored and stored once for 
the back substitutions of a new right hand side at each time step. 

5.2.4 Nonlinear time-history analysis 

In the nonlinear system model, the internal resisting forces cannot be written simply in 
terms of the stiffness matrix-displacement vector product. For a general nonlinear system, 
the governing equation of motion at time n can then be written, 

where { Q{ D } " }  is the vector of internal resisting forces at time n. 

The internal resisting forces at time n can be written in terms of the resisting forces at time 
n in a Taylor series expansion, 

Where { A D }  = { D}" - { D}" - ' , the incremental displacement vector between time n-1 
and time n. 

Neglecting higher order terms in EQ. 48 and substituting into the governing equation of 
motion of EQ. 47 yields, 

[ M I {  fi}" + [ C ] { b } "  + [&Q{ D}"-  'I{ AD}  = ( {P}"  - { Q{ D } " -  '}) (EQ 49) 

Substituting the Newmark expressions of EQ. 42 and EQ. 43 into the equation of motion 
of EQ. 49 and performing algebraic simplification yields, 

EQ. 50 provides a recursion relationship for the incremental displacement between time n- 
1 and time n. Denoting the displacement dependent rate of change of internal resisting 
forces with displacements by the instantaneous stiffness matrix [ K I {  D } ]  , EQ. 50 can be 
written, 
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n - 1  
Recognizing that - { Q { D } " - ' } - [ C ] { D }  
be rewritten, 

- [ M ] { b } n - l  = - { P } n - ' ,  EQ. 51 can 

It is noted EQ. 52 for the nonlinear is similar to the incremental form for the linear system 
in EQ. 45, however unlike for the linear system the left hand side matrix must be reformed 
and factored at each time step owing to the changing, displacement dependent stiffness 
matrix. 

Equilibrium iterations to improve the displacement approximation 

Once a displacement increment across a time step is obtained from the Newmark time 
stepping procedure (i.e. EQ. 52 is solved for a displacement increment), Newton type iter- 
ations can be applied to achieve better equilibrium between the applied loads, inertial 
forces, resisting forces, and damping forces of the structure. Analogous to the static non- 
linear problem, a system residual vector can be defined at the forward time n, 

The residual is explicitly a function of system displacements, velocities and accelerations 
at the forward time step n, however, the Newmark relationships give the velocity and 
acceleration at the forward time in terms of the forward displacement, and previous (back- 
ward) displacement, velocity and acceleration (see EQ. 42 and EQ. 43), i.e. 

{ D } n + ( { D } n ,  { D } " - ' ,  {df-', {b>"-l) (EQ 54) 

{ f i } n + f ( { D } n ,  { D } " - ' ,  { $ - l ,  { d } " - ' )  (EQ 55)  

or, slightly rearranging EQ. 42 and EQ. 43, 
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n - 1  {b}" = I { D } " + { b }  + A t ( l - y ) { f i } n - l - ~ { D } " - l  
AtP AtP 

-?{D}n-l-Aty( !@- l){O)"-' 
P 

.. n 1 1 1 n - 1  1 n - 1  
(EQ 57) { D }  = T { D } ~  - T ( D } " - '  - -{d} - @( 1 - 2 P ) { D }  

At P At P At P 
Substituting EQ. 56 and EQ. 57 into the residual expression in EQ. 53 yields, 

-;{ D}"-  '-At( $ - 1 )  { D}"- ' }  

Invoking the Newmark formulas essentially allows the residual at the forward time step, n, 
to be written in terms of know quantities from the previous time step, n-1, and the 
unknown displacements at the forward time step (i.e. the velocity and acceleration at the 
forward time step are removed from the residual expression). Another interpretation is that 
the Newmark relationships have effectively provided a constraint between the inertial, 
damping and internal forces at the forward time step n+l . 

* "  
Proceeding in a similar fashion to the nonlinear static problem, if { D } corresponds to 

an equilibrium configuration at time "n" and { D};  represents the jth approximation to 

{ D}" , then a Taylor series expansion of the residual about { D }  is given by 

Substituting the residual expression of EQ. 58 into EQ. 59 and making use of the fact that 

{ R { D  } } = Oyields, * n  
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n 1  1 n - 1  1 .. n - 1  
[ M I {  +{ D } ,  - 2 { D } " -  ' - -{ d} - -( 1 - 2P){ D }  

At P At P AtP 2P 

[ C ] { - & { D } j " + { b }  n - 1  + A t ( l - y ) { f i }  n - 1  - - { D } " - '  y 
AtP 

- i { d } " - ' - A t y ( $ - l ) { D }  .. n - 1  } = [ - - [ M I + - - [ C ] - - Q { D } j " ] { A D } ,  1 Y a 
At2P AtP a D  

or rearranging, 

-[MI +-[C] + - Q { D } ,  { A D } ,  = { P } ' " - { Q ( D } j " } -  
1 Y a 

[At2P AtP a D  

n 1  1 n - 1  1 
[ M I (  +{ D } ,  - T{ D } " -  - -{ d} - -( 1 - 2P){ 0)"- 

At P At P AtP 2P }- 
. n - 1  

+ A t ( l  - y ) { f i } n - l - ~ { D } n - l  
AtP 

-$ {D} " -  '-At( $ - l ) { D } n -  '} 

and EQ. 61 can simply be written 

where the right hand side is simply the residual of the equations of motion. EQ. 62 can be 

utilized to iteratively improve the displacement approximation { D }," . The Newmark- 
Beta integration with equilibrium iterations then consists of determining the initial dis- 
placement increment { A D }  across the time step with EQ. 52, and updating the displace- 
ment velocity and acceleration vectors to obtain the first approximation of these quantities 
at the forward time step, i.e. 

{ D } ;  = { D } " - ' +  { A D }  (EQ 63) 
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The vectors { D } ;  , { d}'f and { E } :  then become the first estimates to enter the residual 
calculation in EQ. 62. 

A summary of the solution algorithms is given in Figure 17. 
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Static Analyses 

- Linear systems ... 
r - - - - - - - - - -  
I 
I [ K I { D I  = { P I  
L - - - - - - - - - - 

- Nonlinear systems ... I, Load increment loop 

do n = I ,  # load increments 

Dynamic Analyses 

- Linear systems ... 
Time step loop 

do n=I, ntimesteps 

{ P I  = {P>" 

{D}"  = { D } " - ' + { A D }  

I 
n - 1  

I 

f {d}" = L { D } " + { d }  + A t ( l - y ) { ~ > " - l - ~ { D } " - '  I 
AtP I 

I 
I j - ; {d}"- ' -Aty  I I 

I 
I I I 
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Dynamic Analyses (cont.) 

- Nonlinear systems ... 
Time stepping loop 

{D}; = {D}"- + ( A D }  

I . n - 1  .. n - 1  I 

I I {d}? = &,{D}?+{D]  + A t ( l - y ) { D }  - L { D } n - '  AtB I I 

I 
I I - i { d } " - ' - A r /  

I I 

I I I  I 

I I :  
I 
I 
I 
I 
I 
I 
I 
I 

. n  n -  1 .. n - 1  
I 

I { D } j + l  = L { D } ; + { d }  + A t ( l - y ) { D }  - y { D } n - l  
AtB AtB 

I 
I 
I 
I 
I 

FIGURE 17. Summary of solution algorithms for static and dynamic, linear and nonlinear 
problems. 
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5.3 Local-global coordinate transformation 

In order to develop the system coordinate transformations for a one dimensional element 
with a convected local coordinate system, the direction cosines and transformation matri- 
ces must be derived. The transformation matrices, the components of which are the direc- 
tion cosines of the axes, define the transformation of vector quantities between coordinate 
systems. Consider the one dimensional element shown in Figure 18. 

AY 

k 
Z 

--+X 

Node I 

in global coordinates ... 
Node I + ( X I ,  Y I ,  ZZ) 

Node J + (XJ Y J ,  Z J )  

Node K+ (x,, Y K  z,) 

FIGURE 18. Global and local coordinate 

Axis x’ is defined in terms of the unit vector 2’ , 
5 21 = 1,2 + m,,j + n,,k 

where, 

X’ 

Based on vectors from I to J and from I to K, the unit vector in the z’ direction can be 
obtained, 

2 

ZK = (x, - xz)? + ( y ,  - y , ) j  + (2, - z,)k (EQ 70) 
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the cross product of IK and IJ is given by, 

thus, 

Now, unitize the product to get the unit vector in the z’ direction, if 

con?= C12+C2j’+C3L 
then 

or 

where 

(EQ 73) 

To get the unit vector in the y’ direction, construct the cross productk 0 ? , 

or 
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n A A h 

j '= lyvi + my, j + nyvk (EQ 81) 

where 

Z Y' -  - (mp,, - n Z m X r )  

my,= (- 1pxq + nzJ,~) 

nyn = ( lz lmx~ - mztlxt)  

A vector quantity c can now be described in either coordinate system shown in 
Figure 19, 

global local 

J 

D= d,? + dy;  + d,k 

Z J 

kY' 

FIGURE 19. Vector quantity in global and local coordinates 

1 

given D = d,?' + dyt? + d,&, then 

2 

d,= 0.2 

thus, 

d ,  = (d,?' + dyq3  + d,,&) ? 
A A $  

:.d, = dxq(lxqi + m,,; + n,,k) z 

+ dyo(ly4? + my,; + nynk)  ? 

+ dz~(Zz9? + rn,; + n,.k) j' 

:.d, = dXflxt  + dYtlyl  + dztlzq 
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similarly, 

d = dxtmxq + d ,rn + dzlmzv 

d ,  = dxtnx,  + dyqny8 + dzlnzl 
Y Y Y  

In matrix form these relationships become 

or 

{ d l  = [TI%} 

The inverse transformation is given by, 

similarly, 

2 , .  

d ,  = D i' = (d,? + d y  j + d z k )  (1,; + m X l j  + n,.k) 

= d,l, + d  m I +d,n,, 
Y X  

dy3 = dxlyq + dymyq + d p y 3  

dz ,  = dXli + d  m +dznzv  
Y Z  

or in matrix form 

or 

(EQ 92) 

(EQ 93) 

EQ. 91 and EQ. 97 provide the transformation between global and local coordinates for 
any vector quantity. For example, these relationships provide the transformation between 
local and global coordinates for the end displacement and force vectors for a one dimen- 
sional truss element as shown in Figure 20. 
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local to global transformation ... 

1, 1 t lz* Y 

Y mxt m mzq 
nxt ny9 n-, d 

Z 

global to local transformation ... 

Y' y 

local to global transformation ... 

ix] 

X 

X' 

Z 

qL\ 
Z' 

local transformation ... 

FIGURE 20. Application of coordinate transformation relationships to a one dimensional 
member 
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5.4 Nonlinear beam element 

5.4.1 Engineering theory of beam bending 

Initially, a long slender beam’ will be considered in which the two transverse dimensions 
are much smaller than the longitudinal dimension as shown in Figure 2 1. The beam is sub- 
jected to both transverse and longitudinal forces. Based on physical observations of flex- 
ure of slender beams, the following fundamental observations about slender beam bending 
can be made; 

Sections plane and perpendicular to longitudinal fibers of the beam before deformation 
remain plane and perpendicular to the longitudinal fibers of the beam after deformation 

/ AY x’-y’ plane 

> 
5’ plane 

FIGURE 21. Slender beam subjected to transverse and longitudinal loads and the beam 
reference axes 

The transverse strains in the beam cross section are negligibly small and the cross sec- 
tion dimensions can be assumed constant (i.e. E~ = E, = 0 ) 

The kinematics which result from these observations allows the development of a simple 
engineering theory of beam bending. Exploitation of these observations allows reduction 
of slender beam bending from a problem of three dimensional solid mechanics to a simple 
one dimensional engineering theory of beam bending. 

1. For the discussion here, slender refers to beams for which the length is at least ten times the largest trans- 
verse dimension. 
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5.4.2 Beam theory kinematics 

To develop the simple bending theory, a set of reference axes will be defined as shown in 
Figure 22. To begin with, the location of the reference axes is arbitrary, the axes simply 
originate somewhere in the beam cross section at one end of the beam, and they are 
aligned with the primary beam directions as shown in Figure 22. 

The displacement of the beam is defined in terms of the displacements of the reference 
axis, as given by the three displacement components u,v and w as shown in Figure 22. The 
displacement of any point located off of the reference axes can be described in terms of the 
reference axis displacements. Consider any cross section of the beam undergoing defor- 
mation as shown in Figure 22. Taking into account the fact that transverse strains are neg- 

-----..I \’ 1 z 
1 

6 = u(x)? + v ( x ) j  + w ( x )  I 

FIGURE 22. Displacements of points on and off the reference axes 

ligibly small (the second fundamental observation of slender beam behavior) the off axis 
displacements in the y and z directions are taken equal to the reference axis displacements 
and thus only the longitudinal displacement is a function of all three spatial coordinates x, 
y, and z. Thus, 
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w = w = f (x )onZy  

The displacement of any point on the reference axis is denoted by 
I 

6 = u(x$  + v ( x ) j  + w ( x ) &  

and the displacement of any point off the reference axis is denoted by 
A 
6 = U ( X ,  y ,  z ) ;  + V ( X ) j ' +  w ( x ) f  

Where the overbars are used to indicate a point off of the reference axis. 

The longitudinal strain in fibers located either off or on the longitudinal axis can be written 
in terms of the displacement quantities. Consider two fiber segments, each with initial 
length dx, undergoing deformation as shown in Figure 23. The displacement of an axis 
fiber at the initial end is given by 

1 

6 ( x )  = U ( X ) 2  + v ( x ) j .  + w ( x ) k  
and the displacement at the far end of the fiber is given by 

2 

6 ( x + d x )  I = [ u + - ~ x + -  !z :[ - : j ] d x 2  + ...I 2 + 

[ v  + $x + :[ 31 d x 2  + . . .] 3 + 

[ w + 2 d x  + : [ $1 d x2 + . . .] 3 

2 

2 

Where the displacements in EQ. 105 have been expanded about the initial end of the fiber 
in a Taylor series. From vector addition, the vector defining the new fiber location can be 
found, 

or 

I 1 I 

6 ( x )  + Y ( x )  = dx; + 6 ( x  + d x )  

I ,.I 

$ ( x )  = dxi  + 6 ( x  + d x )  - 6 ( x )  

Neglecting higher order terms, the new length of the fiber is approximately equal to, 

I,,, = 1?(x)l = 
d x  

or 

I,,, = d ( d x  + 2 x ) '  + ( 2 x ) '  + ( 2 d x ) ' -  d x  (EQ 109) 

and the fiber strain is given by, 
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FIGURE 23. Deformation of fibers located on and off of the reference axis 

E, = J m - 1  

or 
L 

E x  = J(1+2g+(g)4+($J+($) - 1  

2 2 

Neglecting the higher order term (g) but keeping the higher order terms (2) and 

($)2 (this term will ultimately lead to inclusion of the geometric stiffness), the strain of 

the fiber is given by 

Expanding EQ. 1 12 using the binomial expansion,' 

+ (higherorderterms) - 1 

or 

1 
2 1 1 2  
- 

1. ( l k x )  = l k - x - - x  k . .  2 8  

(EQ 113) 
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& = - + - -  du 1(dv)2 + l (dw)2 
dx 2 dx 2 dx 

Similarly, the new length of the off-axis fiber is given by, 

l , , ,  = d(dx+i r+  - d x - l i  + V+-vdx-V + W + - w d x - w  - -)2 (EQ115) ax au ) 2  ( d”,- )2 ( dx 

Which after similar expansion finally yields, 

& - = - + - -  dii l(d”)Z + - -  ; ( d ~ ) ~  
x a x  2 d x  

Where use has been made of the fact that V = v and W = w . 
The off axis displacement can be written in terms of the reference axis displacement, 

u = u - e , y + e  Y z (EQ 117) 

For small deformations and small displacements, the rotations can be approximated by 

dv 
8, =z 

EQ. 1 1  8 and EQ. 119, EQ. 117 can be written 

- dv dw 
dx dx 

= u - - y - - z  

Based on EQ. 120, EQ. 100 and EQ. 101, the displacements at points located off of the 
reference axis have been completely stated in terms of reference axis displacements. This 
is a direct consequence of the law of plane sections and is the key to reduction from a three 
dimensional continuum theory to a one dimensional engineering theory. EQ. 116 then 
becomes, 

1 dw & - = - + - -  du dx 2 ‘ (dv)2  dx + - -  2(dx)2 - [$ ]Y- [$ ] z  

which can be written, 
- 
E, = E x - K  Y - K z Z  

Y 

5.4.3 Beam theory stress resultants 

The beam theory stress resultants are shown in Figure 24. The stress resultants are given 
by 

F ,  = JExdA 
A 

M y  = -1- 0,YdA 
A 
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A Y  
I I 

Stress 
Resultants 

FIGURE 24. Beam stress resultants 

Where A is the cross sectional area of the beam and the bars on the stress terms denote the 
stresses at locations off of the reference axis. For the specialized case of a linear elastic 
material, the stress-strain constitutive behavior is provided by a classical Hooke’s law, 

E x  = +,-v(a,+a,)l E (EQ 127) 

For slender beams, the longitudinal fiber stresses are significantly larger than either of the 
transverse stress components, and Hooke’s law can be approximated by, 

Combining EQ. 128 and EQ. 122 gives, 

(EQ 129) 
Substituting this stress equation into the stress resultant expressions of EQ. 123 to 
EQ. 125 yields, 

- 
Ox = E&,-EKyY-EK,Z 

61 



F ,  = ~ ( E E ,  - E K , ~  - EK,z)dA 

M y  = - j ( E & ,  - E K , ~  - EK,z)ydA 

M ,  = - ~ ( E E ,  - E K , ~  - EK,z)zdA 

A 

A 

A 

T ,  = j(GY,,Y - Gy,,z)dA 
A 

For a homogeneous, elastic material, these relationships can be rewritten, 

F ,  = EA&, - EK,jydA - EK,jzdA 

M y  = -E&,lydA + EK,jy2dA + EK,jzydA 

M ,  = -E&,jzdA + EK,jyzdA + EK,/z2dA 

A A 

A A A 

A A A 

(EQ 137) 

EQ. 134 to EQ. 137 do not depend on any specific location of the reference axes. For a lin- 
ear elastic material however, if the reference axes are taken to coincide with the centroidal 
axes of the beam, the relationships reduce to the familiar strength of materials expressions 
for simple Bernoulli-Euler beam bending. For example, if the reference axes correspond to 
the centroidal axes, by definition, 

A 

j y d A  = 0 

j z d A  = 0 

j y 2 d A  = I,, 

j z  d A  = I,, 

SxydA = 0 

A 

A 

A 
2 

A 

A 
and EQ. 134 through EQ. 137 reduce to the standard expressions 

F ,  = EA&, 

(EQ 139) 

(EQ 141) 

M ,  = EI,,K, 

T ,  = GJy 
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From EQ. 143 it is evident that if the axial force applied to the beam is zero, the reference 
axis strain is zero and thus the reference axis (and centroidal axis for this case) is also the 
neutral axis of the beam. When the reference axes correspond to the centroidal axes the 
beam axial force is only a function of the reference axis strain and the moments are only a 
function of the reference axis curvature. In the consideration of material nonlinearity in a 
subsequent section, it will be found that the uncoupling of the axial stress resultant from 
the curvature terms and the uncoupling of the moments from the reference axis strain will 
not generally be achievable because the neutral axis of the beam translates through the 
beam section as portions of the beam cross section undergo nonlinear material response. 

5.4.4 Beam finite element 

In typical civil engineering applications, the structure consists of a frame or truss system 
in which a large number of beam elements constitute the structural system. For seismic 
analyses of typical structures, many regions of the structure may remain entirely in the 
elastic range while other regions of the structure experience nonlinear material behavior. 
Most often, the regions of nonlinearity are not known a priori and depend on the complex 
dynamic transient response of the entire structural system. It is thus desirable to have a 
structural model which can efficiently and accurately represent both linear and nonlinear 
behavior. With this concept in mind, a nonlinear beam element has been developed based 
on a cubic Hermite polynomial displacement field approximation. This element allows 
adequate representation of linear beam bending with a single element between nodes of 
the model. This is in contrast to some existing linear beam elements (see for example 
NIKE3D beam element technology) which require multiple element discretizations of 
structural elements in order to accurately represent the linear bending characteristics of the 
beam. Discretization with linear displacement field elements can result in an excessively 
large number of model degrees of freedom when representing a long-span bridge. 

Consider the one dimensional flexural element shown in Figure 25. The element contribu- 
tions to the internal resisting force vector and instantaneous stiffness matrix can be 
obtained by consideration of the principal of virtual displacements. For any vector of 
imposed virtual displacements 6d, the internal work must equal the external work, 

1 I [ F,( x' )&E,( x') + M Y (  x' ) 6 ~ ~ (  x' ) + MZ( x' ) 6 ~ , (  x') + T,( x')6r,( x')] dx' (EQ 147) 
0 

or 
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I 
Flexural 
element and 
local coordinates 

FIGURE 25.1D flexure element- local coordinate system, stress resultants and 
active degrees of freedom 

(EQ 149) 

(EQ 150) 

(EQ 1-51) 

{ s d I T  = [Fd, 6d2 Fd, 6d4 Fd, Fd, 6d7 Fd, 6d9 Fd,, Fd,, 6 d l J  (EQ152) 

and is the twist of the beam about the longitudinal axis. To facilitate the ultimate compu- 
tation of the element residual and stiffness contributions, a transformation from element to 
natural coordinates is made. The relationship between element physical and natural coor- 
dinates is given by (see Figure 26), 

5 = T -  2x 1 (EQ 153) 

{ w ~ ’ ) I  = [&Ex FK, FK, sr,l 
= [ql q 2  q 3  q 4  q 5  q 6  q7 q 8  99 910 411 4121 

and 
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Physical coordinates 

f 
Natural Coordinates 

t 
.x -5 
x=o x=l E=-1 5=+1 

FIGURE 26. Flexural element coordinate systems 

The transformation to a semi discrete system is made by introduction of the displacement 
field approximations, 

2 

u = Ni(5bi  (EQ 155) 
i = l  

4 

v = Mi(S>vi  (EQ 156) 
i = l  

4 

w = Li(S>wi (EQ 157) 
i = l  

2 

8 = N i ( 5 P i  (EQ 158) 
i =  1 

For computational expediency, the quadratic terms of EQ. 121 (i.e. ($)2 and ( $ ) 2 )  

will be represented by a lower order approximation ( Przernieniecki, 1968). A second 
order approximation for the slope terms would result if the displacement approximations 
of EQ. 156 and EQ. 157 were used directly, and the corresponding instantaneous stiffness 
and residual terms would include high order terms. The approximate expressions for the 
slope terms are given by, 

2 

2 

In EQ. 155 through EQ. 158, the ui , vi, wi and 8, terms are displacements and rotations at 
the ends of the element ,which are equivalent to the corresponding “d” terms in Figure 25 
(for example v1 = d,, v2 = d,, v3 = d,,  v4 = d I 2 )  and 
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L4 = -$+ 1 1)2(5- 1) 

In terms of natural coordinates the element strains can be written, 

or 

similarly, 
2 

d v  4 

d c 2  l2 
K =-- (EQ 173) 

Introducing these strain expressions into the PVD statement of EQ. 147 and converting to 
natural coordinates yields, 
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i = l  

where, 

( 4 1  = [ ( N l l J - l )  0 0 0 0 0 ( N p - ' )  0 0 0 0 01 

and 
2 

s, = c Ni'(t)viJ-' 
i = l  

2 

s, = N,'(c)wiJ-' 
i = l  

The principal of virtual displacement can then be written, 
1 

-1 
Comparing EQ. 185 and EQ. 148, the relationship between strain and displacements is 
given by 

(EQ 186) 
where, 

@ E l  = [[BI + [B,({4)11{6dl 



- - 
N,-J- '  o 0 0 0 o N,'J-' o 0 0 0 0 

0 M,"(J-')' 0 0 0 M,"(J-')' 0 M,,'t(J-')2 0 0 0 M,"(J-'$ 

0 0 L,"(J- ' )2  0 Li'(J- ') '  0 0 0 L 3 " ( J - ' t  0 L,"(J-')2 0 

0 0 o N,'J- '  o 0 0 0 o N ~ J - '  0 0 - - 

[k,l = 

EQ. 190 can be written, 

- 

... ... 

... ... ... 

... ... ... ... ... 

... ... ... ... ... 

... ... ... 

. . . . . .  
- 

From EQ. 189, 

r 1 

(EQ 190) 
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similar expressions exist for d, through dI2, and the element instantaneous stiffness can 
thus be written, 

[k,I = [d 
l r  r i  

-1 L 
where 

and 
r 

[El = 

r 

[%) (2) . . . . . .  (2 
. . . . . . . . .  ... [2) 
. . . . . . . . .  (2) 

(EQ 194) 

]Jd5 
k = 1.12J 

(EQ 195) 

The chain rule of differentiation can be applied to EQ. 195 to yield 

where 

and, 
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El = 

1 
[a%] - -  [a%] . . . . . .  (51 

(2) [z] 
(2) [%I 

ad, ad2 ad12 

. . . . . . . . .  

. . . . . . . . .  

(EQ 199) 

&I - * *  . * .  (%I (&I] 
Comparison of EQ. 199 and EQ. 186 shows that EQ. 199 can be written, 

The instantaneous stiffness matrix given by EQ. 194 can then be written, 

-1 

In the updated corotational coordinate system developed for the beam element (section 
4.0. l), the element end displacements in the updated coordinate system are identically 
zero (see Figure 27 below). Thus, with the simple slope approximation given by EQ. 159 
and EQ. 160, the matrix [B,({d})] vanishes, and the instantaneous stiffness terms 
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[ kc,] , [ kc,] , and [ k c , ]  are identically zero. For the updated corotational system, the ele- 

= O  

FIGURE 27. Flexural element and convected corrotational coordinate system 

ment residual and instantaneous stiffness contributions are thus given by, 
1 

{SI = J [ B I T { F > J d C  (EQ 208) 
-1 

Up to this point in the development, the nonlinear constitutive behavior of the element 
material has been left completely arbitrary. If the material is linear elastic, the constitutive 
matrix defining the rate of change of stress resultants with respect to strains (EQ. 198) 
reduces to a very simple form for the case in which the reference axes correspond to the 
beam centroidal axes. For this case, the constitutive matrix reduces to 
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[El = 
- - 

[EA 0 0 0 
0 EZ,, 0 0 
0 0 EZ,, 0 

1 0  0 0 G. 

[(E) (3 (E) (8, 
5.4.5 Finite fiber beam cross section 

To accommodate general nonlinear material behavior in the beam element, the beam cross 
section will be subdivided into a number of finite fibers’ as indicated in Figure 28, and the 
stress-strain relationship for the materials of the beam will be defined separately for each 
finite fiber. 

Henceforth in this development, the reference axes (Le. the y and z axes in Figure 28) will 
be assumed to correspond to the centroidal axes of the beam cross section. 

The force resultants of the beam can now be defined based on the finite fibers, 
NFIBR 

F,  = O , , A i  

i = l  

NFIBR 

i = l  
NFIBR 

i =  1 

T ,  = G J r  

The constitutive matrix of the beam can be determined by differentiation of the relation- 
ships given in EQ. 21 1 through EQ. 214. The constitutive relationship for the axial force 
resultant is given by, 

~~ 

1. The term “finite” as used here refers to the finite dimensions of each defined fiber section, thus distin- 
guishing from the typical connotation of an infinitesimal dimension fiber. 
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FIGURE 28. Subdivision of beam cross section into finite fibers. (a) Wide flange beam cross 
section; (b) finite fibers for the cross section; (c) material constitutive behavior at a finite fiber 
cross section. 

d E X  from EQ. 122, - = 1 ,  and EQ. 215 becomes 
a E . .  

similarly, 

aEx 

a K Y  
fromEQ. 122, - = -y and 

and 
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ae, 
a K Y  

from EQ. 122, - - - -Z thus 

and 

= o  J F X  

ar - 
Similarly, 

aM NFIBRdox a E x  
de, a&, 

-y aM = - NFIBRdox E -[-]yiAi ac, 

aM 

-y = - -[-]yiAi 
a & X  i =  1 

dE, a K y  a KY i =  1 

i = l  

EQ. 222 through EQ. 225 can ,e rewritten 

Similarly, 
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aM 
ar - y  = 0 

and EQ. 230 through EQ. 233 can be written, 

5.4.6 Elasto-plastic constitutive model 

The basic material which will be represented here is a classical elasto-plastic model with 
kinematic hardening. For this model, the rate of change of stress with respect to strain is 
linear with the slope determined by whether or not the finite fiber is in a yield condition. 
For the elasto-plastic material, the rate of change of stress with respect to strain is given 
simply by, 

when ox; < o, , and 

- = E ,  
dE.. 
d0Xi 

x i  

when oXi 2 o, . The relationships in EQ. 238 and EQ. 239 can simply be written 

where E ( e i )  = E ,  when oXi < o, and E ( c i )  = E,  when oXi 2 o, 

(EQ 239) 



5.4.7 Implementation of the finite fiber elastoplastic element 

- - 
N , - J - '  o 0 0 0 o N,'J-' o 0 0 0 0 

0 M,"(J-1)2 0 0 0 M,"(J-'f 0 M,"(J-'? 0 0 0 M,"(J-y 

- 0 0 o N , ~ J - '  o 0 0 0 o N,*J-' o 0 - 
0 0 L,"(J-')' 0 L,"(J-')2 0 0 0 L,"(J-')2 0 I ~ , " ( J - ' ) ~  0 

The Newton-Raphson based incremental, iterative global solution algorithm requires the 
element contributions to the global residual vector and instantaneous stiffness matrix (see 
and). Based on the developments in the previous sections, the components necessary for 
development of the beam element residual and instantaneous stiffness matrix are now 
available. The element end forces in the element updated corotational coordinate system 
are given by EQ. 208, 

where, from EQ. 187, 

The element contribution, for element i, to the global resisting force vector is then found 
from the simple coordinate transformation 

1 

{e}, = [ T I T I  [ B I T { W J 4  (EQ 241) 
-1 

T where [TI is the transformation matrix between the current corrotational coordinate sys- 
tem for the element and the global coordinate system (see). 

The element instantaneous stiffness matrix is provided by EQ. 209, 

where, 
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- 
0 (SINl'J-') ( S , N , ' J - ' )  0 0 0 0 ( S l N 2 ' J - ' )  (S ,N , 'J - ' )  0 0 0 

0 0 0 0 0 0  0 0 0 0 0  
0 0 0 0 0 0  0 0 0 0 0  1 0 0 0 0 0 0  0 0 0 0 0  

r 1 

[El = 

NFIBR 

i =  1 

(EQ 242) 

The element contribution to the global instantaneous stiffness matrix is found from the 
simple coordinate transformation between element corotational and global coordinates, 

The integrations indicated in EQ. 243 are performed using a quadrature numerical integra- 
tion. The well known Gaussian quadrature provides the most economical quadrature rule 
and for an n-point Gaussian integration rule, a polynomial of degree 2n-1 is exactly inte- 
grated. However, for the nonlinear beam element developed here an alternative quadrature 
approach is employed. The alternative approach is based on Lobatto quadrature formulas 
(Hildebrund, 1956). The distinction of the Lobatto quadrature is that the quadrature points 
include the extreme ends of the integration interval. This allows capture of the initiation of 
inelastic action which occurs at the ends of the beam elements, something which Gaussian 
quadrature will generally miss because the Gauss points are interior to the element. For 
Lobatto integration, an n-point rule will exactly integrate a polynomial of order 2n-3. For 
the element integrations indicated in EQ. 243 and EQ. 241, the highest order terms are 
quadratic in 5, (i.e. order(c2)), thus a three point Lobatto integration will provide exact 
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integration. The Lobatto quadrature points and corresponding weights are shown in 
Figure 29. 

FIGURE 29. Lobatto quadrature points and weights 
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5.5 Representation of steel structure plasticity 

A simple elasto-plastic, linear kinematic hardening model is utilized ro represent steel 
member elements in the NEVADA program. A general stress evaluation and stress-strain 
relationship can be developed for the uniaxial plasticity model which can be utilized in all 
of the elasto-plastic elements. 

The classical bilinear plasticity model with kinematic hardening is shown in Figure 30. In 
the evaluation of element nodal force vectors and instantaneous stiffness matrices, it is 
necessary to carry out state determinations in which the element stresses at a given equi- 
librium iteration are evaluated for the element force and stiffness calculations and the 
instantaneous stress-strain relationship is obtained for the element stiffness determination. 

J 

' E  

FIGURE 30. Elasto-plastic model with linear kinematic hardening 

To evaluate the current state of stress in the incremental-iterative solution procedure, a 
path independent stress integration procedure will be employed. In the most general form, 
this relationship can be stated 

In EQ. 244, n refers to the current load step number, k refers to the equilibrium iteration 

number in the current load step n, is the converged strain at the end of the previous 
- 
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load step and &;is the current strain obtained from the displacement field for iteration k. 
EQ. 244 provides the stress value for the current configuration based on an integration of 
the stress-strain relationship between the last fully converged state and the current dis- 
placement configuration. Performing the integration from the last fully converged state 
rather than the last iteration state' ensures that the algorithm will be path independent. 

In the bilinear model, the integration of EQ. 244 is readily accomplished if a number of 
simple rules are adopted to integrate around yield points. In Figure 30, (E,, 0,) denotes 
the current location of the center of the yield region. When performing the integration of 
EQ. 244 a number of possible cases must be considered as shown in Figure 31. In case I, 
the last converged state resides within the elastic region and the current configuration for 
equilibrium iteration k also lies within the elastic region. In Case I1 the last converged state 
is within the yield region and the current configuration lies outside the yield limits. In Case 
I11 the last equilibrium configuration lies on the upper or lower yield surface and after load 
reversal, the new configuration lies either in the elastic range or past the opposite yield 
point (i.e reverse yielding in a very large load step). In Case IV, yielding continues in the 
same direction with growth of the yield surface. 

To facilitate the development of a simple formula for the stress integration, the parameters 
h and q will be defined (Figure 32). These parameters are defined by 

A = -  & Y  
2 
E q = -  

(EQ 245) 

In EQ. 245 is the initial yield strain and h represents the half width of the yield region. 
The parameter q is the ratio of the stress-strain slope in the linear region to the stress- 
strain slope in the inelastic regime. 

Consider first the stress integration from point 1 to point 2 in Figure 33. Letting the total 
strain increment from point 1 to point 2 be denoted by A& where 

n n - 1  
AE = E ~ - E  (EQ 247) 

and this strain increment would be obtained from the displacement field in a finite element 
analysis. The stress increment is given by, 

n - 1  
ACT = 0 k - 0  = EY[A& - (E, + h -  E ~ - ' ) ]  + E ( & ,  + h -  E ~ - ' )  

E; 

Ell- 1 

1. For example, performing the integration 0; = 0: - , + &de would not preserve path independence 
de 

since the integration from converged state to converged state would rely on intermediate, unconverged 
configurations and would introduce path dependency along a nonequilibrium path 
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or 

Defining 

/ 
Clase I - linear range behavior 

Case I11 - loading reversal 

3-: 
( E n - ' ,  on-') 

0 Center of yield region ( E c ,  Oc)  

0 Last fully converged state (En - ', On - ') 
0 Current equilibrium 

configuration 

Case IV - continued yielding 

FIGURE 31. Cases for consideration in stress determination 

A 0  = E y A ~ + ( E - E y ) ( ~ , + h - ~ n - l )  

n - 1  
AE Y = E , + A - E  
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FIGURE 32. Stress-strain curve and parameters h and q .  

which as shown in Figure 33 represents the strain increment from the last fully converged 
point to the yield point, the stress increment given in EQ. 249 can be written, 

(EQ 251) AO = E,AE + ( E  - E,)AE~ 

bo = E,AE + (q E,  - E,)A&, 

ACT = E,(AE + (q - l)A&,) 

or 

(EQ 252) 
EQ. 252 then reduces to, 

Defining the additional parameter, 
(EQ 253) 

A& 
A& 

p E -y 

The stress increment of EQ. 253 can finally be written, 

(EQ 254) 

AO = ET[ 1 + p(q - ~ ) ] A E  (EQ 255) 
For a negative strain increment, e.g. moving from point 1 to point 3 in Figure 33, a similar 
expression can be developed and it is found that EQ. 255 still holds if the appropriate 
strain to yield expression is employed, i.e. 

= €,-A,-& (EQ 256) 
With the appropriate definition of the strain to yield term as given in EQ. 250 and EQ. 256, 
the stress increment given in EQ. 255 is applicable for Case I1 in Figure 3 1 and in Case I11 
when the current equilibrium configuration results in reverse direction yielding. 

n-1 
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J 

FIGURE 33. Integration of stress from the last fully converged state to the new current 
equilibrium configuration 

In a Newton-Raphson incremental-iterative scheme, the stresses must be updated in a state 
determination for the current equilibrium configuration and the instantaneous stiffness of 
the structural system must be formed. For the state determination the total stress is found 
by obtaining the stress increment from EQ. 255 and adding the stress increment to the 
total stress at the last fully converged state. The instantaneous stiffness is found from the 

current rate of change of stress with respect to strain - . For the simple elasto-plastic 

model, the logic for accomplishing this, which will adequately capture all of the cases 
shown in Figure 3 1, is indicated in Figure 34. 

do 
dE 

When applied to the bilinear elasto-plastic model, the Newton-Raphson solution algorithm 
can experience serious divergence problems. In the well known paper by Matthies and 
Strang(Mutthies and Strung) for example, the authors discuss some simple pathological 
cases in which the classical Newton-Raphson procedure diverges rapidly. A general obser- 
vation, based on the author’s numerical experimentation, is that since the Newton-Raph- 
son procedure is a second order method, if the iterations do converge, converge is quite 
rapid. However, divergence is a distinct possibility unless special controls are imple- 
mented. In the current work, a special control was implemented to assist in convergence of 
the Newton-Raphson procedure at the global finite element level. The procedure which 
was implemented consists of using an approximation of the true tangent stiffness when 
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Define yield indicator variables . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  - - - - - - - . 
I yindint yield indicator for stress integration ; 

yindstf = yield indicator for stiffness 

. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ .  

Perform preloadstep loop initialization 

set yindint = 0 

set yindstf = 0 

set (E,, 0,) = (0,o) 

, _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ .  

; for each stress-strain location . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ .  
Load step loop 

Equilibrium iteration loop 

. 
Form finite element residual vector and stiffness matrix 

Residual vector: 

update stress from last converged state 

ifyindint = O... 

if E ,  - h 5 E; I E, + h then 

AO = EA& 

elseif E; < (E, - h)  then 

AE = E -h-&*-'  and 
Y C  

A o  = EY[ 1 + p(q - ~ ) ] A E  

elseif E: > ( E ,  - h )  then 

= E , + ~ - E * - '  and 

AO = EY[l + p(q - ~ ) ] A E  

ifyindint = I... 

if E: 2 ( E ,  + h)  then 

A o  = E,AE 

elseif E ,  - h I E: < (E, + h)  then 

AO = EA& 

elseif E: < ( E ,  - h)  then 

A& Y = E , - h - E  and 
n - 1  
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ACJ = E,[ 1 + p(q - ~ ) ] A E  

I ifyindint = -I... 

if E: 5 ( E ,  - h)  then 

AD = E,AE 

elseif ( E ,  - h)  < E: 5 E ,  + h then 

AO = EA& 

elseif E: t ( E ,  + h )  then I :  
I i  A&, = E , + ~ - E * - ~  and 

if ( E ,  - A) < E: < ( E ,  + A) then yindstf = 0 

if E: I E ,  - A or E: t ( E ,  + h )  then yindstf = 1 

I ifyindstf= O... 

I ifyindstf= I . . .  

I i  d o  
de 
- = E, 

Equilibrium iterations 
converged? 

Yes 

Update yield region and yield indicators 
- _ _ _ _ .  . _ _ _ _ - - - _ - - - - - - - - _ - - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

afierconvergence (E:, 0:) + ( E k +  ok+ 

:set yield indicator for  integration and translate yield surfaces : 
Etop = & , + A  

‘bottom = 

1 then 

yindint = I 

E,= E k + l - h  

... 



if', + 1 ' bo t tom then 

yindint = -I 

(Jtrans = Ok + 1 - - O y )  

(Jc = ( J c  + (Jtrans 

E,= E k  + + a 

if Ebottom < Ek + 1 < ' t o p  then 

yindint = 0 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ I  

Proceed to the next load (time) step I 
FIGURE 34. Flowchart for implementation of elasto-plastic model in a Newton-Raphson 
solution framework 

d o  
de 

yielding occurs. Thus instead of using - = E, to characterize the instantaneous stiff- 

ness, an approximation is used, i.e. 

E, + zE !E- 
de 2 (EQ 257) 

Utilization of the approximate expression in EQ. 257 significantly improved the conver- 
gence of the Newton-Raphson scheme at the global finite element level. This approxima- 
tion does lead to higher compute costs as a result of an increased number of equilibrium 
iterations. Since the true instantaneous stiffness is not being utilized, convergence is no 
longer second order. Based on numerical experimentation, appropriate values of z , which 
enhance the stability of the Newton-Rapson procedure, with a minimal impact on conver- 
gence rate, are in the range of 0.5 to 0.7. 
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APPENDIX 1 

REGIONAL GROUND MOTION SIMULATION EXAMPLE 
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7.0 E3D Wave Propagation Example 

An E3D wave propagation simulation for the NEVADA environment is presented in this 
Appendix. In this particular example, the objective is to simulate the 1989 Barnwell event 
at the Nevada Test Site and to compute the seismic wavefield in southern Nevada and the 
strong ground motions within the Las Vegas Basin [Larsen, 20021. The synthetic data can 
be compared to observed data as a means of validating the model. 

The area of interest is shown in Figure 35. The horizontal extent of the finite-difference 
grid is indicated by the blue rectangle. It is 300 km long and 200 km wide. The vertical 
extent is 100 km. Seismic energy is propagated from the Barnwell event (red star) at the 
Nevada test site (yellow outline) to the Las Vegas Basin (flat area within the white box). 

39' 

38' 

37' 

36' 

35' 

-1 18" -1 17" -1 16" -115' -1  14" -1 13' 
FIGURE 35. Southern Nevada simulation region (blue box) includes the Nevada Test 
Site (yellow outline) and the Las Vegas Basin (white box). Barnwell test location is 
indicated by red star. 
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FIGURE 36. Seismic wavefield (snapshots) at successive times 
following Barnwell event. 
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In this example, the numerical spacing of the finite-difference grid is 0.125 km. The actual 
yield of the Barnwell event is not available, for this example simulation the Barnwell event 
was simply idealized as a 150 KT explosion', which is equivalent to a magnitude 5.7 
earthquake. The simulated source is located at a depth of 500 m, which is comparable to 
the actual source depth of 600 m. A Gaussian pulse with an upper frequency content of 
about 1 .O hz is used as the source time function. 

The geologic model is based on Model Assembler 2.1, a product of the University of 
Nevada at Reno [Concha-Dimas et al., 20021. In particular, this model uses a depth-to- 
basement profile to characterize the 5 km deep Las Vegas Basin. This depth-to-basement 
profile is based on gravity and other geophysical information [Langenheirn et al., 20011. 
The velocity structure of the smaller basins in this region is obtained using structural rules 
from Model Assembler 2.1. A 1-D regional velocity model is used for depths greater than 
5 km. This particular example simulation does not include topography and it does not 
include attenuation. 

150 

100 

50 
200 250 

FIGURE 37. Maximum ground motions in the Las Vegas Basin. Green 
are ground velocities between 0.04 and 0.08 c d s .  Red are ground 
velocities above 0.08 c d s .  

1. Publically available information on the Barnwell event lists the yield as 20-15OKT range. 
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FIGURE 38. Comparison between data and simulation for soil (S51) and rock (SGS) sites 
within and on the peripheral of the Las Vegas Basin. Shown is the X (southeast) component 
of ground velocity. The amplitude scale is in c d s .  The horizontal axis goes to 300 s. 
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The maximum ground motions within the Las Vegas Basin are shown in Figure 37. Areas 
of green indicate maximum ground velocities between 0.04 and 0.08 c d s .  Areas of red 
indicate maximum ground velocities above 0.08 c d s .  The depth-to-basement within the 
Las Vegas Basin is shown by the 1 km contour intervals (maximum basin depth is about 5 
km). In general, maximum motions are observed within the basin. There is some 
correlation between amplitude of motion and basin depth, although strong shaking is also 
indicated in shallower parts of the basin. In part, amplitudes in the northwest (left) portion 
of the basin may be larger because this region is closer to the source. 

A comparison between observed and simulated data at soil (S51) and rock (SGS) sites 
within and on the peripheral of the Las Vegas Basin is given in Figure 38. Shown is the X 
(southeast) component of ground velocity (cds) .  The maximum amplitudes agree very 
well. In addition, there is good agreement in the general character of the signal although 
differences are also observed (especially at S51, the soil site). These differences could be 
due to unmodeled complexities in the geology, topography, or some other effect. 
Comparisons at other sites tend to show similar if not between agreement. The positive 
comparison between model and observation suggests that ground motions in areas of the 
Las Vegas Basin that have no historical observations can be estimated by simulation. 
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APPENDIX 2 

STORAGE AND OPERATIONS FOR SYMMETRIC, 

BANDED MATRIX IN COMPACTED SKYLINE FORM 
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8.0 Vector operations 

do 10 j=nstart,nactdof 
nrow=j-i+l 
if(ncolht(j) .ge. nrow)then 
prod(i)=prod(i)+matrix(maxa(j)+(j-i))*vector(j) 
endif 

10 continue 

The solution of simultaneous equations and the solution of the free vibration eigenprob- 
lems in the NEVADA program is based on a skyline form of storage of the model system 
matrix. The equation solutions and storage format follow that of Bathe and Wilson (Bathe 
and Wilson, ) and the Fortran subroutines COLSOL and SSPACE provided in the refer- 
enced book have been implemented in NEVADA. The compacted skyline storage saves 
only the terms below the skyline of the symmetric matrix as indicated in Figure 39. The 
time history solution of the incremental equations of motion requires computation of 
matrix-vector products. The Fortran logic and syntax for carrying out a matrix-vector mul- 
tiplication is indicated below 

Product for 
elements right 
of diagonal 

15 continue 
I I 

I. - . 

c - --53 --43 

a26 a36 0 

0 0 0 a47 

- 1  
, x  - i r.., 

I I  
I 
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3 
3 
3 
5 
4 - 
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7 -  

1 
2 
4 

maxa= 7 
10 
13 
18 - -  

0 

0 

0 

' 2 6  ' 3 6  " U 5 f l  

'47 '57 ' 6 7  '77 
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matrix 

' 5 6  
0 

'36 

' 2 6  

'77 

'67 

'57 

'47 

Column Diagonal 
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FIGURE 39. Compacted skyline storage of a symmetric banded coefficient matrix. 
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APPENDIX 3 
REPRESENTATIVE STEEL MOMENT RESISTING 

FRAME BUILDINGS AND VERIFICATION PROBLEMS 
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9.0 Representative Steel Frame Structures 

To evaluate the performance of the NEVADA building model, four typically designed rep- 
resentative steel moment frame buildings for UBC zone 3 were created. These models 
were carefully designed in collaboration with Professor Hassan Astaneh of UC Berkeley 
to ensure realistic dimensions, beam and column section properties and mass values. The 
three, nine and twenty story buildings were similar to representative models developed as 
part of the SAC steel structure project'. The forty story frame building was also represen- 
tative of a UBC zone 3 structure and an existing San Francisco high-rise structure was 
used as a starting point and modified to meet zone 3 design criteria. The dimensions of the 
building structures at identical scale are shown in Figure 40. 

FIGURE 40. Representative forty, twenty, nine and three story steel moment resisting frames. 

1. The SAC project was funded by the Federal Emergency Management Agency to solve the problem of 
brittle behavior of welded steel frame structures that surfaced in the January 17, 1994 Northridge Califor- 
nia Earthquake. 
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The properties of the four frames are summarized in Table 2 
TABLE 2. Properties of representative buildings 

pA = 4.864 x io7 N 
(1.093 x lo7 Ib) 

Steel 
building 
heighta 

2.28 Hz (0.439 sec) 

3 story 

9 story 

M2 = 2.159 x lo6 N-s2/m 
(4.760 x lo6 Ib) 

20 story 
0.375 Hz (2.67 sec) 

40 story 

M2 = 8.982 x lo6 N-s*/m 
( 1 . 9 8 0 ~  1071b) 

Ml 
Effective total mass in 

frame for lateral 
loadingb 

0.189 Hz (5.29 sec) 

Ml = 8.623 x lo5 N-s2/m 
(1.901 x lO61b) 

M1 = 2.992 x lo6 N-s2/m 
(6.595 x IO6 Ib) 

MI  = 3.867 x lo6 N-s2/m 
(8.525 x lo6 Ib) 

MI = 1.067 x 107N-s2/m 
(2.354 x lo7 Ib) 

Frequencies 
(periods) of 

planar frame 
- no gravity 

initialization 

M29 
Effective total vertical 

mass in frame for 
gravity initialization 
and P-A loads from 

internal frames' 

M2 = 3.531 x lo5 N-s2/m 
(7.785 x lo5 Ib) 1.10 Hz (0.909 sec) 

3.49 Hz (0.287 sec) 
5.96 Hz (0.168 sec) pA = 1.47 x io7 N 

(3.306 x IO6 Ib) 

M2 = 1.502 x lo6 N-s2/m 
(3.312 x lo6 Ib) 0.486 Hz (2.06 sec) 

1.26 Hz (0.794 sec) 

0.960 Hz (1.04 sec) 
1.62 Hz (0.617 sec) PA = 5.224 x lo7 N 

( 1 . 1 7 4 ~  lo7 Ib) 

0.505 Hz (1.98 sec) 
0.792 Hz (1.26 sec) PA = 2.037 x 10' N 

(4.578 x lo7 Ib) 

Frequencies 
(periods) of 

planar frame 
- including gravity 

initialization 

0.480 Hz (2.08 sec) 
1.25 Hz (0.800 sec) 
2.27 Hz (0.441 sec) 

0.362 Hz (2.76 sec) 
0.934 Hz (1.07 sec) 
1.58 Hz (0.633 sec) 

0.182 Hz (5.49 sec) 
0.491 Hz (2.04 sec) 
0.771 Hz (1.30 sec) 

a. Assuming rectangular building cross-section and all lateral load resistance provided by the four perimeter moment 
resisting frames (internal frames non-moment connections). Building designed per 1988 UBC seismic zone 3 require- 
ments. 

b. Effective mass for lateral seismic loading (including contributing mass from internal frames) - 
Horizontal $ i $ m i  

Mass of frame plus 
contributing mass of 
internal frames during 
lateral loading - 

Effective mass contribution 
from frame vertical loads 
(DL+LL) plus vertical load 
contribution by orthogonal 
beams connected to frame 
Effective P-A loads from 
side-sway of internal simply 
connected frames 

'A = x p i  
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The section properties and computed natural frequencies of each of these buildings are 
shown in Figure 41 through Figure 45. For each structure the natural frequencies com- 
puted with the NEVADA framework are compared with the frequencies computed with 
the LLNL GEMZNZ linear elastic general purpose finite element program. The NEVADA 
and GEMINI models exhibit excellent agreement. 

9.1 Nonlinear analysis results 

A large suite of transient nonlinear analysis problems were computed to verify the nonlin- 
ear analysis capabilities of the NEVADA framework. A selected subset of illustrative 
problems are summarized here. 

9.2 Inelastic axial deformation of a steel beam 

A W14x176 wide flange beam was axially loaded with a concentric load that was applied 
slowly over three seconds. The amplitude of the load was adjusted so that the initial load- 
ing resulted in significant plastic deformation of the beam. at the end of three seconds, the 
applied load was abruptly removed and the beam was allowed to vibrate freely in the axial 
direction. The response of the beam, as computed with NEVADA and the LLNL general 
purpose nonlinear finite element program NIKE3D is shown in Figure 46. Both models 
employed spectral damping with mass and stiffness proportional damping. The two mod- 
els exhibit excellent agreement. 

9.3 Inelastic lateral deformation of a steel beam 

The same wide flange beam was loaded in similar fashion only with a load in the lateral 
direction of the beam. This loading resulting in progressive yielding in the beam cross- 
section. At three seconds the tip load was suddenly released and the beam was allowed to 
vibrate freely. In this example the beam was undamped. The responses computed with 
NEVADA and NIKE3D models are indicated in Figure 47. For this example there was no 
damping incorporated in the models and thus the models vibrated freely without energy 
decay after the initial loading. 

9.4 Linear and nonlinear analyses of a planar building 

The nine story building shown in Figure42 was subjected to near-field earthquake 
motions from the Landers California Earthquake. Linear and nonlinear transient solutions 
computed with NEVADA and NIKE3D models are shown in Figure48. The models 
exhibit excellent agreement. The long period near-field displacement pulse from the 
ground motion record causes significant inelastic deformation of this building frame. The 
permanent lateral displacement at the roof of the building is on the order of 11 inches. 
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FIGURE 41. Three story steel moment resisting frame. 
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orientation 

Frequency (Hz) 
Period (sec) Mode ## 

1 0.486 Hz (1.95 sec) 

2 1.26 Hz (0.763 sec) 

3 2.28 Hz (0.437 sec) 

8 @ 13 ft. 
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Gemini model 
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1.26 Hz 
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W24 x 62 W24 x 62 W24 x 62 W24 x 62 
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FIGURE 43. Twenty 
story steel moment 
resisting frame. 
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FIGURE 44. Twenty story steel moment 
resisting frame (modeshapes). 
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0.959 Hz 

1.61 Hz 
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FIGURE 45. Forty 
story steel moment 
resisting frame. 
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Mode # 

1 

2 

3 

Mode #2 

Frequency (Hz) 
Period (sec) 

gravity initialized 
model w / geo. sti8 

0.189 Hz (5.29 sec) 
0.182 (5.49 sec) 

0.505 Hz (1.98 sec) 
0.491 (2.04 sec) 

0.792 Hz (1.26 sec) 
0.771 (1.30 sec) 

I 
Frequency (Hz) 
Gemini model 
w / geo. stiff 

0.182 (5.40 sec) 

0.491 (2.04 sec) 

0.77 1 (1.30 sec) 
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FIGURE 46. Elasto-plastic deformation of a wide-flange beam (W14x176). 
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FIGURE 47. Elasto-plastic deformation of a wide-flange beam (W14x176). 
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FIGURE 48. Linear and nonlinear response of a nine story frame subjected to near-field 
earthquake records. a) Nine story steel moment resisting frame; b) earthquake ground 
motion acceleration time histories; c) computed response for linear and nonlinear analyses. 




