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ABSTRACT -This paper presents various architectural options for implementing a K-Means 
Re-Clustering algorithm suitable for unsupervised segmentation of hyperspectral images. 
Performance metrics are developed based upon quantitative comparisons of convergence rates 
and segmentation quality. A methodology for making these comparisons is developed and used to 
establish K values that produce the best segmentations with minimal processing requirements. 
Convergence rates depend on the initial choice of cluster centers. Consequently, this same 
methodology may be used to evaluate the effectiveness of different initialization techniques. 

1. INTRODUCTION 

Image segmentation transforms pixel-level information from raw images to a higher level of abstraction 
in which related pixels are grouped into disjoint spatial regions. Image segmentation is a critical early step 
in a number of important applications and problem domains, including image understanding, automatic 
target cueing (automatically separating objects of interest from complex backgrounds), land use 
classification, etc. 

The K-Means algorithm is a well-established unsupervised method for segmenting pixilated images ’’ ’. 
This approach does not require a priori knowledge of the pixel spectral classifications, but instead will 
attempt to discern these classifications over successive iterations: An effective but potentially time 
consuming process. 

Image segmentation quality is influenced by three factors: the number of the image spectral bands, the 
number of spectral classes ( K ) ,  and the method for initializing the spectral classes. This paper reports ON 
the effects of these three factors by measuring the effect on image segmentation quality and computational 
complexity. 

2. BACKGROUND 

Image segmentation is the process of extracting regions by dividing an image into disjoint sets of pixels 
that belong together. The input is a 2D or 3D image of pixel values, and the output is a 2D image in which 
each pixel is labeled with the integer-valued ID of the region to which it was assigned. This 2D image is 
known as a region map. 

Several classes of segmentation algorithms have been developed over the last several decades, 
including region growers, pixel classifiers, deformable model-based methods, and morphological methods. 
Region growers assign pixels to regions by searching local neighborhoods centered on a pixel that is 
already assigned to a region: a seed pixel 3’4. Methods based on deformable models deform curves towards 
object boundaries or edge features in the ima e In their final deformed state, these curves define 

. Morphological methods developed for single-band 5 ,  6, 7, 8 9 boundaries between segmented regions 
10, l l  images use low-level image operators based on structuring elements to erode and dilate regions . 

Pixel classifiers, originally intended for multi-band images, assign individual pixels to specific classes 
based on their spectral properties. Pixel classifiers are furthered identified as supervised, unsupervised, or a 
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hybrid such as the stochastic expectation maximization (SEM) algorithm that has both supervised and 
unsupervised elements . 

The K-Means algorithm is a well-established method for segmenting images ’. This study emphasizes a 
variant of the K-Means algorithm that first assigns each pixel to a spectral group, or class, and then 
partitions these groupings by their spatial affiliations. This second partitioning is referred to as spatial re- 
clustering, and thus the algorithm is known as K-Means Re-clustering or simply KMR. Taxonomically, the 
KMR algorithm is an unsupervised algorithm. In theory, unsupervised algorithms should automatically 
determine appropriate spectral classes. Typically, these classes evolve iteratively until certain criteria are 
met. 

K-Means iterations can be time consuming. One way to reduce the number of iterations is to select the 
class centers in a deliberate way (i.e., using what will be referred to in this paper as informed initialization), 
as opposed to randomly (the traditional approach). Another way is to relax the K-Means convergence 
criterion by increasing the convergence percentage (Le., the percentage of pixels that are allowed to change 
classes on the last iteration). Figure 1 depicts the KMR algorithm identifying two approaches to initializing 
the spectral classes. Section 3 will develop the traditional KMR algorithm using random initialization of the 
spectral classes, and Section 4 will describe the informed initialization approach. 
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Figure 1. Block diagram of the K-Means Re-clustering algorithm 

Spatial 
Clustering 

3. THE K-MEANS RE-CLUSTERING ALGORITHM 

The KMR algorithm performs segmentation by grouping each pixel in the image based upon spectral 
and spatial affiliation. Conceptually, this requires the sequential execution of three distinct processing 
phases: initialization, spectral clustering and spatial re-clustering. KMR accepts as inputs the number of 
spectral classes and an image to be segmented. The image, M, is defined as a structured set of pixels p 
such that 

M : = + ~ , ~ E R ~  : i j , n E N J  7 

i := row dimension 
j := column dimension 
n := spectral dimension 

The spectral classes are uniquely determined by a representative spectrum. The set of these spectra or 
cluster centers is given by the set K and enumerated by the variable K .  Thus: 
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K : = + € R ” )  

K = length(BY ) 
k E N : I l k l K  

3.1. Random initialization of the spectral classes 

Traditionally, spectral classes are initialized by with the spectra from K pixels selected at random. 
Random initialization is one of the simplest K-Means class initialization strategies. 

ck = Pp,v 

p:= (lu randomly selected from [1,N] I N EN } (3) 

v= & randomly selected from [1,N] I v,N EN } 
Where N is the number of rows of pixels in the image and M is the number of columns of pixels in the 
image. 

3.2. Implementation of Spectral Clustering 

The input to the spectral clustering algorithm is the set K of cluster centers and the i m a g e m  . The 
output is a classification map in which each pixel is assigned to a spectral class. Spectral clustering is an 
iterative algorithm. Upon each iteration, every pixel is assigned to a spectral class, statistical properties for 
each class computed, and a new “representative” spectrum for each class selected as a function of the mean 
of all the assigned member pixel spectra. This iterative process in continued until a convergence criterion is 
satisfied. 

Pixel assignment, with every iteration, is made to the class for which the two norm is minimized. Thus 
the assignment of a pixel, pi ,  j ,  to a spectral class, ck, with representative spectra, ck , is given by 3, , 
such that: 

Convergence is based upon two possible criteria: No more than a designated percentage (typically 5% 
or less) of the pixels switch classes between iterations, or a pre-specified maximum number of allowed 
iterations (typically 50) has occurred. A maximum number of allowed iterations are needed because the 
KMR algorithm is not guaranteed to converge. 

Once convergence is achieved, each spectral class is pruned to constrain its variance to an integer 
multiple of the sample standard deviation, Ok , of its members. Thus: 

The rejected members are defined as 

lba ,b  -Ckl12 ’ nak 

n E&V and typically n = 3 
(7) 
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Those pixels no longer assigned to a spectral class are re-assigned to a reject (K  + 1) class and a final 
iteration of the spectral clustering algorithm is then performed on the non-reject pixels. 

3.3. Merging or splitting of spectral classes 

Unsupervised algorithms generally allow K to vary by splitting and merging spectral classes. This 
option is disabled in KMR to facilitate the objective of assessing segmentation quality as a function of 
several fixed values of K . However, since images usually contain anomalous pixels or “transition” pixels 
(such as edges along borders between regions formed as combinations of different spectral classes, KMR 
does need a provision to handle pixels that belong to none of the K spectral classes. KMR handles 
anomalous pixels by creating a separate reject class (class K + I )  after the last iteration. 

3.4. Implementation of spatial re-clustering 

For image segmentation, the ultimate goal is to partition an image into regions that can be readily 
identified. After spectral clustering, KMR implements a spatial clustering using classical region growing 
techniques . Spatial re-clustering results in groupings of spatially connected pixels that belong to the same 
spectral cluster. Spatial re-clustering proceeds be searching the local neighborhood centered on a pixel 
selected at random. All neighboring pixels belonging to the same spectral class are assigned to the same 
region. Once a complete region has been grown, a new seed is selected from the remaining ungrouped 
pixels and its region is grown. This process is repeated until all of the pixels are accounted for 
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3.5. Problems with random initialization 

This implementation of KMR requires O(BKZ) operations per pixel, where B is the number of spectral 
bands, K is the specified number of spectral classes, and Z is the number of spectral clustering iterations. 
The computational cost of KMR thus varies more or less linearly with the number of spectral bands, the 
number of spectral classes and the number of spectral clustering iterations. The number of iterations can be 
reduced by relaxing the convergence criterion (Le., by increasing the percentage of pixels allowed to switch 
spectral classes on the convergence iteration). However, segmentation quality can be detrimentally affected 
by relaxing the convergence criterion too much. Alternatively, the number of iterations may go way up 
with little improvement in segmentation quality if the convergence criterion is too strict. 

Random initializations can give rise to unnecessarily slow convergence rates, particularly if the 
randomly chosen spectral class centers are unreasonable. Also, random initialization can create situations in 
which the K-Means algorithm cannot converge to a reasonable spectral class assignment, especially if the 
randomly chosen spectral class centers are not sufficiently disparate, or are completely unrealistic. 

4. INFORMED INITIALIZATION ALGORITHM 

Informed initialization is the opposite of random initialization in the sense that the spectral class centers 
are chosen in a completely non-random and deliberate way. Informed initialization addresses the 
shortcomings of random initialization that were just described. 

First, the energy in each pixel is estimated by averaging all of its spectral samples (this assumes that the 
spectral samples are all non-negative). By this measure, the band-averaged image is a 2D image of pixel 
energies: 

ai, j = + C Pi, j (n> 
n 

N = number of spectral bands 
The band-averaged values are then quantized to K discrete levels. The spectral class center for class k is 
then taken to be the pixel spectrum formed as the average of all pixel spectra that have a quantized be- 
averaged value of k . 
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,u E X IX := {i corresponding to quantization levelk} 

,u E Y I Y := 9 corresponding to quantization levelk} 
M = total number of pixels in quantization levelk 

(9) 

5. RESULTS OF THIS STUDY 

Figure 2 plots the number of iterations to convergence as a function of convergence percentage for both 
informed and random initialization. The random initializations require the largest number of iterations for 
low convergence percentages. There is often a critical convergence percentage below which the number of 
convergence iterations increases sharply and above which the number of convergence iterations remains 
relatively small. For a convergence criteria greater than or equal to 2%, the informed initialization will 
result in less computational burden than a random initialization. It is often possible to reduce KMR 
computational complexity without significantly altering the region maps by choosing a convergence 
percentage as large as 3%. In addition to driving class initialization towards spectrally divergent classes 
informed initialization sometimes results in fewer KMR iterations than random initialization with a 
corresponding improvement in efficiency. 

- informed initialization - raidom iriitialization 

- _  
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Figure 2. Number of KMR iterations as a function of convergence percentage 

For a fixed convergence percentage, the number of KMR iterations varies as a function of K .  Figure 3 
shows the effect that K has on the number of iterations for fixed 2% convergence criteria. Informed 
initialization often, but not always, results in fewer KMR iterations than random initialization. The 
correlation between K and the number of iterations is not necessarily strong, and appears to be scene- 
dependent. Also, the number of KMR iterations does not appear to be strongly correlated with spectral 
resolution. Thus it is possible to conclude that for a modest value of K ,  there is little difference between 
the performance of either random initialization or informed initialization. 
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Figure 3 .  Number of KMR iterations as a function of the number of classes for a fixed 2% 
convergence criterion. 

Figure 4 shows the profound effect that K has on KMR segmentation. Even though the images are busy, 
small K values (K=2,3,4) tend to produce subjectively better segmentations than larger K values, which 
tend to over-segment the images. Also, the informed and random initializations tend to produce comparable 
results. 

K=2 K=3 K=4 K=6 K=16 

530 regions 576 regions 130 regions 695 regions 

90 regions 407 regions 531 regions 701 regions 569 regions 
(C) 

Figure 4. Comparing informed and random initialization for a KMR segmentation at a 3% 
convergence criteria and 16 band spectral resolution 
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Figure 5. Segmentation quality vs. K for random and informed initializations at different spectral 
resolutions. 

In figure 5 a disparity metric is introduced that quantifies the difference between a human derived edge 
map, E ,  and the KMR region map R . The boundary map, B , for this region is given as 

Let nE is the number of edge pixels in E ,  and nB is the number of boundary pixels in B , then disparity, 
ABE, is given by 

0 nB=nE=O 

ABE = 1 nB or nE = O ,  but not both (1 1) 

Where ngE is the number of boundary pixels in B not associated with and edge in E ,  and nFR is the 
number of edge pixels in E not associated with a boundary in B (two pixels are said to be associated if 
they are close to one another - typically within 2 pixels). Disparity provides a quantitative measure of 
segmentation quality. It is clear from figure 5 that accuracy of KMR does not necessarily increase with 
spectral resolution. Also, KMR tends to perform better with smaller values of K .  

6. CONCLUSIONS 

Image segmentation quality and computational complexity are key performance metrics for an image 
segmentation algorithm. For K-Means type algorithms, these metrics are, in turn, influenced by three 
factors, the number of the image spectral bands, the number of spectral classes ( K ) ,  and the method for 
initializing the spectral classes. 

The number of the spectral bands often has little effect on the quality of the resulting image 
segmentation. However, the computational complexity of KMR is directly proportional to the number of 
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spectral bands. In many cases, it may thus be advisable to spectrally blur the hyperspectral image down to 
only a few spectral bands prior to performing Kh4R segmentation. 

Larger numbers of spectral classes (e.g., K values beyond 5 or 10) often cause images to be over- 
segmented. At the same time, the computational complexity of KMR is directly proportional to K .  The 
results from this study indicate that small values of K ( K  E [2,3,4,5]) are often most effective in 
segmenting images. 

Finally, informed initialization addresses serous shortcomings of random initialization by reducing the 
likelihood of encountering unnecessarily slow K-Means convergence rates and finding unrealistic 
initializations for spectral class centers. 
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