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Abstract. Shock-induced chemical reactions in ~58% dense Mo+2Si powder mixtures were investigated 
using time-resolved instrumented experiments, employing PVDF-piezoelectric stress gauges placed at the 
front and rear surfaces of the powders to measure the input and propagated stresses, and wave speed 
through the powder mixture. Experiments performed on the powders at input stresses less than 4 GPa, 
showed characteristics of powder densification and dispersed propagated wave stress profiles with rise time 
> ~40 nanoseconds.  At input stress between 4-6 GPa, the powder mixtures showed a sharp rise time (<~10 
ns) of propagated wave profile and an expanded state of products revealing evidence of shock-induced 
chemical reaction.  At input stresses greater than 6 GPa, the powder mixtures showed a slower propagated-
stress-wave rise time and transition to a low-compressibility (melt) state indicating lack of shock-induced 
reaction.  The results illustrate that premature melting of Si, at input stresses less than the crush-strength of 
the powder mixtures, restricts mixing between reactants and inhibits "shock-induced" reaction initiation.  

 
 

INTRODUCTION 
     The Mo-Si intermetallic-forming system contains 
constituents having large differences in properties 
(e.g., density, sound speed, yield strength, and melt 
temperature), and a high heat of reaction. Prior shock 
synthesis studies on Mo-Si have been performed by 
Meyers et. al. [1,2], Marquis and Batsanov [3], 
Montilla [4], Aizawa et. al. [5], and Vandersall and 
Thadhani [6],  in which reaction products having a 
variety of microstructures have been observed. 
While, the microstructures observed via post-mortem 
analysis provide possible evidence of how the 
product phase may have been formed, it is difficult to 
ascertain whether the phases formed due to  “shock-
induced” reactions in time scales of pressure 
equilibrium, or subsequent to the shock event in time 
scales of temperature equilibrium via “shock-
assisted” processes [7]. Inference of “shock-induced” 
chemical reactions can only be obtained via in-situ 
measurements of shock-properties using time-
resolved experiments [8]. In the present work 
instrumented experiments employing PVDF stress 
gages were used to study the reaction behavior during 
shock compression of Mo+2Si powder mixtures.  
 

EXPERIMENTAL PROCEDURE 
     Mo (Cerac No. M2000) and Si (Cerac No. S1053) 
powders (-325 mesh, <44 µm) were mixed in a 
stoichiometric ratio corresponding to MoSi2 (using a 
mechanical V-blender) and pressed into fixtures at a 
density of ~58% TMD. The setup for instrumented 
experiments is similar to that used in prior work [8]. 
PVDF piezoelectric stress gauges were placed in 
intimate contact with front and back powder-capsule 
planar surfaces to monitor both “input-shock” and 
“propagated-wave” characteristics. The propagation 
of shock wave sensed by the “input” gauge and 
“propagated” gauge at their respective locations, also 
provided the precise transit time through the ~3 mm 
thick (50.8 mm diameter) powder-mixture samples 
based on travel time through the powder layer. 
OFHC-copper flyer plates were used for experiments 
#9806, #9818, and #9902 and a tungsten alloy (MIL-
T-21014) flyer plate was used in all other 
experiments for generating higher pressures. The 
projectile velocity was measured using shorting pins, 
spaced 12.7 mm apart and the digital oscilloscopes 
were triggered from standoff pins placed 6.35 mm 
from the impact surface.  
 



Table I. Summary of experimental results. 

Expt. 
No. 

Packing 
Density 
(g/cm3, 

%TMD) 

Projectile 
Velocity 
(mm/µµs) 

Input 
Stress 
(GPa) 

Input 
Risetime 

(ns) (10%-
90%) 

Equilibrium 
Propagated 
Stress (GPa) 

Propagated 
Risetime (ns) 
(10%-90%) 

Wave Speed 
(mm/µµs) (toe-toe-

10%, ½  max) 

Relative Volume 
(toe-toe-10%, ½  

max) 

9806 2.59, 57 0.507 1.52 11.5 1.82 186 1.28, 1.23 1.58, 1.50 
9818 2.50, 55 0.700 2.09 7.5 2.36 86 1.43, 1.41 1.43, 1.39 
9902 2.69, 59 0.964 3.15 6.5 3.95 76.5 1.66, 1.61 1.13, 1.08 
9910 2.70, 59 0.851 4.36 8.5 4.29 10, 14† 1.87, 1.87 1.46, 1.45 
9908 2.71, 59 0.940 5.4 4.5 5.18 6 2.10, 2.10 1.55, 1.55 
9907 2.71, 59 0.966 6.3* ‡ 6.16 8,7† 1.99* 1.13* 
9913 2.50, 55 0.967 6.3* ‡ 5.07 22.5 2.07+ 1.02 
9919 2.51, 55 0.914 6.65 5 4.74 25.5 2.17, 2.15 1.10, 1.08 
* indicates a calculated value, ‡ indicates no measurement obtained, † indicates a two slope wave structure, + indicates toe-to-toe 
at shock arrival instead of 10%
 

RESULTS AND DISCUSSION 
     A summary of the experimentally determined 
parameters obtained from the instrumented 
experiments is listed in Table 1. These include, the 
input stress and the input pulse rise-time (from 10% 
to 90% of peak) measured by the input shock gauge; 
the equilibrated propagated stress and propagated 
pulse rise-time recorded by the propagated stress 
gauge; wave speed determined using both the toe-to-
toe and half-max values of input- and propagated-
wave profiles; the relative volume calculated using 
the values of initial powder density, measured input 
stress, shock wave speed (both toe-to-toe and ½ 
max), and shock jump conditions for conservation of 
mass and momentum.  
 
    A plot displaying the measured input-stress 
profiles from all experiments is included in Fig. 1.  
The propagated stress traces for all three low velocity 
experiments are provided in Fig. 2 (a) and the 
remaining traces from the higher velocity 
experiments are shown Fig. 2 (b). The varying 
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Figure 1. Combined plot of input stress traces. 

 
amplitudes of the different input-stress profiles 
correspond to experiments performed at different 
impact velocities. The rise time of the input stress 
pulse is less than 10 ns, while the propagated stress 
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Figure 2. Propagated stress traces for (a) three low velocity 
experiments and (b) higher velocity experiments. 
 



(a) 
Mo + 2 Si P-V plot
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(b) 

Us versus Input Stress for Mo + 2 Si
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Figure 3.  Plots of (a) measured input stress versus calculated 
relative volume (based on half-max values) plotted with the 
isothermal compressibility curves of dense MoSi2 alloy, Mo+2Si 
inert mixture with zero crush strength, P-α densification 
densification behavior, and reacted product Hugoniot (data for 
Experiment #9907 based on calculated values of wave speed and 
input stress, and that for Experiment #9913 based on calculated 
value of input stress and measured wave speed) and (b) measured 
input stress as a function of powder wave speed, for Mo + 2 Si 
powder mixture with silicon behavior.  
  
wave is dispersed (rise time varying between 6 to 186 
ns). Lower amplitude stress waves show the longest 
rise time, due to the behavior being dominated by 
powder densification.   
 
    Densification of the powder mixture from an initial 
to final solid density was considered using the P-α 
pore collapse model [9]. A thermodynamic 
consideration was also used to generate the pressure- 
volume (Hugoniot) curve of a fully reacted MoSi2 
product, based on the model recently developed by 
Bennett and Horie [10], constant pressure adjustment 
of the reference state. The important concept of this 
analysis is that it actually determines a calculated 
Hugoniot of the products formed via “shock-

induced” reaction in a powder mixture. Details of 
both the P-α and thermodynamic curves as applied to 
this plot are described elsewhere [11]. 
 
     Fig. 3 (a) shows the pressure-volume space with 
the calculated curves representing the P-α 
densification behavior and the pressure-volume data 
points obtained from the PVDF gauge experiments, 
and the calculated compressibility curve of the fully 
reacted MoSi2 product formed from Mo + 2Si 
reactants at ~58% density. The calculated mixture 
Hugoniot is also displayed and considers 
densification of the Mo + 2 Si powder from 
V/V0=1.78 to V/V0=1, occurring at practically zero 
stress.  
 
     It can be seen that while the cluster of the three 
data points at pressures less than 3.1 GPa follow the 
trend representing the P-α densification behavior, the 
two data points at 4.3 and 5.3 GPa show significant 
expansion as they approach the fully reacted powder 
(forming MoSi2 product) Hugoniot curve. Hence, it 
can be reasoned that the 5.3 GPa data point 
corresponds to almost 100% shock induced reaction 
occurring in the 58% dense powder mixture and the 
4.3 GPa data point represents a shock pressure state 
in which the 58% dense Mo + 2 Si powder mixture 
undergoes an appreciable (but not complete) shock-
induced reaction. From Fig. 4 (a), if the 5.3 and 4.3 
GPa data points are respectively considered to 
represent evidence of complete and partial shock-
induced chemical reaction in 58% dense Mo + 2 Si 
powder mixtures, then the cluster of data points 
corresponding to the three experiments at 6.2-6.6 
GPa, which show minimal expansion and remain 
close to the inert Mo + 2 Si mixture Hugoniot can be 
considered to reveal very limited or practically no 
shock-induced reaction.  
 
     The experimentally obtained data points of wave 
speed versus input stress are plotted in Fig. 3 (b) 
along with the calculated curve corresponding to the 
58% dense inert Mo + 2 Si powder mixture 
(illustrated as a dashed line). It can be seen that the 
experimental data points appear to follow the inert 
Hugoniot curve at stresses < 6 GPa. At higher 
stresses, the data points actually show lower wave 
speed corresponding to that of low- compressibility 
melt phase of Si (obtained from [12]). As shown in 
Fig. 6, it can be seen that the Hugoniot of melted 
silicon (dashed-dot line) intersects the Mo + 2 Si inert 

PVDF Timing +/- 0.2%PVDF Timing +/- 0.2%

PVDF Pressure +/- 3%PVDF Pressure +/- 3%



Hugoniot curve at Pm (~5 GPa) which represents the 
stress at which Si in the ~58% dense Mo + 2 Si 
powder mixture undergoes melting.  The data points 
corresponding to experiment numbers 9919, 9907, 
and 9913 are found to lie more closely on the silicon 
melt Hugoniot than on the Hugoniot of the Mo + 2 Si 
powder mixture or its product.  

 
     A similar result has also been observed in the 
prior work on ~55% dense Nb-Si powder mixtures 
[12], in which the authors in fact observed that in 
experiments performed at the same shock pressure 
(and thus particle velocity) the data points fell on 
either of two branches. Hence, premature melting of 
silicon (observed in some cases) was considered to 
inhibit shock-induced reaction, while in other cases 
under similar conditions, lack of melting of silicon 
led to shock-induced reaction in Nb + Si powder 
mixtures, at stresses in the vicinity of the crush 
strength. Also, in recent modeling work of Tamura 
and Horie [13] on reaction initiation in Nb + Si 
powder mixtures inside regions of an adiabatic shear 
band, they observed that a higher shear rate resulted 
in greater degree of deformation of reactants and 
consequently both mixing and increased propensity 
for shear-induced solid-state reaction initiation. In 
contrast, presence of a melt phase decreased the shear 
rate and resulted in inhibiting the reaction.  
 

CONCLUSIONS 
     Time-resolved experiments performed on ~58% 
dense Mo + 2 Si powder mixtures at input stresses 
less than the crush strength (measured to be ~4 GPa), 
show characteristics of densification represented by 
the P-α behavior. The measured propagated wave 
stress profiles show characteristics of wave 
dispersion with rise time > ~40 nanoseconds. In 
experiments at input stress between 4-6 GPa, the 
powder mixtures show evidence of shock-induced 
reaction, based propagated wave profiles showing a 
sharp rise time (<~10 ns), and the data points of 
shock states revealing expansion and approaching the 
pressure-volume compressibility curve of 
thermodynamically determined Hugoniot of reacted 
powder. Experiments on Mo+2Si powder mixtures at 
input stresses greater than 6 GPa, showed lack of 
shock-induced reaction which is inferred based on the 
following: (a) propagated stress profiles showing a 
slower rise-time, (b) reduced wave speeds recorded 
in these experiments performed at even higher 
pressures, (c) data points falling on the pressure-

volume compressibility curve corresponding to un-
reacted (inert) Mo + 2 Si powder mixture in the P-V 
plane, as well as along the melted silicon Hugoniot 
curve in the wave speed versus input stress behavior. 
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