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1 Problem Statement

Knowledge Discovery (KD) processes can create new information within a

Knowledge Management (KM) system. In many domains, including govern-

ment, this new information must be secured against unauthorized disclosure.

Applying an appropriate confidentiality policy achieves this. However, it is

not evident which confidentiality policy to apply, especially when the goals

of sharing and disseminating knowledge have to be balanced with the re-

quirements to secure knowledge. This work proposes to solve this problem

by developing a cost-benefit analysis technique for examining the tradeoffs

between securing and sharing discovered knowledge.

1.1 Complex Confidentiality Requirements

One reason providing confidentiality for discovered knowledge is particularly

difficult is the complexity of the confidentiality requirements of modern in-

formation systems. The difficulty arises in many application domains, rang-
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ing from the healthcare industry, to financial institutions to government.

Throughout this paper we draw on hypothetical examples from government

information systems (GIS), especially from the intelligence and law enforce-

ment communities. However, the ideas presented here can be extended to

other domains in a straightforward manner.

Tradtionally, a GIS labels data and documents with strictly increasing

security levels, such as unclassified, secret, or top secret. These labels

represent the level of confidentiality that is required for that data. Gen-

erally, people or processes have clearance levels that corresponds to data

confidentiality levels, and cannot access data that is labelled higher than

the clearances they possess. A system that must protect this type of data

is called a multi-level secure (MLS) system. Government data is also often

compartmentalized, or labelled, based on need-to-know groups. For ex-

ample, military data and human resource data may be compartmentalized

separately. Compartments do not represent a hierarchy of confidentiality

requirements; the requirements are different but not strictly increasing. Sys-

tems that are required to protect this type of data are called multi-lateral

secure. A modern GIS will probably have to provide both multi-level and

multi-lateral security; this paper will refer to such a system as a ML/LS

system.

Controlling access to data is a complex process involving policies authen-

tication, authorization, integrity, and confidentiality. A ML/LS system has

to authenticate users’ credentials and enforce authorization rules that state

which credentials are required to perform different operations within the

system. The authentication and information flow policies both assume that

data is already labelled appropriately and that rules can be applied to de-

termine who can have different types of access. Confidentiality and integrity
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policies determine how data is labelled. Integrity policies ensure that labels

reflect the degree of trust that can be placed in a data item based on the

clearance level of the person or process that has written it. Confidentiality

policies ensure that labels reflect the clearance level required for a person

or process to read the data. Of these four parts of an overall access control

policy, confidentiality policies are the focus of this paper.

Although it is not part of the traditional government labelling scheme,

it may be helpful to think of three different types of confidentiality. First,

is the need for the existence of data to be held in confidence. Second, is

the need for the content of data to be held in confidence. Finally, is the

need for the context of data to be held in confidence. Consider data about a

new secret weapon that a U.S. enemy is developing. The mere existence of

this data in a GIS may be highly confidential since it might raise questions

about how the U.S. came to know about the weapon in the first place.

This is probably not the case for data about a U.S. fighter plane, though

in this case content details such as fuel efficiency or weapon precision may

be highly confidential. Two types of context information exist. The first

is relationship data. Data about a port overseas may not be confidential,

and neither may data about a large submarine fleet. However, the fact

that the port is the destination of the fleet may be highly confidential,

since it reveals mission details. The second type of context information

is reporting data. Data about a company reported by a business journal

may not be confidential, but the fact that the CIA also reports information

about this company may well be confidential. Although this work does not

seek to expand the current U.S. government data labelling mechanism, it

can still be useful to keep these different types of confidentiality in mind.

The knowledge representation scheme presented in Section 1.4 and assumed
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throughout this paper automatically accounts for context confidentiality, but

existence and content confidentiality play an important role when evaluating

security property requirements, particularly when differentiating between

nondeducibility and noninterference (see Section 2.3 for more details).

1.2 Capabilities of Advanced KM Systems

Confidentiality labels are often assigned to data or documents by a human

expert who understands the information domain. Alternatively, one com-

mon way to label data automatically is to assign labels at “system-high,”

meaning that every data item is labelled with the highest label the auto-

mated system is authorized to use. A large scale KM system, intended for use

across multiple organizations, would obviously not operate at system-high.

In fact, system-high does not even apply to multi-lateral secure systems.

ML/LS solutions have been proposed that do allow data to be secured at

different levels and compartments of confidentiality (Section 2.4 describes

some of these). However, ML/LS systems still assume that every data item

has a label assigned to it at the time it is published. Presumably this label

is assigned by a human prior to publication, or the label is inherited from

the data processing system that published the data.

Today’s advanced KM systems are creating their own information in-

ternally to supplement knowledge that is explicitly published. Advances

in knowledge discovery techniques are making such systems possible and

popular. The question that arises is how to label internally discovered infor-

mation such that an acceptable level of confidentiality is maintained. Agat

and Sands [1] as well as Hale and Shenoi [24] note that the threat of se-

curity leaks brought about by automated discovery is constantly increasing
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due to advances in algorithms and computing power. This general problem

is compounded in systems where algorithms operate over data with different

labels, because there is no single correct way to label the output of the al-

gorithm. Advanced KD capabilities make legacy ML/LS solutions obsolete;

new solutions are needed that can address advances in KD algorithms.

1.3 Identifying the Costs and Benefits of Confidentiality Poli-

cies

One of the primary goals of a KM system is to share knowledge; this goal

is obviously in direct conflict with the need to secure knowledge. One way

to label discovered knowledge would be to assign a system-high label. This

would certainly prevent unauthorized disclosure, but the price to be paid

would be very high, since only a very limited user base would have access to

the knowledge. Providing a technique, or framework, that enables decision

makers to understand the tradeoffs between sharing and securing knowledge

is the goal of this work.

Before developing a technique for doing this, we must first quantita-

tively define cost and benefit in the context of a KM system. There are

several possibilities here, but we have chosen to define cost as the reduction

in knowledge sharing capabilities. This is defined quantitatively through-

out Sections 2.1, 3.1, and 3.4. Two other possible costs are a reduction in

knowledge quality as a result of applying confidentiality policies and the

computational cost of enforcing a confidentiality policy. For the purposes of

this paper, the assumption is made that all KD processes operating on the

information in the KM system are owned by the KM system and have all

confidentiality levels and compartments available to them. Thus, degrada-
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tion of quality due to KD is not an issue—this only becomes an issue when

KD processes occur outside of the KM system or when system-owned KD

algorithms have limited access to data. The performance cost of enforcing a

confidentiality policy is likely to be significant. However, this cost is highly

dependent on the details of the KM system architecture and the security

mechanisms being enforced. Since this paper is focusing on policy rather

than mechanism and seeks to apply to a large class of KM systems, this

type of cost can not be accurately accounted for.

Defining benefit for a confidentiality policy is not as elusive as defining

cost. Benefit is simply the degree of confidentiality provided by the policy.

Benefit is defined quantitatively in Sections 2.3, 3.2, 3.3, and 3.4. The quan-

titative definition, however, is not numerical. Rather, benefit is defined in

terms of formal security properties. Thus, directly comparing cost to bene-

fit is not possible. The cost-benefit technique proposed in Section 3.4 takes

this into account, but it does require that the decision maker understand

the security properties that define benefit, or at least know which property

or properties are required for the KM system of interest.

1.4 Motivation by Example

To illustrate the relevance and practicality of this work it is useful to put the

problem into the context of a realistic application domain and KM system.

It is not the intent to limit the applicability of this work to the domain

and system discussed; it is certainly relevant to other domains that have

similarly complex confidentiality requirements and advanced knowledge dis-

covery capabilities.

Changes in the structure of the U.S. government and its agencies, partic-
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FAA FBI
CIA

INS
open

sources

KM System

Figure 1: KM Environment

ularly the introduction of the Department of Homeland Security, have high-

lighted the need to more effectively and efficiently share knowledge across

agencies. A shared KM environment is one way to accomplish this. A no-

tional KM environment is shown in Figure 1. Here, several users, all with

different jobs and security credentials, utilize the KM system to gain insight

to questions pertinent to their jobs. Also, several agencies publish informa-

tion to the KM system. The published information varies widely in subject

area and security requirements. Tables 1 and 2 provide more details about

the users and publishers of the KM system. The open sources publisher

really refers to a number of possible sources of publicly available informa-

tion, rather than any specific agency or information system. Compartment
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Name Job Clearance

Level

Compartments

Anne immigration

specialist

U travel, visas, customs

Bob intelligence

analyst

TS Russia, Iraq, weapons, travel

Connie military

adviser

S/TS Iraq, military, /weapons

Doug detective S U.S. Persons, customs, S. America

Table 1: KM System Users: U=Unclassified, S=Secret, TS= Top Secret.

Connie has additional privileges (Top Secret and weapons) depending on

the current national security conditions.

credentials are only shown for the users, to illustrate the complexity of in-

cluding multi-lateral security into the system. Throughout the rest of this

example, compartments are not used; only classification levels are shown.

It is important to point out that the KM system will in some way combine

the information published, so that the resulting knowledge is more than the

sum of its parts. A users should be able to get more questions answered by

the KM system than could easily be accomplished by using agency-specific

information systems.

Although this paper seeks to be as general as possible, and does not

intend to propose a KM system design, it is difficult to illustrate important

concepts without having a knowledge representation (KR) scheme in mind.

The one presented here is overly simplified, but should be convenient for

illustration purposes. The KR scheme chosen has two elements, nodes and
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Publisher Subject Highest Classi-

fication Level

FAA airline travel U

FBI U.S. law enforcement and investiga-

tions

TS

CIA foreign intelligence TS

INS immigration and border control U

open sources news, maps, web pages, public data U

Table 2: KM System Publishers

links. Nodes represent subjects or objects and links represent relationships.

A subject-relationship-object triple is a fact or statement. Combining facts

creates a graph of arbitrary size and topology. Since links represent a rela-

tionship, they have a declarative meaning signifying that relationship. Such

links are called semantic links and a graph with semantic links is called a

semantic graph. Since this system is assumed to create knowledge, both by

the way it combines heterogeneous information and by applying knowledge

discovery processes, we will refer to the graph-represented information as

the Semantic Knowledge Graph (SKG).

Nodes in the SKG have several fields, shown in Table 3. The ID is used

only to uniquely identify the node. Type indicates the class of node (person,

building, or university, for example). The content is the value of the node.

This could be a report, an image file, a list of attribute values, or just a

single value. Our example uses single values only. The remaining fields are

reporting fields. Since several agencies may publish information about the

same subjects, multiple sets of reporting fields are allowed.
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Multiplicity Field

1 type

1 ID

1 content

1 or more classification level

[optional] compartments

publisher

[optional] confidence or quality rating

Table 3: Node Template

Links in the SKG have a different set of fields, shown in Table 4. Source

ID and destination ID uniquely identify the node and indicate which two

nodes it connects. Type is the semantic meaning of the link. The reporting

data is the same as the node reporting data fields.

A SKG cannot evolve completely arbitrarily if it is to be predictable

enough to query effectively. There must be some rules that indicate what

types of nodes and links can combine to form facts, and how to format differ-

ent fields. An ontology serves this purpose. An ontology is a specification,

or schema, that states these rules using a formal specification language. A

sample ontology is not presented here, but it is important to keep in mind

that a certain structure is imposed on knowledge by the ontology. This

structure must be carefully selected, so as not to limit the expressiveness of

the SKG too much. The knowledge metrics that will ultimately be used to

define cost in this work (described in Sections 2.1.1, 3.1, and 3.4), may not

be accurate and effective metrics if the expressiveness of the ontology is too

limited.
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Multiplicity Field

1 type

1 source ID

1 destination ID

1 or more classification level

[optional] compartments

publisher

[optional] confidence or quality rating

Table 4: Link Template

There are many other design issues involved in developing a KM system

that are outside the scope of this work. The KM system and KR scheme

presented above are intentionally simplified to provide a useful vehicle to

motivate this work. Since the focus of this work is on the KD and confiden-

tiality aspects of the KM system, aspects not related to these topics have not

been discussed. The remainder of this section assumes the system features

presented above. A small subgraph of a SKG is shown in Figure 2. Figure

3 shows the full details of the nodes in the SKG, while Figure 4 illustrates

that a user with limited security credentials can view only a portion of those

details.

A KD algorithm is then applied to the SKG subgraph. It works as fol-

lows:

Task: Identify new employer-employee relationships.

Background information:

• When people receive money, 90% of the time it is from their
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1 3

2

4

5

works for

O.S.    U

travels to

FAA    U

has acct.

CIA    S

located in

O.S.    U
deposits to

CIA    TS

Figure 2: Sample portion of the Semantic Knowledge Graph. Nodes are

labelled using the IDs from Figure 3. Link types are shown, while source

and destination ID are implicit in the graph drawing. Link compartment

and confidence information is not included for simplicity.

employer. 10% of the time it is from a non-employer.

• When people travel, 60% of the time it is business-related

travel. 40% of the time it is personal travel.

It is possible that the algorithm will discover that Joe Smith works for the

KGB (possibly with some likelihood or confidence level). This discovery is

based on data at all three classification levels, plus background data, so it

is not obvious what classification label the new link should have. Figure 5
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ID=1

Type=person

content=Joe Smith

FAA

U

O.S.

U

CIA

TS

ID=4

Type=organization

content=KGB


 O.S.

U

CIA

TS

ID=2

Type=place

content=Moscow



 O.S.

U


ID=3

Type=organization

content=U.S. government


 O.S.

U

ID=5

Type=account

content=bank acct. #1234


 CIA

S

Figure 3: Example nodes published in the Semantic Knowledge Graph.

OS=open sources. Compartment and confidence information is not included

for simplicity.

ID=1

Type=person

content=Joe Smith


 FAA

U

O.S.

U

Figure 4: Anne’s and Doug’s view of Node ID=1. They do not have access to

the fact that the CIA publishes this same data at the Top Secret classification

level.

shows the newly discovered link.

To determine the appropriate label for the new link, several issues must

be considered, including:

• How does the KD algorithm work?
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1

4

works for

KD    ?

Figure 5: A KD algorithm has published this new link. (KD=knowledge

discovery algorithm.) The classification label has not yet been designated.

Link compartment and confidence information is not included for simplicity.

• Do users know how the KD algorithm works?

• What is the classification of the background information?

• Do users have access to background information?

• What relative impact did each SKG element have on the outcome?

• Can users correlate input data to output data?

• What level of confidentiality of input data needs to be achieved in the

KM environment?
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• What is being given up by achieving higher confidentiality.

The answers to all these questions are needed to appropriately label the

new link. To understand some of the risks involved in labelling the new link,

consider the following two examples.

Assume the new link is labelled Unclassified. Anne will then have the

view of the SKG shown in Figure 6.

1 3

2

4

works for

O.S.    U

travels to

FAA    U

works for

KD    U

located in

O.S.    U

Figure 6: Anne’s view of the Semantic Knowledge Graph if the new link is

labelled Unclassified.

Intuitively, it seems Anne should not have access to the knowledge that

Joe Smith works for the KGB. But even if a human expert classifier deems

this information Unclassified, there is another issue to consider. The fact

that this link was published by a KD algorithm could cause Anne to wonder
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on what information this discovery was based. If she knows only what is

shown in Figure 6, it is unlikely that she can accurately deduce the bank

account and deposit information (Secret and Top Secret respectively). How-

ever, if she knows the KD algorithm and the background information, the

likelihood of her figuring this out increases. If Anne can guess that Secret

and Top Secret data with a high rate of accuracy, this could be considered

a breech of confidentiality.

On the other extreme, assume that the new link is labelled Top Secret.

Doug’s view of the SKG is would look like Figure 7.

1 3

2

4

5

works for

O.S.    U

travels to

FAA    U

has acct.

CIA    S

located in

O.S.    U

Figure 7: Doug’s view of the Semantic Knowledge Graph if the new link is

labelled Top Secret.

Let’s supposed Doug is investigating Russian mafia activity within the
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United States. Doug’s view of another portion of the SKG is shown in Figure

8.

1

calls

FBI    S

meets

FBI    S

emails

FBI    S

is paid by

FBI    S

is paid by

FBI    U is paid by

FBI    S

Emily
Fred

Guy

Russian Mafia




Figure 8: Another portion of the Semantic Knowledge Graph, as viewed by

Doug. This portion is connected to the portion shown in Figure 2 by node

ID=1.

Given Doug’s information he may conclude not to suspect that Joe has

ties to the Russian mafia. He may even conclude that Joe is a federal

undercover agent setting up a sting operation. However, if Doug also knew
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that Joe works for the KGB he would probably draw different conclusions.

This single fact could be the breakthrough to help Doug solve his case—if

only he had access to that link. Is withholding that information worth the

cost? Would labelling the link Secret enable Doug to accurately guess the

single piece of Top Secret data in the SKG?

These two examples illustrate the importance of labelling discovered

knowledge in such a way as to balance the security requirements of the

system with the need to share knowledge effectively. Section 3 proposes a

way to accomplish this.
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2 Related Work

The approach taken to achieve the goals of this work draws on four different

areas: complex network characterization, KD algorithm analysis, security

property analysis, and security model development. A solid understanding

of these areas is fundamental, as they will be heavily utilized and extended

to complete this work. The background that was required to develop the

approach detailed in Section 3, is described in the next four subsections.

2.1 Characterization of Complex Networks

The first step in understanding how confidentiality policies may affect a

knowledge management system is to quantitatively characterize the struc-

ture of the knowledge in the system. It is primarily the topological struc-

ture of a graph that will ultimately determine how easily it can be used

to navigate knowledge. Although almost no work has been done in this

area specifically, there is a substantial body of work emerging in the area

of complex networks. The networks of interest range from social networks

to biological networks to physical computer networks. It is likely that re-

search in complex networks will provide insight into methods for measuring

a knowledge graph’s structure quantitatively. Keeping in mind the semantic

graph model described in Section 1.4, it becomes obvious how work in the

area of complex networks may be applicable to knowledge metrics.

2.1.1 Features of Complex Networks

There are several features of complex networks that can be measured and

used to describe various characteristics of a network.

• Degree distribution: Degree is the number of links associated with a
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node. For directed graphs, degree can be separated into in-degree

(links directed into a node) and out-degree (links directed away from

a node). A graph’s degree distribution describes the number of nodes

that have a certain degree, k, for all possible values of k. For an exist-

ing graph, obtaining the degree distribution is as simple as counting

the number of nodes that have each possible degree k, and plotting k

versus the number of nodes with that degree. For stochastic graphs

(those that can be generated by a rule-set that is probabilistic), degree

is described as the probability, P (k), that a vertex is connected to k

other vertices [8]. In this case degree distribution is plotted as P (k)

versus k. There are two distributions that are of interest in the field of

complex networks. Each is described below, followed by a discussion

of what these distributions indicate about a graph.

A graph with degree distribution that follows a Poisson distribution

is homogenous, meaning that each node has approximately the same

degree. When plotted, this distribution of k or P (k) peaks at some

average 〈k〉, and then decays exponentially for large values of k. More

precisely,

P (k) =
e−λλk

k!
, (1)

where n is the number of nodes, p is the probability that any pair of

nodes is connected, and λ is (n − 1)p, or the expected node degree.

Thus, the existence of nodes with very high degrees is highly unlikely

[4, 41]. A graph with this degree distribution may be sparse or highly-

connected depending on the value of 〈k〉. Additionally, studies have

shown that the navigability of graphs with this type of distribution
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is hindered as a result of both random and targeted link failures or

removals [4].

A graph with degree distribution that follows a power-law distribution

is inhomogeneous. In this type of distribution, k or P (k) decays as a

power-law. More precisely,

P (k) ∼ k−γ (2)

Here, γ is known as the degree exponent. Studies of several real world

networks, such as the world-wide web and paper citation networks,

have revealed degree exponents between 2 and 3, though the existence

of other values has not been ruled out [2, 11, 10, 16]. These graphs

are often referred to as scale-free graphs, since the degree exponent is

independent of the size of the graph. With this distribution, unlike

a Poisson distribution, finding nodes with very large degree is statis-

tically likely. The navigability of such a graph is not hampered by

random link removals, but is extremely vulnerable to targeted link

removals [2, 27].

• Diameter: The diameter, d, of a graph is usually the average distance

between two randomly selected nodes [8], or the average shortest dis-

tance between all pairs of vertices 〈d〉 [2]. However, sometimes diame-

ter can refer to the maximum shortest path, max(d), between all pairs

of vertices [27, 38]. Depending on how the diameter measurement is

to be used, max(d) may only apply to pairs of vertices for which a

path exists [16]. This can also be a useful metric, but throughout

this paper, diameter will refer to the average or expected distance,
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〈d〉, unless otherwise specified. Diameter may also be calculated on

subgraphs, such as connected components. In general, diameter is a

measure of interconnectedness (small d indicates high connectivity),

though when taken alone, it may be misleading. It may be useful to

examine diameter as a distribution rather than a single value, or to

use it along with other graph metrics.

• Clustering properties: The clustering coefficient Ci of a node is defined

as

Ci =
2ni

ki(ki − 1)
(3)

[39, 10], where ni is the number of links between the ki neighbors of

node i. Ci can be thought of as a metric describing the extent to which

node i is part of a fully connected cluster or neighborhood of nodes.

This information is not provided by the degree distribution.

Several interesting observations have been made about the nature of

the clustering coefficient. First, a study of several real-world networks

[39] has shown that the average clustering coefficient 〈C〉 is much

higher for real-world networks than is predicted by most network mod-

els. Most of the real-world networks studied were also found to follow

a power-law degree distribution. In these cases, 〈C〉 was found to be

independent of the number of nodes, N . This finding agrees with ear-

lier findings [20] indicating that for deterministic scale-free networks,

a node with k links has an average clustering coefficient that follows a

scaling law such that
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C(k) ∼ k−1. (4)

This is not the case for networks with a Poisson degree distribution,

where C(N) decreases as N−1 with the number of nodes in the net-

work. It has also proven not to be true for power-law networks where

nodes and their relationships represent some geographical organization

[39].

In general, this all implies that in scale-free networks, nodes with larger

degrees have smaller clustering coefficients. This is extremely impor-

tant in understanding the role of hubs to a scale-free network. Hubs are

the nodes with high degree and small Ci that act as bridges between

clusters. Their existence is crucial to a graph’s navigability [41, 39].

Two other clustering metrics that can be useful are S, the size of the

largest cluster (here, a cluster refers to an isolated subgraph), and 〈s〉,
the average size of all isolated clusters (i.e. all clusters other than the

largest). Albert et al. [4] use these to characterize the fragmentation

process that occurs when a graph has a fraction of its nodes removed.

This can be used to illustrate the robustness or fragility of a graph’s

topology.

• Connected components: A graph’s macroscopic structure may prove

useful in understanding its connectivity. One study, examining the

world-wide web as a directed graph, identified six important compo-

nents or pieces of the graph. First is the giant core, or Strongly Con-

nected Component (SCC). Any node in the SCC is reachable from any

other node in the SCC. Then there are the IN and OUT components.
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All nodes in OUT can be reached from the SCC while all nodes in the

SCC can be reached from IN. There are also Tendrils. Tendrils, or

subgraphs, hanging off the IN component can be reached from IN, but

are effectively dead ends, since there is no return path to any other

component. The OUT component can be reached from Tendrils hang-

ing off of it, but there is no return path to these Tendrils. Tubes are

Tendrils that hang off of IN, but then feed into OUT. Finally, there

are disconnected components which do not reach the rest of the graph

and are not reachable from it [16]. Figure 9 illustrates these graph

components.

SCCIN OUT

Tube

Tendrils

Disconnected

components

Figure 9: Connected component structure of a directed graph. Adapted

from [16].

Schwartz et al. [40] also refers to the Giant Weakly Connected Compo-
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nent (GWCC) in which each node is reachable from every other node

if the links are treated as bidirectional.

Identifying these types of components in a graph could provide in-

sight into its robustness and navigability. Other graph metrics, such

as diameter, clustering coefficient, degree distribution, and relative

size, could all be applied to specific graph components. For example,

Schwartz et al. [40] examined each of these components separately to

understand the percolation critical exponents and their dependence on

correlated degree exponents in directed scale-free networks. Likewise,

findings in Broder et al. [16] based on the macro-component struc-

ture of the world-wide web revealed many statistics about web path

traversals that could not be easily calculated by brute force. Their

results also showed the resilience of web searches to the removal of a

significant number of nodes.

• Spectral properties: The graph metrics discussed thus far primarily

describe structural features of a graph. Farkas et al. [22] suggest that

in addition to examining structural properties of graphs, examining

spectral properties can be a useful tool. Specifically, they analyze

spectral properties to classify real graphs into the network models

described below in 2.1.2.

They represent a graph by its adjacency matrix and take the set of

eigenvalues, λ, of this matrix. λ is the spectrum of the graph. From

this, they obtain the spectral density, ρ(λ), of the graph as,

ρ(λ) :=
1
N

N∑

j=1

δ(λ− λj), (5)
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which is the density of the eigenvalues. The spectral density provides

useful information about the topological characteristics of a graph.

For example, Dk, the number of directed loops of length k, can be

calculated. Additionally, spectral density can provide clustering infor-

mation that can be used to identify scale-free and small-world graphs.

The specific mathematical methods that Farkas et al. use require that

only a small subgraph be measured, which could be beneficial in many

cases. However, it their methods are intended for graphs that are suf-

ficiently sparse, so it is not clear that they would be applicable in all

cases.

2.1.2 Stochastic Complex Network Models

Several network models have been proposed, and it is important to under-

stand each of them, as they each have different implications for network

characteristics of interest. Of primary interest are stochastic network mod-

els, since their topological evolutions are governed by probabilistic rules.

Each of the stochastic models presented below is described in terms of the

rules governing network generation or growth. Any real-world networks that

fit the models are discussed. Finally, the model’s effects on the network fea-

tures described above will be presented.

• The Classical Random Network Model: The Classical Random Net-

work model was proposed by Erdos and Renyi [21], and represented a

major breakthrough in graph theory. This model constructs a graph

by first defining N nodes and then connecting each pair with proba-

bility p. This results is a graph with pN(N − 1)/2 links distributed

randomly. The degree distribution peaks at 〈k〉, and decays exponen-
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tially for k À 〈k〉. One notable feature of this model is that the graph

is static; the size is predetermined and neither nodes nor links are

added after initial construction.

Although this model was used for nearly fifty years to represent net-

works encountered in nature, more current research has not been able

to identify any real-world networks that fit this model better than

one of the others described below [10, 4]. In terms of the network

features described above, graphs in this class have a Poisson degree

distribution, a diameter that grows monotonically with N, clustering

coefficients that follow a Poisson distribution, and C(N) ∼ N−1. Ad-

ditionally, as a fraction of nodes, f , are removed from the graph, S

and 〈s〉 show interesting behavior. For small f , 〈s〉 ' 1 (i.e. only

single nodes break off from the main cluster) and S decreases. How-

ever, at a threshold value of f , S ' 0 and 〈s〉 peaks (i.e. the main

cluster breaks apart into many isolated clusters). For high f , even

these isolated clusters break apart and S ' 0 and 〈s〉 → 1 [4]. For

a sufficiently large p, a graph in this class would consist primarily of

a large GWCC, evolving into an SCC as p continues to increase. For

small p, the tendrils would be larger than the GWCC, and almost no

SCC would be present. An analysis of the spectral density by Farkas

et al. [22], shows that the topology is tree-like, with some shortcuts.

Their conclusion is based on the fact that ρ(λ) is symmetric, which in-

dicates that the number of isolated clusters grows linearly with N and

all loops with an odd length disappear. So, as N → ∞ the topology

evolves into a tree where a loop involves traversing any link exactly

twice, thus the emergence of loops with only even length.
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• The Watts-Strogatz Network Model: Watts and Strogatz presented an-

other stochastic network model to represent real-world networks that

exhibit high clustering and regular topology with some random disor-

der [42]. In other words, they wanted to model networks that exhibited

the small-world phenomenon, the phenomenon that even in very large

networks, the distance between two randomly selected nodes is quite

small. They originally named their model the Small-World model.

However, since then, other models have been proposed that also model

the small-world phenomenon, so this model is now commonly referred

to as the Watts-Strogatz (WS) Model. This model starts with a ring

of N nodes, with each node being connected to its k nearest neighbors.

This regular graph is then rewired by selecting a link with probability

p, and reconnecting it to another randomly selected node [42].

As originally intended, the WS Model accurately represents the small-

world phenomenon and helped to fill the gap between network mod-

els that were completely regular and the Classical Random Network

Model. However, many of the real-world networks that it is was in-

tended to model are more accurately modelled by one of the scale-free

network models discussed below. Like the Classical Random Network

Model, the WS Model generates a graph with a Poisson degree distri-

bution, with an even steeper exponential drop off. However, the WS

Model graph’s diameter does not change monotonically with N . In

fact, the diameter is quite small compared to N and is highly resistent

to changes in N . As would be expected, the clustering coefficient for

any node is quite high. After all, small diameter and large Ci are the

defining features of the small world phenomenon. The connected com-
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ponent structure shows a very large SCC and almost no Tendrils or

disconnected components. The GWCC is similar in size to the SCC.

The spectral density, ρ(λ), shows a high number of triangles, even

when rewiring is increased greatly [22]. This is indicative of a high

average clustering coefficient.

• The Ultrametric Network Model: In an effort to formulate a more real-

istic model where node degree was more widely distributed, Hogg pro-

posed the Ultrametric Model [25]. This model logically groups nodes

of a graph into an unbalanced binary tree (where nodes are leaves only)

and then calculates the ultrametric distance, u, between each pair of

nodes, which is the distance up the tree to the first common ancestor.

Each pair of nodes is linked with probability pu. This model results in

a broader degree distribution that the other models discussed so far

and more closely resembles the degree distribution seen in real-world

networks since nodes of high and low degree are present in statistically

significant quantities. However, it does not model the small-world phe-

nomenon so commonly seen in real-world networks since the average

clustering coefficient is low [41].

• The BA Network Model: Barabasi and Albert recently proposed yet

another complex network model, the BA Model, in an attempt to ad-

dress shortcomings in other models. In particular they hoped to more

accurately capture the degree distributions seen in nature and account

for those distributions in their model. Two important aspects of the

BA Model are growth and preferential attachment. Barabasi and Al-

bert recognized that real-world networks are not static entities; they

grow and evolve over time. Thus, the BA Model begins with a small
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number of initial nodes, mo. New nodes are added individually and

linked to m ≤ mo nodes already present in the graph. To determine

the which m nodes to link to, the BA Model introduces the concept of

preferential attachment, which means that new nodes are more likely

to link to existing nodes with high degree i.e. the rich-get-richer phe-

nomenon. Mathematically, the probability, Π, that a new node will be

connected to node i is

Π(ki) =
ki∑
j kj

, (6)

where ki is the degree of node i, and j is the total number of nodes in

the graph when the new node is added [2, 9, 26, 10, 8, 7].

Some tangential studies offer modifications and extensions to the basic

BA Model. One notable feature missing from all the models discussed

above is the concept of weighted links. Yook et al. [44] address this

and supplement the BA Model by exploring ways to generate weights,

augment preferential attachment to account for weights, and analyze

the effect on the resulting network topologies. Schwartz et al. [40]

studied the effects of in-degree and out-degree correlation on naviga-

bility and the macro-structure of connected components. Their re-

sults indicate that it is important to differentiate between correlated

and uncorrelated degrees in the BA Model. Farkas et al. [22] fur-

ther define preferential attachment by describing two possible forms:

new node attachment and internal attachment. They recognize that

links in real-world networks are added not only when new nodes are

introduced, but may appear between two older nodes. Their data sug-

gests that the probability of internal attachment, Π(k1, k2), increases
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as either k1 or k2 increases and that it is linear in k1k2. The basic

BA Model describes only new node attachment probability, which is

dependent only on the degree of the old node.

Several real-world networks studied fit the BA Model very closely.

The world-wide web topology has been studied extensively and has

been found to fit the BA model whether a small sample of the web

is used or a very large sample [2, 16, 9, 8]. Other social networks

that exhibit a similar structure include author collaboration networks,

actor collaboration networks, and paper citation networks [26]. Other

networks, such as biochemical reaction networks, food chain networks,

or physical computer networks may fit the BA Model as well.

A graph that fits the BA model will have a power-law degree distri-

bution, rather than the exponential distribution predicted by most

other models. This distribution causes the diameter to be quite small

and only logarithmically dependent on N . Such a network can be

thought of as a hub-based network, or a network whose connectiv-

ity is highly dependent on the nodes with very high degree. Even

so, the clustering coefficient does not follow the scaling law (eq.4),

rather, C(N) ∼ N−0.75. This leads to questions about whether or

not the small world phenomenon is adequately represented by the BA

Model [39]. Broder et al. [16], in their study of the macro-structure

of the world-wide web raise some interesting related points. Their

data on the navigability-related features of the connected components

indicate that the web’s connectivity is not as dependent on hubs as

was previously thought. Also, their study indicates that the web’s

macro-structure is more complex than can be explained by the small-
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world phenomenon and that the Zipf distribution may more accurately

describe the degree distribution than the power-law distribution, es-

pecially for in-degree. The Zipf distribution is an inverse polynomial

function of ranks of degree rather than magnitude of degree. The BA

Model is still new and under development. Phenomena that are not

explained well by this model are still being uncovered and discussed,

so it is not yet clear how well the BA Model really does represent

real-world networks.

• The Hierarchical Network Model: The Hierarchical Model is based on

the BA Model, but seeks to model a network where C is independent

of N , following the scaling law (eq.4) and thus revealing a hierarchical

topology that is not described by other models but that appears in real-

world networks [39]. The Hierarchical Model modifies the BA Model

by restricting the preferential attachment mechanism such that each

highly connected cluster has a strict upper limit clustering coefficient

and average degree. The model begins with a small cluster of n densely

connected nodes. In the next step, n − 1 copies of the cluster are

generated. A fraction, p, of the new nodes are connected independently

to nodes in the original cluster following preferential attachment. That

is, a selected node will connect to node i of the original cluster with

probability Π = ki/
∑

j kj , where ki is the degree of node i and the

summation is over the j nodes of the original cluster. The next step

generates n−1 copies of the new n2 size cluster, but only p2 fraction of

the new nodes are selected for connection to the n2 size cluster. This

model also has a deterministic version, which is described in [11, 10].

This results in a network that obeys the scaling law (eq.4) while still
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following a power law degree distribution. Additionally, nodes in this

model always follow the law that higher degree nodes have smaller

clustering coefficients. Several real-world networks have been shown

to have characteristics modelled by the Hierarchical Model, including

metabolic and protein interaction networks, as well as the world-wide

web and actor collaboration networks. However, networks that repre-

sent a geographical organization do not fit this model well [10]. Ravasz

et al. do note, however, that this is not the only model that produces

these results. In particular, the model of Klemm and Eguiluz, as

described in [39], propose keeping p constant for each iteration, but

deactivating nodes at each time step with probability Pi ∼ k−1. In ef-

fect, this ages off less connected nodes and causes a densely connected

central core to emerge. Although this model bypasses preferential at-

tachment, the resulting network topology is equivalent. Preferential

attachment is one of the most controversial aspects of the BA Model,

as many do not feel it accurately describes the motivations behind the

evolution of real-world networks. This Klemm-Eguiluz modification

may offer a more realistic picture.

2.2 Knowledge Discovery and Creation

Most KD algorithms take as input some prior background information in

addition to the knowledge currently represented by the knowledge graph.

They then process this combination of information to produce new knowl-

edge as output. This knowledge may be presented to a user, fed back into the

graph in some predetermined fashion, or utilized by other graph processing

algorithms.
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There are many different KD algorithms, and new ones are being de-

veloped all the time. These algorithms can be loosely categorized by their

primary task [23]. Though the categories described by Fayyad et al. are not

necessarily exhaustive and are not the only way to classify KD algorithms,

they do provide a convenient way to organize the algorithms so that general

statements can be made about their characteristics.

Understanding the processing that is performed by advanced KD algo-

rithms is an important aspect of this work. It will be important to know

to what extent the input to the algorithm can be deduced from the output.

This information will have a significant impact on the security labelling re-

quirements imposed on the output. Section 3.2 will investigate approaches

for analyzing this aspect of KD algorithms.

Each KD task category below is briefly described, and examples are given

that elucidate how this task might be applied in a government KM system.

These specific examples are for illustration only. They do not represent any

actual data sets; the level of knowledge granularity is higher than would

be expected in reality and the specific KD task achieved is trivialized to

simplify the explanation of each task.

2.2.1 Classification

KD algorithms that learn functions that map data into predefined classes

are known as classification algorithms. It is important to differentiate this

from an algorithm that simply assigns classes to objects based on prede-

fined rules. Such an algorithm is not performing a learning or discovery

task, whereas a classification algorithm is learning the rule set for assigning

classes to objects.
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Task: Learn how to classify foreign military activities into the classes rou-

tine, cause for close observation, cause for diplomatic action, and

cause for immediate military response.

Background information: Examples of foreign military activities that fall

into each predefined class.

Example: Consider the following military activities have been observed and

recorded in a graph:

• 5 new encampments have been established along a contentious

border.

• Existing encampments have increased in activity level by

15%.

• No suspicious information has been reported from under-

cover agents.

• Diplomatic relations are good.

• A large government payment was made to a known supplier

of missiles.

Given a sufficient set of background information, the algorithm might clas-

sify this situation as cause for close observation. This assessment is new

knowledge discovered by the system.

Not just activities and trends, but objects of interest can also be classi-
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fied. For example, based on content, satellite images could be classified as

military installations, civilian towns, factories, or naval fleets.

2.2.2 Regression

KD algorithms that learn functions that map data to real-valued variables

are known as regression algorithms.

Task: To predict the quantity of illegal drug production of some geographi-

cal region known to produce drugs.

Background information: Example data sets where the drug production

quantity is known and other facts about the regions are described.

Example: Consider the following data is available on a drug-producing re-

gion:

• Region is 1127 acres.

• Climate is tropical.

• Terrain is mountainous.

• There are 3 buildings that serve as warehouses.

• Each day 5 trucks on average pick up loads in this area.

• There are 2 churches in this region.

Based on this data and the background information, the regression algo-

rithm might predict that 40 tons of marijuana can be produced weekly by

this region. This fact is new knowledge discovered by the system.
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Another way to use regression is to estimate a probability. For example,

based on remotely sensed data, a regression algorithm could predict the

probability that a specific military target was hit by a missile. Again, this

class of KD algorithms should not be confused with an algorithm that simply

computes an output value based on input variable values. A KD algorithm

has to learn what input variables to use and what form the function should

take. The final variable above, the number of churches in a region, is un-

likely to be highly correlated to drug production. The KD algorithm must

make this determination based on the background information.

2.2.3 Clustering

KD algorithms that identify categories based on data are known as cluster-

ing algorithms. Clusters may be mutually exclusive or overlapping and may

or may not be exhaustive. Clustering algorithms do not assign meaning to

the clusters they identify; that task is left to a human user or other algo-

rithm.

Task: Identify the cluster or clusters exhibited in the data set of Figure

10.

Given the data set in Figure 10, which plots bank account balance versus

number of cell phone calls, a clustering algorithm might identify the four

clusters shown and define them mathematically. These mathematical func-

tions are new knowledge. Given these clusters, a human expert may then

assign meaning to clusters (and thus data points, as shown in Figure 10).
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In this example, the expert determined that two clusters probably represent

drug dealers while the other two clusters do not.

Bank account balance

C
el
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Non-drug dealer


Figure 10: Clustering of data into four sets. The algorithm identified the

clusters, but a human expert assigned meaning to the clusters.

It is not likely that this type of discovered knowledge would be fed back

into the graph. However, it could be used to support additional graph pro-

cessing, be used by an expert system or decision support system, or be used

in advanced query processing. Much more advanced clustering algorithms

would define clusters based on a multitude of variables and could work with

both continuous and discrete variables.
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2.2.4 Summarization

Summarization algorithms utilize a variety of methods to provide a compact

description of data. Advanced summary algorithms might derive summary

rules or discover functional relationships between objects.

Task: Identify companies that may be ordering components that can be

used to manufacture weapons.

Background information: Data describing which components can be used

to manufacture weapons.

Example: Consider the following data available in the graph:

• AllChem sells chemical A and chemical Z.

• ACME Electrical sells electrical part X.

• Willie’s Widgets sells mechanical part Q.

• Sam’s Fertilizer Company, Inc. orders from All Chem and

Willie’s Widgets.

Supposing the background information revealed that chemical Z is com-

monly used in chemical weapons, then the algorithm would report that

Sam’s Fertilizer Company, Inc. may be purchasing components that can be

used to manufacture weapons. Additional information such as how much of

AllChem’s sales are chemical Z, or what specific chemical Sam’s is purchas-

ing from AllChem may alter the results, or provide some probability that

Sam’s is actually purchasing chemical Z.
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More advanced summarization algorithms may perform more indirect infer-

encing. For example, background information may only include examples of

other companies purchasing weapons components, rather than background

information that explicitly states which components can be used to produce

weapons. In that case, the algorithm must determine for itself which com-

ponents may be used to manufacture weapons. A simpler summarization

algorithm that lends itself well to query processing for graph-modelling in-

formation is one that can add shortcut links. For example, if Mr. X works at

Company A, and Mr. Z owns Company A, then an algorithm could create

a new link from Mr. Z to Mr. X labelled “is boss of”.

2.2.5 Dependency Modelling

A KD algorithm that finds a model that describes dependencies between

variables is known as a dependency modelling algorithm. Dependency mod-

els may just describe the existence of a dependency, or they may assign a

weight to a dependency indicating its strength or probability.

Task: Develop a model that describes the travel behavior of someone who

is likely to blow up an airplane.

Background information: Data describing the travel behavior of several in-

dividuals, distinguished by whether or not they have blown up airplanes.

After processing the background information, the algorithm may determine

that the following variables describe the behavior of someone who is likely
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to blow up an airplane:

• 18 ≤ age ≤ 30

• checked baggage at airport = no

• purchased one-way ticket = yes

• gender = male

The algorithms may have determined that many other available variables

were not meaningful in modelling the behavior of interest, such as height,

airline, and date travelling. This model is not based on information in the

graph and does not feed back into the graph itself. However, the resulting

model may be used by other algorithms to process the graph.

2.2.6 Change and Deviation Detection

A KD algorithm that discovers significant changes from previous or normal

values performs the task of change or deviation detection.

Task: Report significant changes in naval port traffic.

Background information: Possibly none, though data describing how much

of a change is considered significant could be utilized.

Example: Consider the following graph data at time t0:

• Port P has 27 ships docked.

• 10 ships are en route to Port P.
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• 4 ships are departing Port P.

Later, at time tn, the graph data indicates:

• Port P has 116 ships docked.

• 56 ships are en route to Port P.

• 0 ships are departing Port P.

This would likely cause the algorithm to report that significant changes in

port traffic at Port P are occurring.

2.3 Security Properties

Any confidentiality policy has a specific set of security properties that de-

scribe the extent or type of security provided by the policy. This section

describes several of the most important properties.

2.3.1 Nondeducibility

To understand nondeducibility, think of the system of interest as a state

machine that has both high and low inputs and outputs. In the context of

this work, a knowledge discovery algorithm is the system of interest, and the

input data and output knowledge are the items of concern. A confidentiality

policy for the KD algorithm will state how to apply confidentiality labels to

the output knowledge. Here, only high and low levels are considered, but

the extension to multiple levels is trivial. A policy is deducibly secure if

a set of low inputs and low outputs cannot be used to deduce information

about high inputs or high outputs [14]. There are other ways of describing

nondeducibility. Bishop [14] and Anderson [6] each define nondeduciblility
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as a property of a system in which for every low trace (set of low inputs and

low outputs) a low user cannot distinguish which high trace, from the set of

all possible high traces, may have accompanied it. However, the existence of

a high trace may be evident. Nondeducibility is regarded as a rather weak

security property because a system is considered deducibly secure even if

high information can be deduced, but with less than 100% accuracy.

An important quality of security properties is composability since it in-

dicates whether a sequence of systems with a specific security property can

be combined to form a new system that still possesses that property. Sys-

tems which have nondeducibility as their strongest security property are not

composable [14, 30].

2.3.2 Noninterference

There are four variations on noninterference discussed in this section: de-

terministic noninterference, strong noninterference, generalized noninterfer-

ence, and restrictiveness. The first two are applicable only to deterministic

systems (stateless systems). The latter two are applicable to nondetermin-

istic systems which are stateful. Generally speaking, noninterference is a

property that extends and strengthens nondeducibility. Any system that is

noninterference-secure is deducibly secure, but the opposite is not necessar-

ily true [30].

Deterministic noninterference is a property of systems that prevents

high inputs from affecting low outputs whatsoever. Strong noninterference

provides additional security by not allowing high outputs to occur unless

they are triggered by high inputs. Requiring strong noninterference may be

too restrictive since is disallows some systems that are obviously secure [14].
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Both deterministic noninterference and strong noninterference are consid-

ered composable. However, several rather restrictive assumptions about the

system must be made for this to be the case [30].

To address a system that is nondeterministic, or has asynchronous in-

puts and commands, McCullough introduced generalized noninterference

[30]. This property states that altering a high input in a sequence of inputs

produces low outputs that could have been produced given the original se-

quence of inputs. This property is only composable if no feedback is allowed

between systems.

The restrictiveness property, also introduced by McCullough [30], ex-

tends and strengthens generalized noninterference. Restrictiveness is ba-

sically the nondeterministic form of strong noninterference. Consider an

input sequence of both high and low inputs and a system that uses them to

produce both high and low outputs. If the system is restrictive, then any

changes to the high inputs, including their order, does not affect the low

state of the system, in addition to not affecting the immediate low outputs.

In other words, the high inputs can not have an effect on any state infor-

mation that will affect future low outputs. Also, a restrictive system does

not allow the low level state to be affected by high level outputs. Differenti-

ating between the states of a system, and thus the future outputs, and the

immediate outputs alone results in a security property that is composable

[14].

2.3.3 Inference Controls

Logical inference is the ability to infer high data from low data. What

distinguishes this from deducibility is that logical inference is not confined
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to inferring high input data from low output data of a specific system or

algorithm. It is more general and applies to high and low data items that

are not necessarily functionally related.

One type of inference capability arises due to relationships between pieces

of data, rather than from the data pieces themselves. For example, a person’s

name may not be confidential and a number representing a salary may not

be either. However, the relationship that correlates that person to that

salary may be confidential.

Several methods have been proposed for constraining relational databases

so that this type of inference is not possible [29, 24, 37]. However, when the

knowledge representation model proposed in this work is used, this type of

inference is not an issue, since links represent semantic relationships between

nodes, and links have their own classification labels.

Another type of inference capability arises when a collection of low data

allows one to infer information that is high. Census data provides an exam-

ple of this type of inference problem. The primary solution to this problem

involves suppressing some of the low information—just enough so that the

high information can no longer be inferred [6]. There is a fine line between

this type of inference and aggregation, another security problem discussed

in Section 2.3.4.

This work will only be concerned with logical inference capabilities re-

sulting from knowledge discovery processes that occur within the system.

Logical inference that is made possible by a user’s domain knowledge or any

source of information external to the system will not be considered. Given

this constraint, logical inference is essentially the same as deducibility for the

purposes of this work. Since nondeducibility and noninterference are more

formal and precisely defined security properties, it is likely that they will be
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used to describe security models developed as part of this work. However,

some of the models developed to address logical inference may be useful.

2.3.4 Aggregation Constraints

Another notable confidentiality problem is the aggregation problem. This

problem arises when two or more low data items, when taken together, have

a high classification. This differs from the logical inference problem in that

aggregation does not imply that the low data allows one to infer high data,

but rather, that the collection of low data is itself classified high [29]. One

example of the aggregation problem is the NSA phonebook. Though no

single phone number is high, the collection is. This differs subtly from the

census data problem in that the census data collection is not high, but the

personal information that be inferred from it is. This distinction is not

always easy to make and two problems often overlap and are even addressed

in similar ways [6].

Several systems and security models have been developed that claim to

address the aggregation problem [36]. However, the solutions are imprac-

tical for several reasons. Meadows’ solution assumes that information can

easily be divided into datasets such that the classification of any possible

combination of datasets is known in advance. For a dynamically evolving

KM environment that contains knowledge from a variety of domains, it is

unlikely that devising such datasets and classification rules will be possible.

Furthermore, a history must be kept that tracks a user’s or system’s ac-

cesses to prevent illegal combinations of accesses over time. Having to store

and validate against these history logs could require an extensive amount

of storage and also hinder query performance considerably. The fact that a
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user or system may have different clearance levels or roles in different loca-

tions or situations makes maintaining and utilizing this history information

even more complex. Finally, even a perfect solution can only extend to the

boundary of the system. The system cannot detect or prevent a user from

obtaining low data through other legal means. In consideration of these

issues, the security policies developed as part of this work will not attempt

to incorporate aggregation constraints or solve the aggregation problem.

2.4 Security Models

A number of security models have been proposed that address confidentiality

in the context of ML/LS systems. This section presents some of the more

influential models. Although many of these models address both integrity

and confidentiality, the focus here will be on the portions of the models that

address confidentiality.

2.4.1 The Bell-LaPadula Model

The Bell-LaPadula (BLP) Model [13] [12] was originally designed to ad-

dress confidentiality and information flow concerns in military information

systems, particularly operating systems. BLP addresses multi-level security

and its main goal is to prevent a subject (user or process) from reading ob-

jects at a classification level higher than the subject’s clearance level. Both

mandatory access controls (MAC) and discretionary access controls (DAC)

are utilized. Two key features of BLP include the Simple Security Condition

and the *-Property. The Simple Security Condition stipulates that no pro-

cess may read data at a higher level than that process’s clearance level. This

is also known as no-read-up (NRU). The *-Property states that no process

47



may write data to a lower level than than that process’s clearance level. This

is known as no-write-down (NWD). The *-Property is very limiting, but a

loophole is provided by allowing processes to work at either their maximum

security level or a current security level, which may be lower. A complete

and formal description of BLP is provided by Bishop in [14].

BLP has been criticized extensively for a variety of weaknesses, mostly

related to theoretical aspects of the model and the basic assumptions it

makes about security models in general. See [31], [32], [14], and [6] for

discussions about BLP shortcomings and proposed solutions.

2.4.2 The Chinese Wall Model

Brewer and Nash [15] formulated the Chinese Wall (CW) Model to address

conflict of interest issues in the financial and legal sectors. Whereas BLP

is ideally suited for multi-level secure systems, CW is targeted to multi-

lateral secure systems. The CW Model consists of objects (data items) that

are grouped into classes. Classes are then grouped into conflict of interest

classes (COI). If classes are in the same COI then they are in competition

or may have a conflict of interest. A user or process can only access a data

item if another data item that maps to the same COI class has not been

previously accessed by that user. Thus, the model has a temporal aspect.

Two key features of CW are the CW-Simple Security Condition and the

CW-* Property. The first of these stipulates that a subject can only read an

object from class C′ and COI class COI′ if 1)the subject has already read

objects that belong to C′, 2)all of the objects read previously by the subject

belong to COI classes other than COI′, or 3) the object has been sanitized.

The CW-* Property states that a subject may only write an object if 1)
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the CW-* Simple Security Condition would permit the subject to read that

object or 2) All unsanitized objects that can be read by the subject belong

to the same class as the object to be written [14] [6]. Extensions to the

CW model allow it to address both multi-level and multi-lateral security

requirements [36].

2.4.3 A Model for Medical Information Systems

The need to protect patients’ privacy while providing medical practitioners

with the information needed to diagnose and treat patients effectively has

prompted the the development of a security model targeted specifically to

medical information systems (MIS). Anderson’s British Medical Association

(BMA) Model is one of the more influential security models for MIS [14] [5]

[6]. The model consists of nine principles:

• Access control lists indicate which groups or individuals have read

access, write access, or both.

• Record opening controls prevent unauthorized clinicians from making

referrals. In other words, the referring clinician must be on the access

control list as must be the new clinician to whom the patient was

referred.

• Responsibility for the access control list of a given patient lies with a

single clinician.

• Patients are notified of all changes to the access control list, and their

consent is required (except in emergencies).

• No data is deleted so as to facilitate auditing.
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• All accesses are logged to assist auditing.

• Information flow controls prevent data from one record being writ-

ten to another record unless the second record’s access control list is

contained in the original record’s access control list.

• Measures are in place to prevent large amounts of data being made

accessible to a single person or group.

• A trusted computing base shall be used to enforce the other principles

and will be evaluated by an independent authority.

2.4.4 The Lattice Model

The Lattice Model was formalized by Denning [17] and is very similar to

BLP, but it also addresses multi-lateral security issues. A lattice of security

labels is shown in Figure 11. The features of BLP can then be applied

by following the arrows down the lattice. The Simple Security Condition

now means NRU and also no-read-across. In other words, only data with

a label set that can be reached by following the arrows can be read. The

*-Property now means NWD and also no-write-across. Implementing this

model can be difficult even though it is simple in theory. The possible

combinations of labels explodes in size, making enforcing a lattice-based

policy very expensive.
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Secret

Top Secret Secret

travel

Secret

travel, military

Top Secret

travel, military

Top Secret

travel

Secret

military

Figure 11: A lattice of security labels. Both classification levels and com-

partments are used.
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3 Approach

This section describes the four high level tasks that compose this work: de-

veloping knowledge metrics, analyzing KD algorithms, developing security

policies, and developing a cost-benefit analysis technique. The general ap-

proach that will be taken to accomplish these four tasks is described. Each

task is then recast as a very specific step or set of steps that can be objec-

tively evaluated for completion at the conclusion of this work.

3.1 Develop and Apply Knowledge Metrics

The graph metrics described in Section 2.1, such as degree distribution,

diameter, clustering information, component structures, etc., can all be ap-

plied to a SKG. However, before utilizing these metrics in the context on a

knowledge network, two extensions to these metrics are needed.

One extension is to differentiate between the varying semantic meanings

of links. Most of the work done in the area of complex networks assumes

that all links are equivalent in meaning. This is also true for the specific

real-world networks discussed throughout the complex networks literature,

such as the various collaboration networks, where all the links meant “col-

laborated with.” A large and complex KM system is not so limited in scope,

so there will be many different meanings among links. This extension may

be as simple as enumerating each different link type to prevent links of dif-

ferent types from being collapsed into a single link, even if they connect the

same two nodes.

The second extension involves assigning weights to links. Links may have

different weights for a variety of reasons. Some links may be more useful than

others for semantically traversing through the knowledge. Links may also
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have different quality ratings or confidence ratings if their existence has an

element of uncertainty. The work of Yook et al. [44] could be applied directly

or adapted, depending on the other knowledge network characteristics that

are discovered. (Their work applies directly to only two specific network

models.) They present a method for assigning weights to links as a network

evolves and extend the concept of preferential attachment to account for

weighted links.

Two methods for assigning link weights in a knowledge graph will be con-

sidered. Usage statistics could prove helpful in understanding which types of

links actual users prefer to traverse. Such usage statistics might include the

number of times a link is traversed or the number of times a node represents

a source or destination (rather than an intermediate step). This data could

be very difficult to gather and at best may be based on the preferences of

a small sample of users with a limited domain focus. However, the general

method of gathering usage statistics and utilizing that data should be gen-

eral enough to prove beneficial in describing one way to assign link weights.

Another method is to base link weights on domain expertise that is embed-

ded in a knowledge graph’s ontology. Given the knowledge representation

method chosen for this study, the ontology could be supplemented such that

each link type definition includes a weight that rates its potential usefulness.

If links are added based on uncertain knowledge, by a human user, by a data

collection system, or by a knowledge discovery engine, then a weight could

be assigned to a link to indicate just how certain that knowledge is. It is

likely that a combination of both these factors will play a role in assigning

link weights.

The first step in this work is to extend the metrics in 2.1 to account for

weighted with diverse semantic meanings.
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One example of how this could be done applies to the diameter of a

graph. Consider links with weights assigned ranging from 1 to 10, where

1 indicates a highly useful link type and 10 indicates a link type that is so

common that it may not be very useful. The diameter calculation would

then incorporate link weights, rather than mere link existence. Thus, a

graph with more links of useful link types would have a smaller diameter

than a graph with less useful link types.

Another possible extension applies to the degree distribution and is very

straightforward. Since links have meaning, there may be several links con-

necting the same two nodes, if those nodes have multiple relationships with

each other. The method of calculating degree distribution does not need to

be modified, but the way it is interpreted does. Semantic links may cause

degrees to be much higher than in graphs where only a single links is allowed

between two nodes. This fact needs to be considered when evaluating the

degree distribution and interpreting how that distribution may affect graph

navigability and robustness.

Next, the new metrics will be applied to a real-world SKG. The graph will

consist of knowledge about people, places, organizations, suppliers, travel,

and international incidents. Knowledge sources may include web-based news

groups, multiple web-based news reports, and other information sources.

The metrics will be applied both before and after access control policies are

enforced. Although it would be useful to apply these metrics multiple times

during graph evolution, it is unlikely that there will be adequate access to

any production knowledge system that could provide real-world knowledge

evolution in addition to real-world knowledge results. Thus, the metrics will

be applied only after the complete graph is generated.

The second step in this work is to apply the extended metrics to real-world
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graphs.

The purpose of collecting this data is to identify a network model that

closely fits real-world knowledge networks. If the real-world network fits one

of the models described in 2.1.2, then many important graph features will be

identified. For example, the evolution of the knowledge graph will be charac-

terized, and a method of computationally generating a topologically equiv-

alent (though perhaps larger) graph will be available. Most importantly,

insight into the effects of applying access control policies will be gained.

This information could assist decision makers when they are performing the

cost-benefit analysis technique described in Section 3.4. In particular, it

could provide a shortcut for assigning a value to the cost C.

The third step in this work is to analyze the results of applying the metrics

to identify which network model(s) most closely fits this class of real-world

graphs.

3.2 Analyze KD Algorithms and Formalize the Analysis Pro-

cess

As briefly discussed in Section 2.2, the extent to which input of a KD algo-

rithm can be deduced from the output will be investigated as part of this

work. This is important because ultimately, some security labelling rules will

need to be applied to the output. If the input can be deduced, given the

output, then the output will have to be labelled and secured appropriately.

If not, then more relaxed security labelling may be acceptable (and even

advantageous). In this Section, the term deduce is used loosely. Ultimately,

the goal is to identify which, if any, of the security properties described in

Section 2.3 hold for a given KD algorithm when specific labelling rules are
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applied to the output. This section uses the term deducibility to refer col-

lectively to the formal security vulnerabilities of Section 2.3: deducibility,

inference, and interference (and any others that are found to be useful).

For many KD algorithms, there are two types of input, the background

information, and the data over which knowledge discovery is to occur (i.e.

the data in the graph). Some KD algorithms utilize only one of these two

types of input. For clarity, the remainder of this section will refer to the first

type as background data, the second type as graph data, and the collection

of them both as input data. The deducibility of both types of input is of

concern.

The remainder of this section refers repeatedly to accessibility. Rather

than going into details about classification labelling and authorizations at

this point, the term data accessibility will be used to refer to a single users

ability to view data. It is assumed that if users are allowed to view one piece

of data at their level of accessibility, then they can view all data available

at that level.

Deducibility (again, this term is used loosely) depends on four conditions

of the system:

• The amount of background information, if any, accessible by the user

• the amount of graph data, if any, accessible by the user

• the ability of the user to identify input data and match it to corre-

sponding output data

• the extent to which the user is familiar with the KD algorithm(s) being

used within the system
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The conditions of the system, the KD algorithm, and the portion of the out-

put that is accessible, will determine whether or not the input is deducible.

It is likely that all the algorithms belonging to a single KD category, as

organized in Section 2.2, will have the same deducibility conditions. Thus,

analysis will occur on the category level rather than the algorithm level. If

this approach is found to lead to inaccurate results, then a few commonly

used algorithms will be analyzed instead. In either case, the analysis process

will be described.

The fourth step in this work is to analyze either at least three categories

of KD algorithms from Section 2.2, or at least three KD algorithms, and for

each, to indicate what portion of the output data needs to be made inacces-

sible to ensure that inaccessible input data is secure. The analysis will be

done for each possible set of system conditions. The analysis process will be

detailed so that it can be repeated for additional categories or algorithms.

These results could be used to assign a classification labelling policy

based on the expected system conditions, or control the system conditions

to maximize the amount of output data that can be made accessible.

To understand how this analysis might be accomplished, consider a sim-

plified example, based on the KD algorithm from Section 1.4 that discovered

the new link between Joe Smith and the KGB. Assume this algorithm is very

simplistic and operates as follows:

FOR node_ID=1 to N DO

IF node_type=person AND node has_account THEN

IF node of node_type=(company OR organization)

deposits_to that account

THEN add link link_type=works_for,
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source node=node_ID,

destination node=company

or organization node_ID,

...

ELSE add no links

This algorithm does not even consider travel information. Referring

back to Anne’s view of the graph in Figure 6 it is obvious that if she does

not know the background information on which the algorithm is based she

cannot accurately deduce the existence or content of the Secret and Top

Secret information. This new link could have just as easily been added

based on the fact that Joe Smith has travelled to Moscow and the KGB

is located there. This conclusion makes several assumptions, such as Anne

not having access to other examples of this algorithm discovering new links

that might lead her to accurately infer the background information. This

example is not rigorous in its analysis, but it illustrates some of the issues

that will have to be considered when a more rigorous analysis is performed.

Investigating exactly how to perform such an analysis is one of the most

challenging aspects of this work.

3.3 Develop Confidentiality Models

As stated in Section 3.2, appropriate labelling rules will need to be applied

to the output of KD algorithms. Confidentiality models, such as those dis-

cussed in Section 2.4, specify labelling rules. The application of different

models will result in different security properties. Understanding how dif-

ferent models affect security is a key component of this work.
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The models in Section 2.4 provide a good starting point for developing

new models that will be useful in a KM system with complex confidentiality

requirements. It is possible that some of those models may even directly

apply to such a system. However, it seems more likely that these models will

have to be extended so that they address labelling of discovered knowledge.

This is simply because in the environment of interest, neither the KD process

or its inputs can easily be identified as high or low. Rather, they are both

high and low, and the current models do not address this situation. The

example in Section 1.4 shows how assigning a label to discovered knowledge

based on the highest level of input data could be unnecessary and costly.

This is the approach that most existing security models would follow. The

same example also shows that assigning the label based on the label of the

majority of input data could provide insufficient security. Extensions to

existing security models need address these complex issues.

The fifth step in this work is to extend existing security models to address

a KM system with complex confidentiality requirements. Ideally, two or three

extended models will be sufficient to provide a range of security properties,

though establishing whether or not this is the case is part of the work to

be accomplished. It may turn out that KD algorithms impact the range of

security properties that can be achieved more do than the security models.

The existing security models considered for extension, will not necessarily

be confined to those discussed in Section 2.4.

Though most of this discussion has been on models, ultimately a policy

will need to be applied. A policy is simply an instantiation of a model, which

is an abstraction. For the purposes of this work, the policies developed will

be simple instances of the models. This paper often uses the two terms

interchangeably to reflect the straightforward mapping we hope to achieve.

59



3.4 Develop a Cost-Benefit Analysis Technique

So far, this work had proposed the development and application of knowledge

metrics, the analysis of KD algorithms, and the extension and application

of confidentiality models. However, it is not the intent to prescribe a single

confidentiality model as the solution for all KM systems. Rather, it is the

intent to develop a technique that will allow KM system designers and policy

makers to understand the tradeoffs between confidentiality and knowledge

sharing in a quantitative fashion so that informed decisions can be made

about security policies for KM systems.

To accomplish this task, we will develop a technique that identifies and

correlates the costs and benefits of various confidentiality policy options.

Cost is defined as the change in knowledge metric values that occurs as a

result of applying a confidentiality policy. The “user” of this technique will

have the option of weighting each metric by its relative importance, since

they may not be of equal importance depending on the intended use of the

system. The ability to weight the metrics allows them to be applicable in

different environments. Then the weighted values will be combined into

a single value to represent the navigability, N , of the knowledge graph.

Intuitively, navigability is a measure of how easy it is for a user to explore

the data managed by the KM system.

The sixth step in this work is to develop a function for combining weighted

knowledge metrics into a single meaningful value, N , representing naviga-

bility.

Cost, C, can then be defined as

C = N0 −NP (7)
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where N0 is the navigability prior to applying a confidentiality policy (all

data resulting from a KD algorithm is marked low, or available to anyone),

and NP is the navigability after applying a confidentiality policy, P to this

output.

The benefit, B, of a confidentiality policy will be described in terms

of security properties. B can be a tuple (p1, p2, ..., pn) where each element

is one of the security properties determined to be relevant for KM system

confidentiality. Each element could be a percentage or a boolean value. Tra-

ditionally, the security properties in Section 2.3 would be boolean valued,

indicating whether the property is present or not. However, to compensate

for the weakness of nondeducibility, that property may be real valued, indi-

cating to what extent input is nondeducible. In other words, if the user could

deduce inaccessible input information with 85% accuracy, then the element

of the tuple representing nondeducibility would be 0.85. Alternatively, if

all of the properties are monotonically increasing in security strength, then

B could simply be the strongest security property provided. For example,

assume that there are three properties in the tuple: nondeducibility, gen-

eralized noninterference, and restrictiveness. Since restrictiveness implies

generalized noninterference and generalized noninterference implies nond-

educiblity, it would be sufficient to indicate only the strongest property

provided.

B is dependent on three aspects of the system: the confidentiality policy

P , the KD algorithm or algorithm class Alg, and the system conditions Sys.

P is a formally defined policy, but not a value. Alg is a formally defined

algorithm or class of algorithms, which may be enumerable, but is not a

value. Sys is a tuple (w, x, y, z) where w and x are real values representing

the percentage of background information and graph information, respec-
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tively, accessible to the user. Whether the user can correlate input values

to output values is represented by the boolean value y. Whether the user

knows which KD algorithm is being used is represented by the boolean value

z.

Benefit, B, is not a function in the strict sense, since it is dependent on

variables that are not numerical values. It is more useful to think of benefit

as a three-dimensional matrix, with each cell value representing the benefit

for the P , Alg, and Sys corresponding to that cell. Again, it is not the

intent of this work to fill in every possible cell of this matrix. Rather, this

work will define the steps that have to be completed so that decision makers

can fill in their own matrix values for the policies, algorithms, and system

conditions that are possible in their KM system.

The seventh step in this work is to outline the steps required for this

cost-benefit analysis technique.

The benefit matrix and the values of C for the same policies used to

define B, enable decision makers to do several things. First, given a fixed

policy, algorithm, and system conditions, they can make informed state-

ments about the security provided and the cost of providing that level of

security. Second, they can tune the cost, benefit, or both, by altering the

policy, algorithm, and/or system conditions. The following example pro-

vides a notional illustration of how this might work.

Assume a KM system designer must choose a confidentiality policy from

among three candidate policies, P1, P2, and P3. The system conditions

are fixed, so he only has to examine two dimensions of the benefit matrix.

Assume B is a tuple (degree of nondeducibility, generalized noninterference,

restrictiveness), where the first element is real valued and the latter two are

boolean. Of the two different KD algorithms, he must assume both will be
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P1 P2 P3

Alg1 (100,0,0) (98,0,0) (100,1,0)

Alg2 (100,1,0) (100,0,0) (100,1,1)

Table 5: An example benefit matrix, with the system condition dimension

excluded.

used in the system. The benefit matrix is shown in Figure 5.

Suppose the cost information is as follows: C(P1) = .25, C(P2) = .02,

and C(P3) = .6. Since cost is the reduction in navigability caused by the

security policy, a small cost is desirable. The costs shown here assume that

N = 1.

The KM system designer could conceivably choose any of the policies.

P2 appears to be the best deal, since the cost so low. However, if the

security requirements of the system stipulate that 100% nondeducibility is

required in all cases, then he must choose one of the other policies. Given

the considerable cost of P3, he should only choose that policy if generalized

noninterference is also a strict requirement of the system. If he could choose

both a policy and one of the algorithms, he could safely select P2 and Alg2

even if 100% nondeducibility is required.

3.5 Completion Criteria

Once the seven steps (shown in italics throughout Section 3) have been

completed, this work will be considered complete. Modifications to the

specific approaches taken to accomplish the goals described in these seven

steps may be made as necessary, so long as the goals are achieved.
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4 Schedule

Best Case: March 31, 2004 draft dissertation to committee. May 31, 2004

completion of all requirements for Ph.D. unless earlier date is required for

Spring 2004 graduation.

Realistic Case: October 1, 2004 draft to dissertation committee. Decem-

ber 1, 2004 completion of all requirements for Ph.D. unless earlier date is

required for Fall 2004 graduation.

• Step 1: March 2003 – June 2003.

• Steps 2 and 3: June 2003 – August 2003. Dependent on Step 1 and

access to appropriate data.

• Step 4: June 2003 – December 2003. This is the most challenging

component of this work.

• Step 5: October 2003 – February 2004. Partially dependent on Step

4.

• Step 6: 1 month, anytime between August 2003 and March 2004.

Dependent on Steps 1, 2, and 3.

• Step 7: March 2004– April 2004.

• Writing: Throughout, and continuing through June 2004.

Helpful Resources

In addition to the many works explicitly cited throughout this paper, a

handful of other works proved invaluable to the completion of this proposal.
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Specifically, Albert et al. [3] provided an extensive and mathematically rig-

orous overview of nearly every aspect of complex networks discussed in this

paper. Barabasi [7] and Watts [43] were also useful and are highly recom-

mended for their lighter treatment of the same subject matter. Additional

sources of insightful discussions about the BLP Model and security mod-

elling in general include three papers by McLean [34] [33] [35]. Security

model papers not discussed in Section 2.4, but that have been useful in

understanding security requirements for ML/LS systems include Denning

et al.’s two related papers on view-based security modelling [18] [19] and

Landwehr and Lubbes paper that provides insight into the Orange Book

security criteria [28].
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