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Abstract. We apply recent analytic solutions’ to 
the radiation diffusion equation to problems of interest 
for ICF hohlraums. The solutions provide quantitative 
values for absorbed energy which are of use for 
generating a desired radiation temperature vs. time 
within the hohlraum. Comparison of supersonic and 
subsonic solutions (heat front velocity faster or 
slower, respectively, than the speed of sound in the x- 
ray heated material) suggests that there may be some 
advantage in using high Z metallic foams as hohlraum 
wall material to reduce hydrodynamic losses, and 
hence, net absorbed energy by the walls. Analytic and 
numerical calculations suggest that the loss per unit 
area might be reduced - 20% through use of foam 
hohlraum walls. Reduced hydrodynamic motion of the 
wall material may also reduce symmetry swings, as 
found for heavy ion targets2. 

I. INTRODUCTION 

Radiation heat waves, or Marshak play 
an important role in energy transport and in the energy 
balance of laser, z-pinch and heavy ion beam 
hohlraums for inertial confinement fusion (ICF) and 
high energy density physics experiments. In these 
experiments, a power source, e.g. a laser, delivers 
energy to the interior of a high Z cavity that is 
converted to x-rays. Typically, most of the energy is 
absorbed in a thin, diffusively-heated layer on the 
hohlraum interior surface, and re-emission from the 
heated layer sets the radiation temperature T achieved 
in the hohlraum. 

In our recent paper’, (henceforward referred to 
as HR) we developed an analytic theory of Marshak 
waves via a perturbation theory using a small 
parameter E = ~ / ( ~ + c I )  , where the internal energy 
varies as TB and the opacity varies as T-“. A consistent 
theory was built up order-by-order in E, with the 
benefits of good accuracy and order-by-order energy 
conservation. We first derived analytic solutions for 
supersonic Marshak waves, which remarkably allowed 
for arbitrary time variation of the surface temperature. 
We then solved the full set of subsonic equations, 
though specialized to the case that the surface 
temperature varies as tk, where self-similar solutions 
can be found. Our solutions compared very well with 
exact analytic solutions (for the specialized cases for 
which they exist) and with radiation-hydrodynamic 
simulations. 

In this paper we apply those results to the 
following question: Can we save on driver energy by 
making hohlraum walls out of low density high Z 
foams, which have less hydrodynamic motion and 
hence, reduced net absorbed energy by the walls? We 
answer this question using our HR analytic theory, as 
well as by numerical simulations. To the degree that 
the “pure” HR theory diverges from the simulations 
we explain the non-ideal non-self-similar corrections 
to the theory that bring it into agreement with the 
simulations. We do show that low density high Z 
foams can indeed bring a savings of up to 20% in the 
required driver energy. For a nominal 5B$ ICF reactor 
driver of 5 MJ, this is a lB$ cost saving idea! Reduced 
hydrodynamic motion of the wall material may also 
reduce symmetry swings, as found for heavy ion 
targets’. 



11. SUPERSONIC SOLUTIONS 

For the sake of brevity and clarity we will restrict 
our study here to an ICF relevant T = 250 eV drive 
that is constant in time for 4 ns. The basic equation for 
supersonic, diffusive radiative transport in one 
dimension is 

where e is the internal energy per unit mass, p is the 
density, T is the temperature, cr is the Stefan- 
Boltzmann constant, K is the Rosseland-mean 
opacity, t is time, and x is the spatial coordinate. e 
and K are specified functions of p , T .  for given 
materials. 

f 

e = f Tsp-”, a -1 - = g T P  1 . 
K 

with f; g constants. Higher density means more 
recombination - hence more bound electrons to 
provide line opacity and fewer free electrons which 
thus reduce the specific heat. 

By supersonic, we mean that the velocity of the 
heat front is much greater than the speed of sound in 
the heated material. This will occur in low density 
high Z foams. We consider the case of constant p 
since, in the supersonic limit, hydrodynamic motion is 
too slow to give rise to density changes. Inserting eq. 
(2) into eq. (I), together with p = constant gives 

at 
(3) 

C = -  16 g o  
(4 + a) 3 f p * - P  + A  

The parameter E defined as B / (4 + a) plays an 
important role in our theory, as we employ E as our 
expansion parameter. It is also useful to introduce a 
dimensionless spatial variable y = x / xF ,  where x F  is 
the time-dependent heat front position. In HR we 
solved for T(t,y), for x ~ .  for the absorbed flux and 
energy, and then successfully compared our analytic 
solutions to numerical results from the radiation- 
hydrodynamics code HYDRA s . For this purpose we 
used a fit to the opacity and equation of state for gold 

in the temperature range 1 - 3 HeV (1 HeV = 100 eV) 
with temperature in HeV units and p in g/cc. 

f ~ 3 . 4  MJ/g p=1.6 p=0.14 
1 (4) g=-g/cm2 a=1.5 A=0.2 

7200. 
If time is in ns units, then (T =1.03 x lo-* 

MJ/ns/cm2. For these parameters, E =0.291 and the 
constant C is 4.08 x cm2/ns. For those 
parameters we found x: = [(2+&)/(1-&)] C T 4+a-B t 

where C is defined in eq. (3). For our case then, xF 
( cm)  = 0 .0012 T Our solutions there 
also lead to a prediction here for energy per unit area 
absorbed by the gold wall: 

t .’ / p 

E / A = 0.0029 T 3s5 t .’ / p ‘.I7 (MJ / cm2) (5) 

111. SUBSONIC SOLUTIONS 

In HR we constructed perturbation solutions to 
the subsonic equations for the case that the surface 
temperature varies as t ‘, where self-similar solutions 
exist. The basic equations in Lagrangian form are 

av - au 

at am 

1 
P 

where v = - is the specific mass, u is the flow 

velocity, P is the pressure and the mass variable 

m = J pdx. The effectively-infinite density at the 

ablation front 6-9 means that we have the boundary 
conditions u,V,T + 0 at the heat front as well as 
T(O,t) = T,( t ) .  Our subsonic solutions included the 
hydrodynamic flow solution as the density changes in 
time and space. In the subsonic case, the specific heat, 
(pressure/density) and opacity are each assumed to 
vary as density to a small power, of order E ,  as 
presented in Eqs. ( 2 ) and ( 4 ). We again assume 
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power-law dependence of opacity and equation of 
state variables as above with the additional condition 
that P=relV. The parameter r is assumed to be of 
order E (a typical value of r for gold at 1-3 HeV is 
0.25). Employing the self-similar ansatz, the quantity, 
y = m 1 mF with mF the mass coordinate of the heat 
front, becomes the similarity variable (analogous to y 
= x 1 XF above). We again solved for T(t,y), for mF, 

for the absorbed flux and energy, and then 
successfully compared our analytic solutions to 
numerical results from the radiation-hydrodynamics 
code. Those solutions gave self-similar time 
dependencies for the ablated mass, and absorbed flux 
of 

1.914 05156 m(t) = moTs(t) t 

F(t) = FoTs(t) t 3.346 4 4 1 1 5  

40 - 
with Ts(t) = Totk = Tot5.5for To in HeV and t in ns. 
The quantities m, F, are given below for q=O. 

rn, = 9.90 x g/cm2 

F, = 3.40 x MJ/ns/cm2 
(7b) 

Thus for our case (and doing the rather 

E = J F d t  

simple 

calculation) we get 

E / A = 0.0058 T 3.346 t s885 (MJ/cm2) (8) 

IV. DISCUSSION 

Comparing Eqs ( 5 )  and (8) we see that for 
densities in the neighborhood of 0.3 gmfcc there is 
clearly less wall loss for the supersonic case. 
Lowering densities further decreases opacity and 
increases specific heat, both in the undesirable 
direction of more loss to internal energy. Raising 
densities would be desirable as that would lower wall 
losses even further, but unfortunately it would take us 
into the subsonic regime. The sound speed, C,, at 250 
eV in gold is about 56 pmfns, which (using the 
expression for xF that precedes Eq. (5)) exceeds the 
supersonic heat front velocity at 4 ns when po = 0.4 
gmfcc (and C,t equals x F  (at t=4 ns) when po = 0.6 
gm/cc) . 

In Fig. (1) we plot WA vs. initial po of the wall 
from Eq. (5) (with T=2.5, t=4.) and we put the 
subsonic (“infinite density”) result of Eq. (8) at 
po= 100. We also plot the numerical simulation results. 

? 

Figure 1. Wall loss (MJlcm’) vs. initial wall 
density (gm/cc). Dashed line: Eq. ( 5 ) .  Solid: 
Simulations. Dot-Dashed: Eq. ( 5 )  + kinetic 
energy of rarefaction. Dotted: Dot-dashed + 
increased internal energy in lower density 
rarefaction. Cross Hatched: Subsonic EIA 
corrected for early time episode of supersonicity 

Note that Eq. (5)  closely matches the full physics 
numerical simulations, deep in the supersonic regime 
(at very low p) when little hydrodynamic motion is 
expected. When hydrodynamic motion is artificially 
turned off in numerical simulations (not shown here), 
Eq. ( 5 )  closely matches those artificial simulations for 
all densities. 

In the supersonic regime at higher po, rarefactions 
do in fact eat into the wall at the drive boundary and 
hydro motion ensues. An isothermal rarefaction has 
kinetic energy per unit area of po C, t. We can add 
that extra energy sink in, on a case by case basis (it 
breaks the self similarity). For our parameters this 
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adds about .07&, MJ/cm’ and this matches the full 
physics simulation’s opinion of the kinetic energy. 
That is the dot-dashed correction curve in Fig. (1). 
Also the lower density in the rarefaction leads, via Eq. 
( 2 )  to a higher specific heat. This adds an additional 
p/(l-p) fraction of internal energy to that part of the 
heat front overtaken by the rarefaction. For our 
parameters this adds about .037p0.86 h4J/cm2. These 2 
effects together (the dotted curve in Fig. (1) calculated 
out to the high po edge of the supersonic regime) 
largely reproduce the E/A full physics numerical 
simulation curve throughout the entire supersonic 
regime. While these additional energy sinks reduce the 
full “bonus” of being supersonic that Eq. ( 5 )  naively 
promises, we still note a 20% reduction from the solid 
wall result. 

Note too that Eq. (8) closely matches the full 
physics numerical simulation at the very high end of 
the initial-wall-density x axis, deep in the subsonic 
regime. However, in the lower density part of the 
subsonic regime the simulations differ from the 
infinite density result. We speculate here that that may 
be due to the period of time early in the simulation 
when indeed the heat wave is supersonic. As the initial 
density, po, decreases, an increasingly longer early- 
time duration of supersonicity exists. We can correct 
for this, again on a case by case basis, as it again, 
breaks the self similarity. We find tsonic , the time of 
transition from super to sub sonic (when C, t becomes 
larger than the xF (t) that precedes Eq. (5)) .  We then 
subtract the subsonic E/A (t=tsonic) of Eq. (8) from E/A 
(t = 4 ns) of Eq. (8) and add in its stead the supersonic 
E/A(t=tsonic) of Eq. (5), plus the two corrections to that 
as described in the previous paragraph. For our 
parameters, the procedure outlined above leads to a 
simple expression for the correction: E/A (MJ/cm*) = 
0.28 - 0.027 / po ’.* and the result largely reproduces 
the E/A simulation curve throughout the entire 
subsonic regime, as seen in the cross hatched curve of 
Fig. (1). 

V. SUMMARY 

On the basis of our HR theory, as well as on the 
basis of numerical simulations, we have shown that 
hohlraum walls made of low density (p=0.3 g d c c )  

high Z foams can decrease wall loss by 20%. While 
our previous work allowed us to correctly predict the 
wall loss at the two extremes of initial wall density, as 
shown in Fig. ( l) ,  we discovered that at intermediate 
densities there were discrepancies. We showed here 
how to account for non-ideal effects in the middle 
regime, near the sonic transition and thereby restore 
agreement with the numerical simulations therein. As 
a bottom line conclusion, there is a real advantage, 
energy wise, to consider low density high Z foam for 
use as hohlraum walls for driving ICF targets. For a 
nominal 5B$ ICF reactor driver of 5 MJ, this 20% 
reduction is a lB$ cost saving idea! 

There may be a further advantage in going this 
route. Reduced hydrodynamic motion of the wall 
material may also reduce symmetry swings, as found 
for heavy ion targets’. Detailed calculations will need 
to be done to assess this aspect more definitively. 
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