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The boundary conditions of mass, momentum, energy, and charge appropriate for fluid formulations of edge
plasmas are surveyed. We re-visit the classic problem of 1-dimensional flow, and note that the “Bohm sheath
criterion” is requirement of connectivity of the interior plasma with the external world, not the result of termi-
nation of the plasma by a wall. We show that the nature of the interior plasma solution is intrinsically different
for ion sources that inject above and below the electron sound speed. We survey the appropriate conditions to
apply, and resultant fluxes, for a magnetic field obliquely incident on a wall, including the presence of drifts and
radial transport. We discuss the consequences of toroidal asymmetries in wall properties, as well as experimen-
tal tests of such effects. Finally, we discuss boundary-condition modifications in the case of rapidly varying
plasma conditions.

1 Introduction

The topic of boundary conditions for a plasma impacting on a wall is one of the oldest in plasma physics, The
notion of a plasma transitioning into a sheath region dates back at least to Langmuir [1, 2]. Beginning with the
explicit formulation of the sheath criterion by Bohm [3], there have been many papers developing the theory for
collisionles and collisional plasmas; see, e.g. the review of Riemann [4] and the many references therein. Also a
very nice survey of the physics ingredients of the canonical picture that has emerged (along with nice surveys of
most other topics in boundary plasmas!) can be found in Stangeby’s book [5].

More recently, studies have been extended to include the case of oblique incidence of magnetic field lines on
walls, first by Chodura [6], with subsequent extensions to incorporate the effects of drifts [7, 8, 9], collisions
[13, 15, 17] and effects of radial drifts[9].

Despite this intense effort, there remain open questions, even in the simplest cases of one-dimensional colli-
sionless and collisional flows. We survey this case in Sec. 2 and note that some commonly held beliefs, such as
(1) that satisfying the Bohm criterion is the result of the existence of a Debye sheath at the wall, (2) that accel-
eration necessarily occurs in a source region, and (3) that for a sub-sonic source, a potential drop with a spatial
extent comparable to that of the source and of a size just sufficient to produce sonic flow occurs, are not always
true. In particular, the Bohm criterion emerges as a requirement of connectivity of the interior solution with the
external world, apparently independent of the specific incarnation of “external world”: the same conditions must
be met, for example, for an interior plasma solution to connect to an open-ended expanding flux tube. Also there
are essential differences between solutions for sources that inject below the sound speed and those that inject
above.

In Sec. 3 we consider the situation of most common interest for magnetic-fusion edge plasmas, which is a
magnetic field obliquely incident on a plasma, and review the boundary conditions for steady mass, current, and
energy flows to bounding surfaces, including effects of drifts, radial transport, and applied bias potentials. The
boundary conditions so presented offer the possibility of influencing the scrape-off layer plasma by introducing
toroidal variations in properties of bounding surfaces [19, 20]; the theoretical arguments, along with experimental
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evidence of the predicted effects, is discussed in Sec. 4. In Sec. 5 we discuss modfications to the boundary con-
ditions for time-varying plasma conditions; these corrections can be appreciable for high-frequency fluctuations.
Finally, concluding remarks and a summary are offered in Sec. 6.

2 Normal Incidence

In this section, we discuss the classical problem of boundary conditions for the case where the magnetic field
intersects an absorbing wall at a right angle. We will not review the rich history of research in this area (which
was summarized some time ago by Riemann [4]) but will rather present a discussion of several aspects of this
problem that are relatively little known. For the most part, we concentate on the collisionless situation but make
also a few brief comments on the collisional case. In our discussion we assume that the global scale of the system
L (say, the connection length in a tokamak SOL) is much greater than the Debye lengthλD.

2.1 Elementary analysis of sheath

The standard analysis of the sheath proceeds along the following lines (see, e.g., [4]): Consider a uniform stream
of ions all having the same velocityu along the magnetic field. Electrons will be assumed Boltzmann, with tem-
peratureTe. When such a uniform neutral plasma flow approaches the wall, a non-quasineutral sheath repelling
the majority of the electrons must be formed (Fig. 1). In other words, a substantial drop of the potential occurs
near the wall, fromΦ = 0 in the incoming flow (this is our choice of the reference point for the potential) to

Φ = Φw ≈ −ΛTe/e (1)

whereΛ is of orderln(me/mi) (cf. [5]).
If we consider the asymptotic region circled in Fig. 1, whereΦ hasn’t changed much from its zero value,

it is obvious from the figure thatΦ′′ must be negative, where prime meansd/dz. Hence Poisson’s equation,
Φ′′ = 4πe

(
ne − ni

)
, tells us thatni − ne must be greater than zero. But also in this region, because the problem

is one-dimensional, the electron and ion densities can be given as an expansion in powers ofΦ, yielding, in
leading order,ni,e ≈ Φ(∂ni,e/∂Φ)|Φ=0. SinceΦ < 0, one immediately sees that a smooth stationary transition
to a sheath is possible only if(

∂ni

∂Φ

∣∣
Φ=0

− ∂ne

∂Φ

∣∣
Φ=0

)
< 0 (2)

This condition is often called “the Bohm condition,” although Bohm formulated an analogous condition in an
equality form.

In a model with monoenergetic ions and Boltz-

j

z

Fig. 1 Plasma flow towards absorbing wall. The sources are situ-
ated to the left, outside the boundaries of the figure. In the encircled
area, the potential is close to zero, while its second derivative is
negative.

mann electrons, the densities depend on the po-
tential asni = n0(1−2φ/η)−1/2; ne = n0 expφ,
whereφ = eΦ/Te, n0 = ni(Φ = 0) = ne(Φ =
0), andη = Mu2/Te In this case the Bohm con-
dition becomes, simply,η > 1. We conclude
that in this case which we call the “ supercriti-
cal case”, the formation of a monotonic Debye
sheath is possible.

However, in the opposite case ofη < 1 there
are no reasonable solutions to Poisson’s equation
satisfying boundary conditions infinitely far from
the wall (Φ → 0,Φ′ → 0). For a slow incoming
flow, a rarefaction wave will be formed near the
(absorbing) wall, propagating against the flow,
until it reaches the source, where it interferes with

its action. The formation of a rarefaction wave was nicely demonstrated in Ref. [21]. Note that the “tip” of a
rarefaction wave propagates relative to the upstream flow with the sound speed (e.g., [22]). Hence, forη < 1,
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the problem of plasma creation becomes inseparable from the analysis of the downstream conditions and one is
forced to consider the entire flow problem at once. In this sense, the parameterη can be called a “connectivity
parameter”: ifη < 1, sound waves can connect the sheath region to the source whereas forη > 1 this cannot not
happen.

In the “global” problem that one has to consider atη < 1, one is not free to assign a specific value to the flow
velocity at the boundary; it emerges from the solution. It is quite possible, as we will see in Sec. 2.4, that the ions
will be pre-accelerated in the source region to reach a supercritical flow. Ion pre-acceleration by the ambipolar
electric field in the source region was considered in Ref. [23] for the case of the ions injected at a zero energy
and in Ref. [24] for a source that injects ions with a distribution function of the form|vz| exp(−const · v2

z). In
Ref. [25] it was shown that, for both solutions, the conditionη = 1 holds downstream from the source region.
However, this conclusion can be questioned, because it was drawn for potentials approaching 0 from above,
whereas the condition (2) has to be satisfied forΦ < 0. This issue will be further discussed in Sec. 2.3.

One can find the connectivity parameter in the case of a more general ion distribution functionf(vz) (nonzero
atvz > 0), by taking a moment of the Vlasov equation to evaluate∂ni/∂Φ in Eq. (2). If the distribution function
is normalized to unit density, the condition becomes

η = − T

M

 ∞∫
−0

dvz

vz

∂f

∂vz

−1

=
T

M

 ∞∫
−0

fdvz

v2
z

−1

> 1 (3)

We write the lower integration limit as−0 in ordr to include a possible jump in the distribution function at
vz=0; if such a jump is present (as is the case for a half-Maxwellian), the integral diverges, makingη = 0. Note
that in the solution of Ref. [24], even at a high initial ion temperature, the result is a critical flow. This is entirely
related to the assumption regarding the distribution function: in the absence of an accelerating field it is a half-
Maxwellian. In reality collisions render this situation impossible near the wall and guarantee convergence of the
integral; see Sec. 2.5 below.

It is sometimes debated how one should define the “sheath entrance.” Although a definition “a few Debye
radii from the wall” seems to be adequate in the supercritical case, it may not be in the critical or sub-critical
case. This is related to the coupling of sheath and source regions and will be discussed further in Sec. 2.3.

2.2 More on the Bohm criterion as a “connectivity” condition

To emphasize the role of the Bohm con-

z=z
0 z

va
cu

um

Fig. 2 Plasma flow in an expanding flux tube. The sources are situated
to the right, outside the boundaries of the figure. A flow which is ini-
tially uniform expands into the flaring section, causing formation of an
ambipolar potential.

dition as the connectivity condition, we con-
sider a problem where a sheathper seis not
present at all. This is the situation where the
cross-section of an initially uniform flux tube
begins to expand beyond some pointz = z0

and then flares up into vacuum as shown in
Fig. 2. This problem is relevant, in particu-
lar, to expandersof mirror devices and may be
important for innovative designs of tokamak
divertors. As the density in the flaring region
will drop, a potential variation will be forced
to occur there:∂Φ/∂z = (Te/ne)∂n/∂z.
The dependence of the potential on the expansion ratioA(z) = Area(z)/Area(0) is determined from the quasineu-
trality constraint, which, for a mono-energetic flow, is(1/A)(1 − φ/η)−1/2 = exp φ, whereφ = eΦ/Te. One
easily finds that solution of this equation exists only forη > 1, the same result as for flow into an absorbing wall.
The result extends also to a more general distribution withη given as in Eq. (3). What happens in the opposite
caseη < 1 is the same as in the case of an absorbing wall: the plasma expansion to vacuum causes propagation
of the rarefaction wave against the upstream flow and the source region becomes affected by the downstream
conditions.
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2.3 A “global” solution for a simple model.

To illustrate the connectivity condition in the case of a sheath, we consider a model where a simple analytical
solution exists for the global problem which uniformly treats both the sheath and source regions. We consider the
following ion kinetic equation:dfi/dt = S(z, v), whereS represents the source term, and the derivative is taken
along the ion trajectory in phase space. (We actually consider only a steady-state problem.) We assume that the
source region is localized in the middle of the flux tube and is symmetric with respect to the midpointz = 0.
The walls are situated atz = ±L. At every point the source generates equal amounts of ions moving to left and
to right with equal velocitiesu, i.e., S(z, v) = q(z)

[
δ(v − u) + δ(v + u)

]
. The functionq(z) is some smooth

even function which decreases rapidly outside the source region (say, in a Gaussian fashion), so that there is a
substantial source-free gap between the source region and the wall. The total number of ions generated by such
a source and moving, say, to the right wall is

∫ +∞
−∞ q(z)dz. The results presented below can be easily extended

to the case of ions injected symmetrically with a smooth velocity distribution function; an important constraint
though is that there is some minimum ion velocityu0 so that the source is zero atv < u0.

We will study the regime of supercritical flow,η > 1, and will trace the changes that occur whenη approaches
unity. As we shall see, in the source region the potential variation remains small and there are no turning points
for the ions, i.e.,−eΦ(z) < Mu2/2. Taking the potential at the midpoint as zero, one can write the following
equation for the ion density:

ni(z) =
2
u

∞∫
0

q(z′)dz′√
1 + (2/η) [φ(z′)− φ(z)]

where the denominator does not have zeros in the source region. The electron density is given by equation
ne = ne(0) expφ. Note that we do not impose a quasineutrality constraint. If there were no absorbing wall,
there would have been a very simple solution to the Poisson equation (2) in this area: just a uniform plasma,
with Φ = 0 everywhere , and the density being strictly neutral and given byn = n0 ≡ (2/u)

∫∞
0

q(z)dz both
inside and outside the source region. In order to match to the boundary condition on the wall, we need, however,
to consider deviations from this solution. As will be shown, the potential is small beyond a fewλD from the
wall, unless one comes too close to the critical conditionη = 1 (see below). This means that one can use the
following expansions for the particle densities (up to linear terms in the potential):ni(z) = ni(0)(1 + φ/η) with
ni(0) = (2/u)

∫∞
0

q(z)[1 − φ(z)/η]dz′ In the same approximation,ne(z) = ne(0) (1 + φ). (Near the walls,
where the potential becomes substantial, we would need the exact expressions for the densities.) The Poisson
equation, therefore, is:

φ′′ = k2 [−δ + φ(η − 1− δ)]

wherek2 = 4πni(0)e2/Te, δ = 1−ne(0)/ni(0) and we assumed that|η−1| � 1. The solution of this equation
satisfying the boundary conditionsφ(0) = 0;φ′(0) = 0 is:

φ =
δ

η − 1− δ

[
1− cosh

(
kz
√

η − 1− δ
)]

The parameterδ has to be chosen from matching this solution to the solution in the immediate (z − L ∼ a few
λD) vicinity of the wall, wherey becomes, say, 0.1. Without getting into too much detail, we just note that, for
η− 1 >> 1/k2L2 ∼ λ2

D/L2 δ is exponentially small,ln(1/δ) ∼ kL/(η− 1)1/2. In this case, in agreement with
the discussion of Secs. 2.1 and 2.2, the effect of the presence of the absorbing wall on the upstream flow and
the source region is negligible. Conversely, ifη becomes close to 1,η − 1 < (kL)−2, the situation qualitatively
changes. In this case the potential varies quadratically instead of exponentially over the bulk of the source region,
such that the potential is of order unity rather than exponentially small. The potential near the plasma side of the
sheath decreases (asymptotically) as1/(L− z)2 [4] (and not exponentially).

2.4 Delta-function source.

There is an even simpler case where an analytical solution can be built for both super- and sub-critical cases.
Namely, we assume that the source region becomes infinitesimally thin,S(z, v) = q0δ(z)

[
δ(v− u) + δ(v + u)

]
.
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For this source one obtains the following equation for the dimensionless potentialφ:

φ′′ = (1− δ) expφ−
(

1− 2φ

η

)−1/2

In this section, the coordinate z is normalized tok−1. The boundary condition (1) has to be imposed at
z = kL � 1. The other two boundary conditions areφ(0) = 0;φ′(0) = 0. Equation (26) has a first integral, and
can be presented in the following form allowing for the use of a simple mechanical analogy:φ′′ = F ≡ −∂U/∂φ
where

U = (1− δ)(1− expφ) + η(1−
√

1− 2φ/η) (4)

If one identifiesφ with a spatial coordinate of a particle in a mechanical system, andz with time, one sees that
Eq. (27) describes the motion of this object in the potential (4) (we have chosen an arbitrary constant inU so as
to make it zero at the origin).

We will consider here only the most intrigu-

- f wall- f m

U

- f

Fig. 3 Effective potential for the delta-function source problem.

ing subcritical case, assuming thatη is less than
1 by order one. We consider motion of a parti-
cle that starts at the origin (atφ = 0) and has
a zero initial velocity,φ′ = 0, and falls to large
negative values ofφ determined by the bound-
ary condition (1). One immediately sees that this
is possible only forδ > 0, as otherwise the po-
tential near zero would have looked as shown by
dashed line in Fig. 3, and the “particle” would
stay in theφ ≥ 0 region. The shape of the poten-
tial curve depends onδ. In Fig. 3 the solid line
depicts the curve that corresponds to the physical
nature of the problem. It has a maximum which
must lie slightly below the horizontal axis. The
latter statement is related to the notion that the
time that particle has to spend traveling to the end wall (1) must be very long. So, the particle must almost stop
in the vicinity of the potential maximum and spend a very long timethere before starting to slide to the wall. In
the real system this corresponds to a long zone of a slowly varying potential between the source and the Debye
sheath. The point where this happens is found from the following two equations:F (φm) = 0;U(φm) = 0,
which can be solved (numerically) for the parametersδ andφm. From the results we can determine the normal-
ized energymu2/Te = η + 2φm with which ions approach the wall It is always supercritical,η + 2φm > 1. In
particular if the source itself is strongly sub-criticalη � 1, thenφm ≈ 1.26.

In conclusion to sections 2.3 and 2.4: The condition (2) is sometimes considered as a boundary condition for
the inner part of the problem. However, this condition by itself doesn’t tell us very much, and in particular, our
examples illustrate that it needn’t be satisfied in its equality form for either supercritical or subcritical sources.
One has to actually solve the problem in its entirety, bearing in mind that, for sources generating fast supercritical
flows, the source region is independent of the conditions downstream, whereas the slow flows do connect the
source region with the conditions downstream.

2.5 Colllisional flows

Now we briefly discuss the collisional case, where the characteristic particle mean-free-pathλcoll is much smaller
than the distance between the walls and the length of the source region but still much larger than the Debye length.

A few men free paths from the wall, the ion distribution function is a shifted Maxwellian, with some average
velocity (flow welocity)u. A qualitative formulation of the fact that the wall is perfectly absorbing is the iden-
tification of the wall with a hole, beyond which the flow is flaring out into the large empty space. Then, solving
the inner part of the gas-dynamical problem immediately leads to an identification of the flow velocity at the wall

with the sound velocitycs =
{[

(5/3)Ti + Te

]
/M
}1/2

. This line of reasoning was suggested in Ref. [8].
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A more rigorous approach would require a kinetic analysis of the several mean free paths nearest the wall.
At the plasma side of the Debye sheath, there are no ions coming back to the plasma. On the other hand, in the
hydrodynamic model, the shifted Maxwellian distribution has some number of particles moving in the reverse
direction. However, their fractionε is small:

ε = π−1/2

∞∫
[(5/6)+(Te/2Ti)]1/2

e−x2
dx ≈ exp [−(5/6)− (Te/2Ti)]

2 {π [(5/6) + (Te/2Ti)]}1/2
(5)

Even atTe = 0, ε is quite small,∼ 0.13, suggesting that the solution of a complete kinetic problem wouldn’t
depart much from the results of a simple hydrodynamic treatment.

We also note that, for Coulomb collisions, we expect that the ion distribution function at the wall will have
a smooth approach tovz = 0 (quadratic,f ∝ v2

z , or smoother), because the main contribution to the Coulomb
collision integral evaluated near thevz = 0 point is proportional to∂2f/∂v2

z . A less-smooth transition (say linear
in vz) would yield an infinity in the kinetic equation. Together with the observation that there is no characteristic
scale in the ion distribution function other than the ion thermal speedvti (for Te not too much higher thanTi, as
is the case in the tokamak SOL), one can conclude that the integral (3) should converge and be on the order of
1/v2

ti.
As we have already mentioned, the ion temperature in a tokamak SOL often exceeds the electron temperature,

sometimes substantially. Under these circumstances the plasma approaching the Debye sheath is supercritical.
As we have seen above, this means that no pre-acceleration is required for connectivity and a monotonic sheath
structure is assured. Thus we have both collisional and collisionless examples of plasmas for which the upstream
flow conditions and connectivity set the flow speed to be finitely greater than critical. For the collisional case with
an effective nozzle upstream from the wall, a sonic transition occurs at the nozzle and the flow at the wall can be
finitely greater than the critical value. But in this case the connectivity criterion is set by the nozzle; conditions
at the wall (other than that it be absorbing) are irrelelvant to the flow upstream of the nozzle.

3 Oblique Incidence

Magnetic-fusion edge plasmas are characterized by magnetic fields which intersect the end wall typically at an
oblique angle; in the common case of a tokamak with a poloidal divertor (and also one with a toroidally symmetric
limiter), the field lines are almost grazing; the angle of incidence for a divertor plasma is typically of order several
degrees. This same situation can also occur in some gas discharge devices and in the vicinity of spacecraft.

As noted in Refs. [6, 16, 17], the physics of the sheath-presheath transition is substantially different in the
oblique case compared to normal incidence; in particular, a two-scale structure develops: a Debye sheath, with a
scale length of the order of the Debye length, exists (except under special circumstances) immediately next to the
end wall; beyond that, a “gyrosheath” inevitably forms, with a scale length of the order of the sound gyroradius
ρs = [(Te + Ti)/m]1/2/ωci, due to the effects of ion scrapeoff. As noted in Ref. [16], ion scrape-off in the
gyrosheath leads to a significant density drop and hence a transverse electric field∼ Te/eρs and significant ion
orbit distortion, in effect guaranteeing that ions enter the Debye sheath with a normal velocity at least of order of
the Bohm velocity. A typical ion orbit and the potential structure are sketched in Fig. 4.

For small angles of incidence, effects other than parallel flow play an important role in setting boundary
conditions. In particular, cross-field flows due to drifts [7, 8, 9], collisions [13, 17] and radial transport can
compete with parallel flow. In the treatments of [13, 17, 18], the mechanism for these flows influencing boundary
conditions is that they compete as sources of transport of mass to bounding surfaces. We shall argue below that the
competition is really for flow perpendicular to the symmetry direction, and in particular that mass flow boundary
conditions are insensitive to the orientation of the end plates (except for almost-perfectly grazing conditions). On
the other hand the competing flows onto the plates plays a central role in current and energy boundary conditions.

3.1 Mass flow

We consider first the question of velocity boundary conditions at the magnetic presheath entrance. A variety of
approaches have appeared in the literature: Chodura [6] examined the dispersion relation for Debye-scale per-
turbations of a fluid in a local slice of the quasineutral plasma at the presheath entrance, rejecting oscillatory
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Fig. 4 Sketches of typical ion orbit and of potential variation in gyrosheath and Debye sheath regions.

solutions as incompatable with transition to the Debye sheath. The results were compared with nonlocal numeri-
cal simulations of kinetic and fluid models which suggest thatv‖ ∼> cs is required to avoid potential oscillations
in the gyrosheath . Classen and Gerhauser[10] invoke a criterion that the extension of the sheath solution should
continue to decay monotonically across the gyrosheath and from this arrive at a criterion thatdne/dy ≥ dni/dy
at the gyrosheath entrance, then evaluate the criterion from a moment of Vlasov equation. Herey denotes length
normal to the wall. Riemann [13] and Tskhakaya and Kuhn [17] analyzed the allowed forms of quasineutral
fluid solutions across the gyrosheath consistent with the Bohm velocity on the wall (Debye-sheath) side and an
asymptotically constant solution on the plasma side. Cohen and Ryutov [8, 9] invoked the analogy of a perfectly
abosrbing boundary to flow through a nozzle.

These approaches all have some drawbacks: First, Refs. [6, 13, 17] all suffer from application of fluid
equations on a distance scale where they cannot be valid (Debye and gyroradius scales, respectively). Within
the gyrosheath, ion orbit distortion and scrapeoff implies that kinetic corrections to fluid equations must be
significant[16, 15]. This is directly a problem for the analyses [13, 17] which integrate fluid equations up to the
Debye sheath edge. The dispersion-relation approach [6] is a local analysis which could be applied on the plasma
side of the gyrosheath where the strong orbit distortion effects are absent; but the applicability of fluid theory for
Debye-scale variations is still dubious. Also this analysis could equally well be applied to a source-free region
far frorm the boundary but separated from the boundary by sources; the flow is sub-sonic, and so an oscillatory
perturbation here is acceptable. The only reason for it being unacceptable near the gyrosheath must then be
related to the inability to connect it to the Debye-sheath solution, but that connection must be made across the
layer where strong orbit distortions render the fluid equations inadequate. The Claasen-Gerhauser approach [10]
rests on three questionable assertions: that normal-to-sheath derivatives are larger than radial derivatives at the
gyrosheath entrance (as opposed to well within the within the gyrosheath), and that the potential solution must
monotonically decay all across the gyrosheath, and that this implies that∂3Φ/∂y3 > 0 at the gyrosheath en-
trance. As noted in the previous section, the nozzle analogy has the limitation that the condition of no mass flow
backward through the nozzle is not the same as no backward-going particles in the distribution function, though
the distinction is likely significant only forTe < Ti. Fortunately, as noted in Sec. 2, for a perfectly absorbing
wall, the limiting velocity is just a function of the bulk-plasma solution, subject only to the constraint that that
there be no flow from the sheath region back into the main plasma. That is, if we can define a test surface beyond
which there are no sources and no nozzles (constriction of a flux tube), then, so long as there is no back flow
through the control surface, conditions at the control surface cannot be affected by conditions beyond it. Hence
any procedure that meets this criterion will do; our choice here is to use the nozzle analogy as it relies only on
the fluid description in the bulk plasma.

There have been some attempts to introduce corrections to gyrosheath theory based on fluid analysis of phe-
nomena argued to be importantwithin the gyrosheath, such as variation of theE×B speed [18] and cross-field
transport induced by collisions with neutrals [13, 17, 18]; such extensions must be viewed with suspicion because
of the noted limitations of the fluid theory in that region. In the nozzle approach these phenomena also appear,
as will be seen below, though only in the form of bulk-plasma drifts; the resulting predictions for the critical
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velocity differ from those from a fluid gyrosheath analysis. It should also be noted that the premise [18] of an
electric field tangential to the end plate which smoothly drops to zero across the gyrosheath is incorrect; much of
this drop occurs within the Debye sheath very close to the end plate.

We note that there have been a number of attempts to treat the gyrosheath problem kinetically via simulation
techniques [6, 14, 15, 17, 18]. These approaches are valuable for the insights they provide, and have generally
confirmed some basic results obtained in the fluid analysis (see the above references and the treatment below):
that the ions enter the Debye sheath with a normal velocity satisfying the Bohm criterion, and that, in the absence
of drifts, they approach the gyrosheath with a parallel velocity satisfying the Bohm criterion. They can also
address a regime of high ion-neutral collisionality not yet accessable (for reasons which vary with the method)
for the various analytic approaches described above; we shall discuss these results along with our discussion of
the nozzle model results below. Some of the above authors have also performed numerical solutions of fluid
equations across the gyrosheath for comparison purposes, but given the limitations of the fluid equations, we will
not discuss these here. All of the numerical treatments involve some caveats and numerical uncertainties, and of
course can provide only limited information on scaling in a multi-dimensional space of parameters.

We follow the treatment of Ref. [9], adding to it effects of neutral-particle collisions and explicitly calling out
the role of turbulent radial transport. Considering only axisymmetric systems and taking into account that the
E×B drift velocity is divergence-free, the continuity equation can be written in the form:

n
∂v‖

∂s
+ v̂‖

∂n

∂s
+ n

∂Bvν,p/Bp

∂s
+ vEr

∂n

∂r
= Sn,eff + nv‖

∂lnB

∂s
(6)

wherevEr andvEp are the “radial” (normal to flux surface) and poloidalE × B drift velocity components,
v̂‖ = v‖ + (B/Bp)(vEp + vν,p), Bp is the poloidal magnetic field component, ands denotes length along a
field line. We considerBp/B small and so neglect the distinction betweenB and the toroidal fieldBT . We have
introduced an effect of neutral particle collisions through the induced poloidal driftvν,p = ν̂cEpol/B(1 + ν̂2).
Here ν̂ = ν/ωci and ωci is the ion cyclotron frequency. Having introduced this drift, we note that we can
safely neglect it, asvν,p/vEp ν̂Lr/Lp � 1, whereLr andLp are the local radial and poloidal scale lengths.
The corresponding radial component isnot negligible and is included in the effective sourceSn,eff , which also
includes turbulent radial transport terms:Sn,eff = Sn − (∂/∂r)(nvν,r + Γturb)

Similarly the parallel momentum equation (summed over electrons and ions) is:

mnv̂‖
∂v‖

∂s
+ mnvEr

∂v‖

∂r
= −∂p

∂s
+ Sv,eff (7)

wherem is the ion mass andSv,eff is the effective momentum source−mv‖Sn − νcxnv‖ plus any physical
momentum-density source and corrections for neutral-particle driven and turbulent radial momentum flux, as
above; hereνcx is is the charge-exchange rate on cold neutrals. Theνcx term represents a second effect of
neutral-particle collisions.

We note thatvEr in the above equations is proportional to the poloidal electric field and hence, because of
axisymmetry,vEr ≈ −(c/Bp)σt∂Φ/∂s, whereσt = sign(Bt/B) and where we consider the radial, poloidal
and toroidal directions to form a right-handed coordinate system and take the path lengths along the magnetic
field to increase in the direction ofB. Using the electron momentum equation, this becomes

vEr = − cσt

eBp

(
1.71

∂Pe

∂s
− 0.71T

∂n

∂s

)
(8)

We can consider any of several models in which∂p/∂s is proportional toTe∂n/∂s plus, possibly, a sink term
with no parallel derivatives of plasma quantities, so that

∂pe/∂s = γeff,eTe∂n/∂s + Sps (9)

where the constantγeff,e and the effective sourceSps depend on the electron-pressure closure model. For
isothermal electrons,γeff,e = 1 andSps = 0. For adiabatic electrons with ratio of specific heatsγ, γeff,e = γ
andSps = 0. We also consider a flux-limited model in which the divergence of the parallel electron heat flux is
equal to an explicit sink term±Sh resulting from radial transport; here + (-) sign refers to the high-s (low-s) ends
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of the flux tube andSh is taken as a negative quantity when the radial transport represents a net loss of heat from
the flux tube. In this case we haveγeff,e = 1/3 andSps = (2/3)[(±/cse) − nTe∂ log B/∂s]. Finally, we note
thatP = Pe + Pi, and evaluate∂Pi/∂s assuming the ions to be adiabatic (with an adiabatic indexγi which may
be different fromγeff,e. Substituting Eq. (9), the corresponding relation for ions, and Eq. (8) in Eqs. (6) and (7)
and eliminating∂n/∂s between the two equations yields an equation for∂v‖/∂s,

v̂‖

(
1−

c2
s,eff

v̂‖v
†
‖

)
∂v‖

∂s
= −nv‖

∂lnB

∂s
+

Ŝv

mn
−

Ŝnc2
s,eff

nv†‖
(10)

wherev†‖ = v̂‖ + γ̂σtcseρse,p/Ln, c2
s,eff = (γeff,eTe + γiTi)/m + γ̂cseρse,pσt/v‖Lv), γ̂ = 1.71γeff,e − 0.71,

cse = (Te/m)1/2, ρse,p = cse/ωci,p, ωci,p = eBp/mc, Ln ≡ −n/(dn/dr), andLv = −v‖/(dv‖/dr), and

whereŜn andŜv are the effective source terms that appear in the continuity and momentum equations after all
of the above substitution; they are given byŜn = Sn,eff + 1.71Shσt/mωci,pLn andŜv = Sv,eff + Sps

(
1 +

1.71v‖/ωci,pLv).
We use Eq. (10) to model a situation with absorbing walls by noting that absorbing walls are (almost) equiva-

lent to a situation where the wall is replaced by an infinite source-free extension of the flux tubes in which the flux
tubes continuously expand (B decreases) as does the parallel velocity. From Eq. (10), the coefficient of∂v‖/∂s
must thus be positive in this region, and thus positive or zero on the boundary. This gives us our generalized
”Bohm” criterion; for the isorthermal or adiabtic electron pressure models and no drifts, it gives just the criterion
v‖ ≥ cs derived by Chodura for the parallel velocity at the entrance to the gyrosheath. When we retain the
poloidal drifts but drop the (small) radialE×B drift, we just replacev‖ by v‖ + B/Bp times the poloidal drift.

Note, the right-hand side of Eq. (10) is positive beyond the wall but is necessarily negative somewhere in the
interior of the flux tube where the particle flux is appreciable andv‖ is small; likewise the left-hand side of Eq.
(10) is negative there. The two sides of the equation must pass through zero at the same physical point, which
may be at the boundary or in the interior, depending on the distribution of sources/sinks and the field strength.
The generalized Bohm criterion as an equality should be satisfied at this point. We note that, for a near-detached
divertor situation where the temperature drops appreciably in the divertor leg, one may well have a situation
where the net source term changes from positive (ionization dominating) to negative (recombination and/or loss
processes dominatng); the effective nozzle (and hence a supersonic transition) may occur in the transition between
these regions.

For the simple case of auniform radial electric field (and neglecting the poloidal electric field), the above
results can be derived more simply by transforming to a toroidally rotating frame in which the electric field
vanishes. In the rotating frame, the sources and the effective nozzle are stationary, but the source parallel velocity
distribution is shifted byvEpB/Bp. Since there is no drift-producing electric field, the parallel flow in this
frame must be sonic at the nozzle, and so satisfies the conventional Bohm criterion at the gyrosheath entrance.
Transforming back to the lab frame, the shifted Bohm criterion derived above is obtained.

It should be noted that the criterion obtained above is to be used with bulk plasma parameters, not parmeters
inside the gyrosheath; the influence of the absorbing wall, including the gyrosheath, has been absorbed into
the fictitious extension beyond the wall. Thus conceptually we are determining conditions at the boundary of
a domain which doesnot include the gyrosheath. Thus the various drifts (including that induced by neutral
collisions) should be evaluated in the bulk region.

We note that the drifts act in opposite senses relative to the parallel loss at opposite ends of a flux tube; hence
the drifts induce asymmetries in the density (as well as current and heat) end loss rates and thus contribute to
density and temperature asymmetries. As pointed out in Ref. (??) there are subtleties here; when account is
taken of the natural variation of temperature and density along a field line, the effect of drifts on the density and
temperatue asymmetries can be opposite to that which one would naively expect based on the direction of the
drift flow.

The shift in the critical velocity due to theE ×B drift generally agrees with those obtained by other studies
([11, 12, 10, 7, 18]) (though Refs. [18] and [10] claim corrections associated with electric-field and (in the latter
case)v‖ gradients, which we question because of the validity concerns raised above). We comment that, while
the E × B and collision-induced drifts enter the velocity boundary condition, the diamagnetic drift does not.
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This is because the diamagnetic drift does not transport anything. In this regard our result differs from the earlier
references ([11, 12]) but agrees with [7].

Simulations with neutral-collision-induced transport ([14, 15, 17, 18]) indicate that the collisions influence the
entrance velocity, though there is no consensus as to the direction (not surprising, since, as pointed out above and
in Ref. [15], there are competing effects). In constrast, in the nozzle analysis this transport enters only through
the effective sources; it would be expected to contribute only towherethe sonic transition occurs. A possible
resolution is that the effect may become important only when the sources become sufficiently localized near
gyrosheath, so that (for example) the neutral momentum source competes withv ×B. Then we may not be able
to identify an effective nozzle without explicitly considering the gyrosheath region.

We remark about the(B/Bp) factors that appear in̂v‖ and thus enter the corrections to the sound speed in
the critical velocity. The origin of this factor is that it is the sine of the angle between the magnetic field and the
symmetry (toroidal) direction. It is only coincidentally equal to the sine of the angle between the magnetic field
andthe endplate, or the cosine of the angle between the in-flux-surface drift velocity and the end plate. (Other
components of the drift velocity (for example, the radial drift resulting from collisions) enter the effective source
and so can affectwherethe critical velocity is achieved.) In particular if the end plate is slightly tilted toroidally,
this tilt can signficantly alter the angle between field lines and the plate, but does not change the critical flow
velocity so long as axisymmetry in the main scrape-off layer plasma is preserved. (And for a plate with varying
toroidal tilt, it can be shown that the departure from axisymmetry induced from the toroidal variation in the
potential discussed in Sec. 4 below leads to modifications of the effective source and not a change in the critical
velocity). The cricitcal velocity is also insensitive to a radial tilt, at least until field lines are so nearly parallel to
the wall that a sheath fails to form. This puts our results at odds with those from treatments that analyze fluid
equations within the gyrosheath ([13, 17, 18]), which predict that the critical mass flow velocity at the entrance to
the gyrosheath should depend on the component of the drift velocity normal to the surface. But, as noted above,
a fluid treatment within the gyrosheath is of questionable utility.

Finally we raise a point about the necessity of a monotonic sheath. At least two references ([10, 18]) raise
possible corrections from radial gradients within the gyrosheath. We have pointed out validity concerns in the
treatments. But suppose that these turn out to be correct requirements for a stationary, monotonic sheath, and that,
for some configuration,. they lead to a requirement that the gyrosheath entrance velocity be finitely bigger than
the (drift-corrected) sound speed at that location. If the flow speed is already supersonic but less than the above
requirement, as a result of satisfying a nozzle constraint in the bulk plasma, there is no way that information
from the gyrosheath can propagate to affect conditions up stream. The sheath would then have to adjust to the
upstream flow conditions (by becoming non-monotonic and/or non-stationary), not the other way around.

3.2 Current boundary conditions

We consider here the current-voltage characteristics of the sheath, which set the boundary conditions for the
current. These results were derived in Refs. [7, 9, 26]. For purposes of this discussion, by “sheath” we mean
the combined Debye sheath and gyrosheath regions. Because of the oblique incidence, drifts as well as parallel
currents enter. Unless the angle of incidence is very small (forθ < (me/mi)1/2, cross-field ion orbit loss
competes with parallel flow so that a traditional Debye sheath doesn’t form), any ions entering the sheath region
are swept to the wall by the sheath electric fields, and the ion contributon to the normal current, measured on the
ion side of the sheath, is just

j
(p)
ni = αnev‖ + α̂ (jEp + jdpi) (11)

wherev‖i is the ion parallel velocity at the gyrosheath entrance (see preceding sub-section),jEp andjdpi are
the poloidal components of the ionE × B and diamagnetic currents, respectively:jEp = (cne/B)∂Φ/∂r,
jdpi = (c/B)∂pi/∂r, α is the sine of the angle between the field line and the bounding surface (divertor plate,
etc.), andα̂ is cosine of the same angle. If the bounding surface is toroidally symmetric, thenα is justBp/B.
The ion contribution on thewall side of the sheath is different, as currents flow parallel to the wall in the sheath;
in fact the ion diamagnetic current closes in this region.

While drifts can compete with parallel flow for the ions for theα values of interest, they cannot compete with
the thermal speed of electrons. The electron loss to the wall is impeded by the sheath potential, so that the current
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at the wall is just

jne = αje0 (12)

whereje0 is the parallel electron current that would escape over the same height sheath for normal incidence;
for Maxwellian electrons,je0 ≈ −envte exp(−eΦsheath/Te)/(2π)1/2. HereΦsheath is the potential difference
between the interior of the plasma and the wall. The normal current on the plasma side of the sheath is also given
by Eq. (12) as the net electron current in the sheath is zero; the electric drift develops a piece which just cancels
the sheath diamagnetic current. cancel [26]. This simple result hides some complications: the cancellation is
incomplete for anisotropic electron distributions, so the current on the plasma side differs from Eq. (12); and
also, the electric-drift component of the sheath current is closed by a parallel current from the wall, so that the
parallel current in the bulk plasma is shifted fromje0 by just1/α times the bulkE×B and diamagnetic currents,
rendering the normal component given by Eq. (12).

Adding together Eqs. (11) and (12) gives the total current to the wall and constitutes the current boundary
condition.

The drift currents are approximately divergence-free. Hence we can set the current entering one end of a flux
tube equal to that leaving the other, plus any corrections from any non-neutrality of the particle source (including
radial transport). This relation provides an equation for the electrostatic potential on the flux tube in terms of the
plasma densities, temperatures, wall potentials, and drifts at each end of the flux tube. In general, one must solve
the plasma equations in the interior of the flux tube to relate the plasma parameters at opposite ends. But in a
simple situation of uniform temperature and density along the flux tube (a low-density limit), equal areas and drift
velocities at both ends of a flux tube (applicable for an up-down symmetric double-null divertor configuration),
and negligible source contribution, we directly obtain:

Φ− Φ1w =
Te

e
log

{1 + exp [e (Φ2w − Φ1w) /Te]} ve

2cs + vD (1/α2 − 1/α1)
(13)

where “1” and “2” refer to conditions at opposite ends of the flux tube;Φjw is the potential of the wall at endj
(which could differ from ground potential due to an applied bias potential or resistance in the external circuit),
vD is the sum of the ionE×B and diamagnetic drift velocities, andve ≡ (Te/2πme)1/2.

3.3 Temperature boundary conditions

The temperature boundary conditions are provided from an analysis of the heat flux to the divertor plates; this is
analagous to that done for the current. The heat flux normally incident on the wall is, generally,qn = Γn[Wi +
e(Φ0−Φw)+2Te] whereWi is the ion energy lost per escaping ion,Γn is the particle flux along the field line, and
Φ0 andΦw are, respectively, the plasma and wall potentials. There is an obvious division between the portions
attributable to electrons and ions. For a collisional plasma, we have[30]ΓnWi = (5/2)nTiv‖ib+(3/2)nTivE×B

(Stringer, PPCF ’91)
For the particular case of normal incidence and uniform temperature and density, where one end of a flux tube

is biased to a potentialΦb and the other end grounded, we can express the heat fluxes to the each plate in terms
of the (common) fluxq∗ in the case of no bias, to obtain:

qbias − q∗ = nuTe (lnΨ− φ + Aχ) , qground − q∗ = nuTe

(
lnΨ− χ

)
(14)

whereΨ ≡ (A + eφ)/(A + 1), χ ≡ 2(eφ − 1)/(A + eφ), andφ ≡ eΦb/Te. For small positive bias, the heat flux
to the biased (grounded) end increases (decreases), while forφ ∼> 3,the heat flux to both increases. The latter
may be somewhat surprising, since there is still a strong drift away from one of the ends.

In discussing the mass flow conditions, one of the pressure closure relations discussed was that for flux-
limited electron heat conductivity. The conditions for flux limiting can be met in tokamak scrape-off layers,
because the main contribution to the electron heat flux comes from the electrons with energies a few times the
thermal energy and having, therefore, a much larger (50-100 times) mean free path than the thermal particles. The
flux-limit model is a local approximation to a situation that is essentially non-local, and the tail of the electron
distribution function can be appreciably distorted from Maxwellian. This, generally speaking, changes both
the current-voltage characterisitics and the expression for the electron heat flux compared to the fully collisional
case. This, however, has almost no influence on the gyrosheath structure, which is determined by the bulk electron
distribution, which remains a local Maxwellian.
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4 Consequences of Toroidal Asymmetry

The potential that follows from the current boundary conditions [Eq. (13) or a generalization] depends on the
angle between field lines and bounding surfaces, the density and temperature, and whatever constitutive relation-
ships govern the connection between the wall potentials at opposite ends of a field line. Examples of the latter
are the resistance of an external circuit connecting the two ends or a bias voltage applied between the two ends.
Hence, by deliberately introducing variations in applied bias, external circuit resistance, the orientation of the
bounding surface, or external gas feed, one can manipulate the plasma potential [19, 20]. By introducing such
variations asymmetrically in the toroidal direction (for example, by toroidally rippling the divertor plate, or by in-
troducing toroidally segmented divertor plates with varying bias voltage or resistance to ground), one can induce
toroidal variations in the plasma potential and hence a toroidally varying radial drift. If the toroidal asymmetry
is large enough, the resulting convection may give rise to hydrodynamic instability (Kelvin-Helmholtz), creat-
ing turbulent flows which could be used to broaden the scrape-off layer and hence alleviate divertor heat-load
problems.

The task could be made even easier [19] by introducing both toroidal and radial variations. One can then
create a pattern of convective cells stirring the plasma.

These ideas make sense so long as the plasma potential is substantially influenced by contact with end walls;
this would not be the case for an electrically detached divertor or if transport of all plasma quantities, including
current, is dominated by radial convection (as one might imagine in the case of “blob” transport [27]). The effect
would be present but weak for a high-recycling, high density SOL where the temperature drops substantially
along field lines. But it offers the possibility of deliberately broadening the SOL for a moderate recycling case.
Furthermore by introducing boundary perturbations of sufficiently high toroidal wavenumber, there is the possi-
bility [20] that the plasma perturbations will be confined to the divertor leg, being washed out by finite gyroradius
effects as they pass the vicinity of the separatrix x point.

These ideas are currently being tested in the MAST spherical torus, and the initial results are very encouraging
[28]. MAST has a set of twelve radially oriented ribs at the bottom of the vacuum chamber, equally spaced
in toroidal angle. In the experiment, every second rib is biased relative to ground; the remaining ribs are at
ground potential. As the bias potential is increased, the stripe of heat flux on the biased ribs shifts as one would
expect from the induced toroidal electric field pattern, and at the highest postive bias potentials, the stripes are
appreciably broadened, as one may expect from simple estimates for onset of shear-flow-driven turbulence. The
total power flow to the biased and unbiased ribs is asymmetric increased or decreased, respectively, as predicted
by Eq. (14). Little effect is observed for negative bias. All of these results are as one would expect from simple
theoretical considerations [20].

5 Time-dependent boundary conditions

The current boundary conditions of Sec. 3b are derived under the assumption of a plasma steady state, and apply
also to low-frequency instabilities. However, the gyrosheath, being of finite extent, takes a finite time to respond
to changes in plasma conditions, and this gives rise to modifications in the current-voltage characteristics that
become signficant at sufficiently high frequency. We summarize here the sem-quantitative derivation of boundary
conditions given in Ref. [29].

We consider wavelengths long compared to a gyroradius and frequencies less than the cyclotron frequency.
When time variations are taken into account, the ion current approaching the wall is unaltered from that of Eq.
(11), as all ions approaching the gyrosheath fall through it, whether it is moving or not. For the electrons, the
situation is different. The electrons transit the gyrosheath in a time much shorter than the wave frequency; hence
the sheath is quasi-static, and the electron currentat the wall is unaltered from Eq. (12). However, the current
on theplasmaside of the gyrosheath is now different, as the difference between it and the current at the wall
must adjust to balance the change of the number of ions in the (quasi-neutral) gyrosheath. Hence the total current
entering the gyrosheath from the plasma is

jp
n = en[αve exp(−eΦ/Te)− αv‖i − vD] + e

dN

dt
(15)
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whereΦ is the potential difference between the plasma and the (nearby) wall, andvD is the total ion drift velocity
(electric plus diamagnetic) normal to the wall.

Equation (15) applies even to nonlinear problems, so long as they do not violate the assumption that all
incident ions reach the wall. Ref. [29] goes on to estimatedN/dt for small-amplitude (linear) perturbations. The
largest effect (in the frequency rangeω > αωci where the time-dependent effects become significant) is that
due to temperature fluctuationsδTe; as the temperature rises, so does the electric field normal to the wall in the
gyrosheath, which produces a more effective acceleration and scrape-off of ions in that region. Hence

dN

dt
∼ −A(nρi/Te)δTe − iωAnρiδTe/Te (16)

whereA is a constant of order unity, and where the second form applies for perturbations of the formexp(−iωt).
Comparing the linearization of the first term in Eq. (15) with Eq. (16), and using the equilibrium relation
ve exp(−eΦ/Te) ∼ cs, we see that the time-dependent correction is term comparable to the others under the
conditionωAρiδT/T ∼ nαcseδΦ/T , or, for δT ∼ eδphi, this becomesω ∼ αωci.

6 Summary and Discussion

We have presented “boundary” conditions for the mass flow, current, and heat flux for use in fluid descriptions
of a scrape-off layer plasma. We put quotes around “boundary”, since the mass flow (Bohm criterion) condition
is not really a boundary condition – it is a connectivity constraint which, in its equality form, is satisfied at a
point which need not be at the field line end. In particular, for a colllisional plasma, it occurs at an effective
nozzle governed by the distribution of effective sources and the magnetic-field variation. The ion flow velocity
at the actual boundary is then an output of the calculation. On the other hand, the current and heat flux boundary
conditions really are boundary conditions (but depend on the ion flow velocity at the boundary).

Our one-dimensional analysis of collisionless plasmas illustrates a number of important points about the nature
of this “connectivity constraint”. First, the same criterion, and the same interior potential structure is obtained
whether the field line is terminated by a wall with a Debye sheath, or by an open-ended region of expanding
magnetic flux. Second, the nature of the solution is different for sub-critical and super-critical injection. For
sub-critical injection, a rarefaction wave can propagate upstream to the source region and trigger production of
a potential drop which provides pre-acceleration. But, contrary to what one might expect, the potential drop
is not necessarily just that needed to excelerate to the critical velocity required for a monotonic sheath (our
delta-function source solution always accelerates to a super-critical velocity for sub-critical injection). For super-
sonic injection, a rarefaction wave cannot propagate upstream; no pre-acceleration is needed; and in fact, for a
symmetric source and a constant-cross-section flux tube, a constant-density solution is obtained up to near the
entrance of the end region (sheath or flaring flux tube). We note that it is not hard for the effective source of a
tokamak to be super-critical: this will tend to occur in low-recycling devices where the main particle source is
radial transport, in which caseTi tends to be larger thanTe in the scrape-off layer.

For a collisional plasma, kinetic analysis, including collisions, of the region within a few mean free paths
of the wall, is required to quantitatively evaluate the Bohm criterion and to assess the flow speed at the wall.
This is because of the sensitivity of the Bohm criterion to the distribution function at low normal velocity on the
one hand, and tendency of the Fokker-Planck collision operator to smooth the distribution function on the other.
There may be an effective nozzle upstream from the wall, and in this case hydrodynamics dictates a supersonic
transition at the nozzle. Then, once again, the detailed analysis of the sheath region has no influence on the
solution upstream of the nozzle. If there is no upstream nozzle, then the nozzle analogy whereby the wall is
replaced by a source-free expansion region beyond it, should provide a good approximation to the results of the
detailed kinetic analysis.

For oblique incidence of field lines on walls, a two-scale potential structure (Debye-length and gyroradius
scales) develops. The “gyrosheath” is inherently kinetic in nature due to the effects of ion acceleration and
scrapeoff. This makes suspect analyses that rely on fluid equations applied to the gyrosheath. The “nozzle”
approach surveyed here relies only on the applicability of fluid equations in the bulk plasma (in the general
vicinity of the boundaries).

From the nozzle analysis we find, in general accord with other approaches, that there is a generalized “Bohm
criterion” for oblique incidence: the parallel velocity shifted by the “unprojected” poloidalE × B velocity,
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vEpB/Bp, must equal the sound speed at an effective nozzle point, which (as with normal incidence) can be at
the gyrosheath entrance or further upstream. The diamagnetic drift does not enter this criterion (butdoesenter the
current boundary condition). There are however corrections from the radialE×B velocity. The analysis can fail
for sufficiently high ion-neutral collisionality that the effective source significantly overlaps with the gyrosheath.

We note that drifts compete with parallel flows whencsB/Bp ∼ vE×B. But in same limit, radial displacement
of ions in gyrosheath becomes of order of the scrape-off layer width. The consequences when this limit is
exceeded remain to be explored.

We observe that it is conceivable that the requirement for a monotonic, stationary sheath could under some
circumstances lead to a flow velocity constraint that is finitely higher than that of generalized sonic flow through
the effective nozzle. In this case the sheath must respond to the upstream flow, not vice versa, by becoming
non-monotonic and/or non-stationary.

We note that the flow constraint depends (significantly) on the angle betweenB and the symmetry direction,
while the current and heat-flux expressions (which are true boundary conditions) depend on the angle of incidence
of B and the end wall. These will not be the same in the case of toroidally rippled divertor plates.

The dependence of the current boundary conditions, and hence the plasma voltage, on controllable parameters
of the bounding surface leads to the possibility of inducing radial convection to broaden the scrape-off layer
plasma through approaches such as toroidally asymmetric biasing or external resistivity, or varying wall materials,
and toroidally rippled divertor surfaces. Preliminary tests on the MAST spherical tokamak are encouraging.
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