1=

LAWRENCE
LIVERMORE
NATIONAL
LABORATORY

UCRL-JC-154109

Semantic-Driven
Parallelization of Loops
Operating on User-Defined
Containers

D. Quinlan, M. Schordan, Q. Yi, and B. R. de
Supinski

July 9, 2003

The 16" International Workshop on Languages and
Compilers for Parallel Computing, College Station, Texas,
October 2-4, 2003

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited
or reproduced without the permission of the author.

This report has been reproduced directly from the best available copy.

Available electronically at http:/ /www.doc.gov /bridge

Available for a processing fee to U.S. Department of Energy
And its contractors in paper from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831-0062
Telephone: (865) 576-8401
Facsimile: (865) 576-5728

E-mail: reports@adonis.osti.gov

Available for the sale to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-mail: orders@ntis.fedworld.gov
Online ordering: http:/ /www.ntis.gov/ordering.htm

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library
http:/ /www.lInl.gov /tid / Library.html

Semantic-Driven Parallelization of Loops Operating
on User-Defined Containers

Dan Quinlan* Markus Schordan Qing Yi
Bronis R. de Supinski

July 9, 2003

Abstract

We describe ROSE, a C++ infrastructure for source-to-source translation,
that provides an interface for programmers to easily write their own translators
for optimizing user-defined high-level abstractions. Utilizing the semantics of
these high-level abstractions, we demonstrate the automatic parallelization
of loops that iterate over user-defined containers that have interfaces similar
to the lists, vectors and sets in the Standard Template Library (STL). The
parallelization is realized in two phases. First, we insert OpenMP directives
into a serial program, driven by the recognition of the high-level abstractions,
containers, that are thread-safe. Then, we translate the OpenMP directives
into library routines that explicitly create and manage parallelism. By pro-
viding an interface for the programmer to classify the semantics of their ab-
stractions, we are able to automatically parallelize operations on containers,
such as linked-lists, without resorting to complex loop dependence analysis
techniques. Our approach is consistent with general goals within telescoping
languages.

1 Introduction

In object-oriented languages such as C++, abstractions are a key aspect of library
design, sharing aspects of language design, which aims to provide the application
developer with an efficient and convenient interface. For example, the C++ Stan-
dard Template Library (STL), parts of which are standardized within the C++
standard libraries, includes a collection of template classes that can be used as con-
tainers for user-defined constructs. Some STL containers, such as vectors, provide
random access to their elements using an integer index, while other containers such
as lists and sets provide other means to access their elements. Nevertheless, all STL
containers provide sequential element accesses and thus all of them can be used in
the code fragment in Figure 1. This design strategy permits all containers to be
used interchangeably in algorithms that process a sequence of elements.

At this level, library design greatly resembles language design, but without in-
creasing the complexity of the compiler. The term telescoping languages was coined
by Kennedy [1] in 2000. Within telescoping languages, a base language is chosen
and domain-specific types are constructed entirely within the base language with no
language extension. The iterative progression of a library to a higher-level language
comes only with compile-time support for its user-defined types. The telescoping
aspect relates to the optional use of the compile-time optimizations, because the

*Centre for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore,
CA 94551, USA (dquinlan@llnl.gov).

MyContainer myContainer;

MyContainer::iterator p;

for (p = myContainer.begin(); p != myContainer.end(); ++p) {
foo(*p);

}

Figure 1: Example: a code fragment processing a user-defined container

abstractions are defined fundamentally as a library completely within the base lan-
guage. The idea of higher-level languages driving the generation of lower-level C++
code was originally discussed by Stroustrup in 1994 [2] (page 204). The techniques
presented in this paper are a special case of compiler support for high-level ab-
stractions such as those defined in the STL. Specifically in this paper we utilize the
semantics of the high-level abstractions and generate low-level C++ code.

Due to the increasing popularity of the STL library, more and more libraries
provide containers that conform to the STL interface. Since the library developer
knows the semantics of the library’s containers and of each element in the containers,
he can write a source-to-source translator that optimizes the performance of every
program that uses his library. For example, in Figure 1, if the library writer knows
that none of the elements in MyContainer can be aliased and that the function
foo is side-effect free (i.e., it does not modify any global variables), he can safely
parallelize the surrounding loop and thus achieve better performance for the user’s
application. Due to the undecidability of precise alias and control-flow analysis,
it could be impossible for a compiler to automatically figure out this semantic
information. Thus, our approach can better optimize any application code that
uses the library since we allow the library developer to communicate this semantic
information to the source-to-source translator. The application developer sees only
an automated process.

We present ROSE, a C++ source-to-source infrastructure especially for this pur-
pose [3,4]. In addition to being a general source-to-source compiler infrastructure,
ROSE provides several mechanisms, including a very high level Abstract Syntax
Tree (AST) that maintains the original structure of the user program, traversal
facilities for modifying the AST, and a string interface for inserting new C++ code
fragments (which are represented as strings) into the AST directly. Since we have
not only the syntax of the original program but also its full type resolution within
the ROSE AST, we can use specific user-defined type information as a basis for op-
timizing an application. Thus, the compiler has fundamentally more information,
enabling greater levels of optimization. In the case of parallelizing user-defined con-
tainers, for example, we can automate the introduction of OpenMP directives into
otherwise serial code because the library writer guarantees the required semantics.
Based on the additional semantics of user-defined abstractions, this approach per-
mits parallel execution of appropriate fundamentally serial code. Section 2 presents
the ROSE infrastructure in more detail.

Using the ROSE approach for processing user-defined abstractions, we present
a source-to-source translator that automatically introduces OpenMP directives in
loop computations on STL-like container classes such as the one in Figure 1. The
only additional information that needs to be provided by the library programmer
is the set of container classes that disallow aliased elements and the side-effects of
library functions. We then invoke another translator within ROSE to recognize spe-
cific OpenMP pragma directives and to translate these directives (along with their
associated code fragments). The final result is a parallel program that explicitly
creates and manages parallelism.

2 Infrastructure

The ROSE infrastructure offers several components to build a source-to-source
translator. A complete C++ frontend is available that generates an object-oriented
annotated abstract syntax tree (AST) as an intermediate representation. Several
different components can be used to build the midend of a translator that oper-
ates on the AST to implement transformations: a predefined traversal mechanism;
a restructuring mechanism; and an attribute evaluation mechanism. Other fea-
tures include parsing of OpenMP directives and integrating these directives into
the AST. A C++ backend can be used to unparse the AST and generate C++ code
(see Figure 2).

(completed) source fragment AST

v v

T
attribute evaluation

C++source S AST C++source

— frontend backend

!

AST unparsed AST fragment

v
3
=
@
S
o
v

|
restructure operators
L

!

Figure 2: ROSE Source-To-Source infrastructure with frontend/backend reinvoca-
tion

2.1 Frontend

We use the Edison Design Group C++ frontend (EDG) [5] to parse C++ programs.
The EDG frontend performs a full type evaluation of the C++ program and then
generates an AST, which is represented as a C data structure. We translate this
data structure into an object-oriented abstract syntax tree (AST) which is used by
the midend as an intermediate representation. We use Sage III as an intermedi-
ate representation, which we have developed as a revision of the Sage II [6] AST
restructuring tool.

2.2 Midend

The midend supports restructuring of the AST. The programmer can add code
to the AST by specifying a source string using C++ syntax, or by constructing
subtrees node by node. A program transformation consists of a series of AST
restructuring operations, each of which specifies a location in the AST where a
code fragment (specified as a C++ source string or as an AST subtree). should be
inserted, deleted, or replaced.

The order of the restructuring operations is based on a pre-defined traversal.
A transformation traverses the AST and invokes multiple restructuring operations
on the AST. To address the problem of restructuring the AST while traversing it,
we make restructuring operations side-effect free functions that define a mapping
from one subtree of the AST to another subtree. The new subtree is not inserted
until after the complete traversal of the original subtree. We provide interfaces for
invoking restructuring operations that buffer these operations to ensure that no
subtrees are replaced while they are being traversed.

The midend also provides an attribute evaluation mechanism that allows the
computation of arbitrary attribute values for AST nodes. During traversal, context
information can be passed down the AST as inherited attributes, and results of

transforming a subtree can be passed up the tree as synthesized attributes. Exam-
ples for inherited and synthesized attributes include the type information of objects,
the sizes of arrays, the nesting levels of loops and the scopes of associated pragma
statements. These attributes can then be used to compute constraints on transfor-
mations — for example, to decide whether to apply a restructuring operation on a
particular AST node.

Our infrastructure supports the use of C++ source strings to define code frag-
ments. Any source string that represents a valid declaration, statement list, or
expression can specify a code pattern to be inserted into the AST. The translation
of a source code string, s, into an AST fragment, is performed by reinvoking the
frontend. Our system extends s to form a complete program, which it then parses
into an AST by reinvoking the frontend. From this AST, it finally extracts the AST
fragment that corresponds to s. This AST fragment is inserted into the AST of the
original program.

Further, we provide an abstract C++ grammar which covers all of C++ and
defines the set of all abstract syntax trees. We have integrated an attribute grammar
tool which allows the specification of attribute evaluations on the abstract C++
grammar. The grammar is abstract with respect to the concrete C++ grammar
and does not contain any C++ syntax. Similar to our traversal mechanism, source-
strings and restructure operators can be used in the semantic actions of the attribute
grammar. In section 3.3 we show how a transformation can be specified using the
abstract grammar, source-strings, and AST restructure operations.

2.3 Backend

The backend unparses the AST and generates C++ source code. It can either
unparse all included (header) files or the source file(s) specified on the command
line only. This feature is important when transforming user-defined data types, for
example, when adding compiler-generated methods. Using this feature preserves all
C preprocessor (cpp) control structures (including comments). Output code from
the backend appears nearly indistinguishable from input code, except for transfor-
mations, to simplify acceptance by users.

The backend can also be invoked during a transformation, to obtain the source
code string that corresponds to a subtree of the AST. Such a string can be combined
with new code (also represented as a source string) and inserted into the AST.

Both phases, the introduction of OpenMP directives and the translation of
OpenMP directives, can be automated using the above mechanisms, as described
in the following sections.

3 Parallelizing User-Defined Containers Using OpenMP

Most modern machines have a parallel architecture that requires applications to be
efficiently parallelized in order to achieve high performance. The OpenMP standard
provides a convenient mechanism to parallelize applications. It extends the tradi-
tional sequential languages Fortran, C and C++ to introduce parallelism without
requiring the programmer to manage threads or communications explicitly. How-
ever, introducing OpenMP directives into a sequential program still requires a sig-
nificant amount of work, although substantially less than using distributed memory
programming models like MPI.

In addition, current use of distributed memory programming models only ex-
tends to a subset of the number of processors available on IBM machines at LLNL.
Specifically, the limit on the number of MPI tasks requires a hybrid programming
model that combines message passing and shared memory programming in order to

use all of the machine’s processors. These hybrid programming models significantly
increase the complexity of the already difficult task of developing scientific appli-
cations that include advanced numerical algorithms and physics, and non-trivial
geometrics domains. Thus, our approach is particularly useful in extending existing
distributed memory applications to use these modern computer architectures effec-
tively. The automated/simplified introduction of parallelism to leverage the shared
memory nodes and, thus, a larger part of these machines can significantly improve
programmer productivity. The use of dual shared memory and distributed mem-
ory programming models is a more general issue within cluster computing (using a
connected set of shared memory nodes).

Most C++ programs, including many scientific applications, use high-level ab-
stractions that tailor the user-environment to a specific application domain. Thus,
object-oriented design creates a programming environment that is essentially a pro-
gramming language that is more domain-specific than a general purpose language
could allow, thereby improving programmer productivity.

The ROSE infrastructure provides support for generating source-to-source trans-
lators that essentially act as compilers for these domain-specific languages. The
designer of the high-level abstractions captures the semantics of those abstractions
so that the source-to-source translators can generate high performance code for the
user of the domain-specific language. Generally, the designer of the abstractions will
be a library writer, although nothing prevents the end user from designing clean
interfaces and capturing the semantics for his specific abstractions.

In this section, we present a mechanism to automatically introduce OpenMP
directives for user-defined STL-like containers, which is one of the most commonly
used user-defined abstractions in object-oriented programming.

3.1 User-Defined Containers

Scientific applications are increasingly using STL, but at present with no path avail-
able toward automated shared memory parallelization. Clearly our goal in address-
ing the optimization (parallelization) of user-defined container classes includes even-
tually processing STL containers. Such work would have broad impact on how STL
could be used within scientific programming.

At present, the ROSE infrastructure does not handle templates sufficiently well
to address STL optimization directly. Figure 3 presents a compromise, an example
container class that is similar to the STL list class. It has an identical iterator
interface, but does not use templates. The example list class accurately reproduces
the same iterator interface as is used in STL and more general user-defined con-
tainers. The exact details of the iterator interface are not particularly important;
our approach could be used to parallelize alternative methods of traversing the ele-
ments of containers. Further, the easy construction of compile-time transformations
with ROSE could use even more precise semantics of domain-specific containers if
necessary.

Figure 4 defines a class to support the automated transformation of iteration on
user-defined containers. The automated transformation process introduces new code
that uses this supporting class into the application. The SupportingOmpContainer list
class builds an array of fixed size, internally, containing pointers to the container’s
elements. Using this array the class provides indexed access for the OpenMP
parallel for loop.

3.2 Safety of Parallelization

Our goal is to parallelize loops that iterate over user-defined containers. Given a
candidate loop, we must ensure that it is safe to parallelize, that is, dependences

class list {

// List class defined similarly to STL List class (but without templates)

public:
// fixed element type for list class (to avoid templates)
typedef int elementType;

protected:
struct list_node {
list_node* next;
list_node* prev;
elementType data;
};

typedef elementType* pointer;
typedef elementType& reference;

typedef list_node* link_type;
typedef size_t size_type;

protected:
link_type first;
link_type last;

size_type length;

public:
class iterator
{
friend class list;
protected:
link_type node;
iterator(link_type x);
public:
iterator();
bool operator==(const iterator& x) const;
bool operator!=(const iterator& x) const;
reference operator*() const;
iterator& operator++();
iterator operator++(int);
};
list();

iterator begin();
iterator end();

unsigned int size();
void push_back(const reference x);

Figure 3: Example: Code fragment showing 1ist class

using iterators.

class SupportingOmpContainer_list {
// This class is used to support the transformation of iterations over STL
// containers to a form with which we can use OpenMP to parallelize the execution.

public:
typedef list::elementType elementType;
list::elementType** dataPointer;
unsigned int length;

public:
SupportingOmpContainer_list(list & 1) {
length = l.size();
dataPointer = new list::elementType* [length];
assert (dataPointer != NULL);

list::iterator p;
int i = 0;
for (p = l.begin(); p != l.end(); p++) {
dataPointer [i++] = &(*p);
}
}

unsigned int size() { return length; }
elementType& operator[](int i) {
return *dataPointer[il;

}

Figure 4: Example: Code fragment showing the implementation of supporting ab-
straction for OpenMP translation.

must not exist between different iterations of the loop body [7]. Figure 5 presents
our algorithm for this analysis, where TestParallelLoop is the top-level function,
and function get_modified vars is invoked to compute the set of variables modified
by a list of arbitrary statements.

Our algorithm is different from traditional dependence-based approaches in that
the library developer supplies domain-specific information to drive the analysis.
This information allows us to recognize opportunities of loop parallelization without
having to perform aliasing or interprocedural dependence analysis. In Figure 5, this
information is represented as the userSpec input parameter, which contains the
following information from pre-specified inputs by the library developer.

e known_containers(userSpec) A set of user-defined containers for which the
library writer guarantees element uniqueness, i.e., the instances of the con-
tainer class do not include duplicated elements. All of these containers must
have an iterator interface that is similar to Figure 1. Since the elements can-
not be aliased to each other, our analysis can safely conclude that it is safe
to parallelize a loop that iterates over the container if the loop body does not
contain cross-iteration dependences.

e known functions(userSpec) A set of user-defined functions whose side effects
are known to the library writer. These functions can include both global
functions and the member functions of user-defined abstractions.

e side effects(f,userSpec) Vf € known functions(userSpec) The side ef-
fects of each function f defined in userSpec. Specifically, for each function
f € known functions(userSpec), it defines which parameters and global vari-
ables can be modified by f. This information allows us to compute the set
of variables modified by an arbitrary statement without resorting to inter-
procedural side effect analysis.

In Figure 5, the function get modified vars uses the semantic information of
user-defined functions to help determine the side effects at each iteration of the loop

TestParallelLoop(/, userSpec)
l: loop to be parallelized;
userSpec: info. from programmer
return: whether loop ! can be parallelized
header = get_loop_header(l)
body = get_loop_body(l)
if (header iterates over a container ¢ and
¢ €eknown_containers(userSpec))
cur_elem = get_current_element(c)
local wars = get_local_defined _vars(body)
mod = get_modified_vars(body, userSpec)
if (mod ==UNKNOWN) return false;
for (each variable var € mod)
if (var & localvars and var # cur_elem)
return false;
return true;
return false;

get_modified_vars(body, userSpec)
body: statements to be examined;
userSpec: info. from programmer
return: variables modified by body
F = get_function_calls(body);
modVars = (;
for (each function call f € F)
if (f €known_functions(userSpec))
modVars = modV arsU
side_effect(f, userSpec);
else return UNKNOWN
modV ars = modV arsU
get_local_mod_vars(body);
return modV ars

Figure 5: Algorithm for safety analysis of parallelization

body: for each statement within the loop body and for each function invocation f
within the statement, if the function does not belong to the known functions in
userSpec, we assume that the function could induce unknown side effects and thus
conservatively disallow the loop parallelization. In addition, the variables locally
modified by each statement is also returned as part of the complete side effect of
the loop body.

The function TestParallelLoop uses both the known containers and known
functions from userSpec to identify opportunities of loop parallelization. First, we
examine the candidate loop to see if it iterates over a container that is known to
be safe to be parallelized. We then invoke get_modified vars to summarize the
complete side effect of the loop body. To determine the dependence pattern of the
loop body, for every variable var modified by the loop body, if var is exactly the
element of the container being accessed by the current iteration, or if var is a local
variable defined within the loop body, we know that the variable is private to the
current iteration and thus cannot introduce cross-iteration dependences; otherwise,
we assume that the variable could be aliased to a global variable and disallow the
parallelization.

Note that although the algorithm in Figure 5 is more conservative than tradi-
tional dependence-based approaches, it provides a way to utilize user-defined se-
mantic information that might not be available to the other systems. For example,
even the most aggressive parallelizing compilers may not be able to figure out that
the elements of a user-defined pointer-container can never be aliased. By configur-
ing our system with general, user-defined type information, we therefore are able to
optimize user-defined objects more effectively in various cases.

3.3 OpenMP Transformation

OpenMP transformations are specified as source-to-source translations. The input
program is a sequential C++ program in which we introduce OpenMP pragmas
and transform parts of the program into a canonical OpenMP form if necessary.
A transformation is specified as semantic actions of an abstract C++ grammar.
The grammar is abstract with respect to the concrete C++ grammar and does not
include any concrete C++ syntax. The abstract grammar defines the set of all
abstract syntax trees (ASTs) and covers full C++. Computations on the abstract

Before transformation
Foo f; list 1;

for (list::iterator i = l.begin(); i != l.end(); i++) {
f.foo(*i);
}

After transformation

Foo f; list 1;

// Build the supporting container
SupportingOmpContainer_list 12 (1);

#pragma omp parallel for

for (int i = 0; i < 12.size(); i++) {
f.foobar(12[i]);

}

Figure 6: An iteration on a user-defined container 1 that provides an iterator in-
terface. The object f is an instance of the user-defined class Foo. Object 1 is of
type list. In the optimization the iterator is replaced by code conforming to the
required canonical form of an OpenMP parallel for.

grammar can be specified as attribute evaluations. Attributes can be of arbitrary
type, including source strings. The source-strings specify new program fragments
for which the corresponding AST fragment can always be obtained and inserted into
an existing AST. To allow semantics based transformations, which require the full
type information of a given program, we make the type information of the program
available as annotations of the AST. The availability of the full type information
is crucial to allow semantics based transformations as we shall demonstrate in the
following example.

The abstract grammar describes the set of all ASTs. Because we do not use
multiple inheritance, the class hierarchy of the object-oriented AST forms a tree.
The abstract grammar is designed such that it directly corresponds to the class
hierarchy and the successor information of AST nodes. Inner nodes of the class
hierarchy tree correspond to non-terminals in the grammar whereas outer nodes
(leafs) correspond to terminals in the grammar. The correspondence is made explicit
by using the class names as names for terminals and non-terminals respectively.

Our present version of the default abstract grammar for full C++ has 165 rules.
All annotated AST information gathered by the frontend at each AST node is
available through a variable astNode. The variable always holds a pointer to the
corresponding AST node of a parsed terminal. Information available is type infor-
mation for every expression and declaration, line and column information of the
original program, etc.

In the following example we show how the attribute grammar in combination
with the use of source-strings and AST replacement operations, allows to specify the
introduction of OpenMP pragmas and the transformation of for-loops to conform
to the required canonical form of an omp parallel for.

In the example source in fig. 6 we show an iteration on a user-defined container
with an iterator. This pattern is frequently used in applications using C+-+98
standard container classes. The object f is an instance of the user-defined class
Foo. The transformation we present takes into account the semantics of the type
Foo and the semantics of class 1ist. The transformation is therefore specific to
these classes and its semantics.

For the type list we know that the type iterator defined in the class follows
the iterator pattern as used in the STL. For the type Foo we know that the method £

SgScopeStatement<bool isOmpFor>
= SgForStatement

isOmpFor
= ompTransUtil.isUserDefIteratorForStatement (astNode,isOmpFor) ;
)
"(" SgForInitStatementNT<isOmpFor> SgExpressionRootNT
SgExpressionRootNT SgBasicBlockNT<isOmpFor>
I|)l|
C.
if (isOmpFor) {
string iVarName = query.iteratorVariableName(astNode) ;
string iContName = query.iteratorContainerName(astNode);
string iContType = query.iteratorContainerType(astNode);
string parTypeName = ompTransUtil.supportingParType(astNode,iContType);
string parContName = ompTransUtil.uniqueVarName (astNode,iContName) ;
string modifiedBodyString
= ompTransUtil.derefToIndexBody(astNode,iVarName,iContName) ;
string support = parTypeName+" "+parContName+"("+iContName+");\n";
string beforeForStmt
= "#pragma omp parallel for\n";
string newForStmt = "for(int "+iVarName+"=0Q;"
+ iVarName+"<"+parContName+".size() ;"
+ iVarName+"++) "+modifiedBodyString;
subst.replace(astNode,support + beforeForStmt + newForStmt);

Figure 7: A part of the grammar rule of SgScopeStatement of the abstract C++
grammar with the semantic action specifying the transformation of a SgForState-
ment.

is thread safe. We show the core of a transformation to transform the code into the
canonical form of a for-loop as required by the OpenMP standard. We also introduce
the OpenMP pragma directive. Note that the variable i in the transformed code is
implicitly private according to the OpenMP standard 2.0 .

The test, isUserDefIteratorForStatement, to determine whether the trans-
formation can be applied, is conservative. It might not always allow to perform the
optimization although it would be correct but it is never applied when we cannot
ensure that the transformed code would be correct.

In the example in fig. 7 the grammar rule of SgScopeStatement is shown. The
terminal SgForStatement in the example corresponds to the class SgForStatement.
The semantic actions associated with this rule are executed whenever a node of type
SgForStatement is parsed. The variable astNode is a pointer to the respective AST
node of the terminal and assigned by our supporting system when the scanner
accesses the token stream. Note that every terminal in the grammar corresponds
to a node in the AST, except the parentheses.

Methods of the object subst allow to insert new source code and delete subtrees
in the AST. The substitution object subst buffers pairs of target location and string.
The substitution is not performed before the semantic actions of all subtrees of
the target location node have been performed. This mechanism allows to check
whether substitutions would operate on overlapping subtrees of the AST (in the
same attribute evaluation). In case of overlapping subtrees an error is reported.

The object query is of type AstQuery and provides frequently used methods for
obtaining information stored in annotations of the AST. These methods are also
implemented as attribute evaluations.

The inherited attribute isOmpFor is used to handle the nesting of for-loops.
It depends on how an OpenMP compiler supports nested parallelism whether we
want to parallelize inner for statements or only the outer for statement. In future
this decision will be made more specific to OpenMP compilers on different platforms
and the boolean attribute will be replaced by an object to provide more information

10

about the context of OpenMP for-loops.

The object query of type AstQuery offers methods to provide information on
subtrees that have been proven to be useful in different transformations. In the ex-
ample we use it to obtain variable names and type names. The example shows how
we can decompose different aspects of a transformation into separate attribute eval-
uations. The methods of the query object are implemented by using the attribute
evaluation.

After a preprocessing step of the grammar file, we use a successor of Coco/R [8],
the C/C++ version ported by Frankie Arzu to generate the parser code. Coco/R
is a compiler generator which allows to specify a scanner and a parser in EBNF for
context free languages. The grammar has to be LL(1). We use this tool to operate
on the token stream of AST nodes. Therefore we do not use the scanner generator
capabilities of Coco/R and implemented a scanner to operate on the token stream of
AST nodes. The stream is defined by a fixed traversal on the AST. The integration
of this parsing tool allowed us to leverage the attribute evaluation capabilities of
parsing tools.

In fig. 6 the generated code is shown. The access uses the notation for random
access iterators. The SupportingOmpContainer list class is used to generate an
array of pointers to all elements of the list to achieve a complexity of O(1) for the
element access. The list of pointers is generated when the supporting container 12
is created. When the generated code is compiled with an OpenMP compiler the
body is executed in parallel.

Note that the generated source code can have a slightly different formatting
because the format of the source code is a beautified version of the source corre-
sponding to the transformed AST.

4 Translation of OpenMP Directives

To generate code that explicitly manages parallelism, we use ROSE to build a
specialized source-to-source translator that transforms OpenMP parallel for di-
rectives into explicit calls to an OpenMP runtime library [9]. For our work, we have
selected the Nanos OpenMP runtime library [10]. We are in the process of adding
support for additional OpenMP constructs to our infrastructure. Alternatively, we
can unparse the original source code with OpenMP directives and use the resulting
source code as input to a commercial OpenMP C++ compiler to generate parallel
code [11-14].

5 Related Work

The research community has developed many automatic parallelizing compilers. Ex-
amples of these research compilers include the DSystem [15], the Fx compiler [16],
the Vienna Fortran Compiler [17], the Paradigm compiler [18], the Polaris com-
piler [19], and the SUIF compiler [20]. However, except for SUIF, which has
frontends for Fortran, C, and C++; the others listed above optimize only For-
tran applications. By providing a C++ frontend for automatic parallelization, we
complement previous research in providing support for higher-level object-oriented
languages. In addition, we extend previous techniques by utilizing the semantic
information of user-defined containers and thus allowing user-defined abstractions
to be treated as part of a domain-specific language.

As more and more programmers are using OpenMP to express parallelism, many
OpenMP supporting compilers were developed, including both research projects [10,
21-23] and commercial compilers [11-14]. In addition to OpenMP-directive trans-
lation, many research compiler infrastructures also investigate techniques to au-

11

tomatically generate OpenMP directives and to optimize the parallel execution of
OpenMP applications. However, these research compilers only support applications
written in C or FORTRAN, while existing commercial C++ compilers target only
specific machine architectures and do not provide an open source-to-source trans-
formation interface to the outside world. By providing a flexible source-to-source
translator, we complement previous research by presenting an open research infras-
tructure for optimizing C++ constructs and OpenMP directives.

6 Conclusions and Future Work

This paper presents a C++ infrastructure for semantic-driven parallelization of
computations that operate on user-defined containers that have an access interface
similar to that provided by the Standard Template Library in C++. First, we
provide an interface for library developers to inform our compiler about the seman-
tics of their containers and the side-effects of their library functions. Then, we use
this information to parallelize loops that iterate over these containers automatically
when it is safe to do so.

Our analysis algorithm conservatively disallows the parallelization of loops that
modify non-local memory locations, that is, memory locations that are not elements
of the user-defined container and are defined outside of the loop. In the future, we
will extend our algorithm to be more precise by incorporating global alias analysis
and array dependence analysis techniques [7]. This more sophisticated algorithm
will be as precise as those used by other automatic parallelizing compilers [15-20],
while still being more aggressive for user-defined abstractions by optimizing them
as part of a domain-specific language.

Work performed for DOE by UC, LLNL under contract W-7405-Eng-48.

References

[1] Cooper K. Dongarra J. Fowler R. Gannon D. Johnsson L. Kennedy K. Mellor-
Crummey J. Torczon L. Broom, B. Telescoping languages: A strategy for
automatic generation of scientific problem-solving systems from annotated li-
braries. Journal of Parallel and Distributed Computing, 2000.

[2] Bjarne Stroustrup. The Design and Evolution of C++. Addison-Wesley, 1994.

[3] Daniel Quinlan, Brian Miller, Bobby Philip, and Markus Schordan. Treating
a user-defined parallel library as a domain-specific language. In 16th Interna-
tional Parallel and Distributed Processing Symposium (IPDPS, IPPS, SPDP),
pages 105-114. IEEE, April 2002.

[4] Daniel Quinlan, Markus Schordan, Brian Miller, and Markus Kowarschik. Par-
allel object-oriented framework optimization. Special Issue of Concurrency:
Practice and Experience, 2003, to appear.

[5] Edison Design Group. http://www.edg.com.

[6] Francois Bodin, Peter Beckman, Dennis Gannon, Jacob Gotwals, Srinivas
Narayana, Suresh Srinivas, and Beata Winnicka. Sage++: An object-oriented
toolkit and class library for building fortran and C++ restructuring tools. In
Proceedings. OONSKI °94, Oregon, 1994.

[7] R. Allen and Ken Kennedy. Optimizing Compilers for Modern Architectures.
Morgan Kaufmann, San Francisco, October 2001.

[8] Hanspeter Moessenboeck. Coco/R - A generator for production quality com-
pilers. In LNCS477, Springer, 1991.

12

nijhuis2
Work performed for DOE by UC, LLNL under contract W-7405-Eng-48.

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

Daniel Quinlan, Markus Schordan, Qing Yi, and Bronis de Supingki. A C++ in-
frastructure for automatic introduction and translation of OpenMP directives.
In WOMPAT’03: OpenMP Shared Memory Parallel Programming, Interna-
tional Workshop on OpenMP Applications and Tools, volume 2716 of Lecture
Notes in Computer Science, pages 13—25. Springer Verlag, June 2003.

Eduard Ayguade, Marc Gonzalez, and Jesus Labarta. Nanoscompiler: A re-
search platform for openMP extensions. In European Workshop on OpenMP,
September 1999.

Silican Graphics Inc. Optimizing Compilers for High-Performance Computing.
www.sgi.com/developers/devtools/languages/mipspro.html.

IBM. VisualAge C++ Professional for AIX V6.0. WWW-
1.ibm.com/servers/eserver/ecatalog/us/software/6146.html.

Xinmin Tian, Aart Bik, Milind Girkar, Paul Grey, Hideki Saito, and Ernesto
Su. Intel openMP C++/Fortran compiler for hyper-threading technology: Im-
plementation and performance. Intel Technology Journal, 6(1):36-46, 2002.

Fujitsu. Fortran €& C Packages for SPARC Solaris.
www.fr.fse.fujitsu.com/devuk/solaris.shtml.

V. Adve, G. Jin, J. Mellor-Crummey, and Q. Yi. High performance fortran
compilation techniques for parallelizing scientific codes. In Proceedings of SC98:
High Performance Computing and Networking, Nov 1998.

J. Subhlok, J. Stichnoth, D. O’Hallaron, and T. Gross. Exploiting task and
data parallelism on a multicomputer. In Proc. of the Sizth ACM SIGPLAN
Symposiwm on Principles and Practice of Parallel Programming (PPoPP), San
Diego, May 1993.

S. Benkner. Vfc: The vienna fortran compiler.

P. Banerjee, J. A. Chandy, M. Gupta, J. G. Holm, A. Lain, D. J. Palermo,
S. Ramaswamy, and E. Su. The paradigm compiler for distributed-memory
message passing multicomputers. In in Proceedings of the First International
Workshop on Parallel Processing, Bangalore,India, Dec 1994.

D. Padua, R. Eigenmann, J. Hoeflinger, P. Petersen, P. Tu, S. Weatherford,
and K. Faigin”. Polaris: A new-generation parallelizing compiler for mpp’s.
Technical Report 1306, Univ. of Illinois at Urbana-Champaign, Center for Su-
percomputing Res. and Dev., june 1993.

M. S. Lam S. P. Amarasinghe, J. M. Anderson and C. W. Tseng. The suif
compiler for scalable parallel machines. In in Proceedings of the Seventh SIAM
Conference on Parallel Processing for Scientific Computing, Feb 1995.

Christian Brunschen and Mats Brorsson. OdinMP/CCp - a portable imple-
mentation of openMP for c. In Furopean Workshop on OpenMP, September
1999.

Mitsuhisa Sato, Shigehisa Satoh, Kazuhiro Kusano, and Yoshio Tanaka. Design
of openMP compiler for an SMP cluster. In Furopean Workshop on OpenMP,
September 1999.

Seung Jai Min, Seon Wook Kim, Michael Voss, Sang Ik Lee, and Rudolf Eigh-
mann. Portable compilers for openMP. In Workshop on OpenMP Applications
and Tools, July 2001.

13

