
Preprint
UCRL-JC-152267

US. Department of Energy

Laboratory

Ouroboros: A Tool for
Building Generic, Hybrid,
Divide & Conquer
Algorithms

J. R. Johnson, I. Foster

This article was submitted to
Supercomputing 2003, Phoenix, AZ, November 15-21,2003

May 1,2003

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited
or reproduced without the permission of the author.

This work was performed under the auspices of the United States Department of Energy by the
University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

This report has been reproduced directly from the best available copy.

Available electronically at httm / /www.doc.gov/bridge

Available for a processing fee to U.S. Department of Energy
And its contractors in paper from

U.S. Department of Energy
Office of Scientific and Technical Information

P.O. Box 62
Oak Ridge, TN 37831-0062
Telephone: (865) 576-8401
Facsimile: (865) 576-5728

E-mail: r-

Available for the sale to the public from
U.S. Department of Commerce

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900

E-mail: orders@ntis.fedworld.gov
Online ordering: htb: / /www.ntis.eov/orderinc.htm

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library

http: / /www.llnl.gov/ tid/Library.html

Ouroboros:

A Tool for Building Generic, Hybrid, Divide & Conquer Algorithms*

John R. Johnson',' Ian Foster'v3

Department of Computer Science, University of Chicago, Chicago, IL 60637, U S A .

' Computing Applns. & Research Dept., Lawrence Livermore Natl. Lab., Livermore, CA, 94551, U.S.A

Math and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, U.S.A.

Abstract
A hybrid divide and conquer algorithm is one
that switches from a divide and conquer to an
iterative strategy at a specified problem size.
Such algorithms can provide significant
performance improvements relative to
alternatives that use a single strategy. However,
the identification of the optimal problem size at
which to switch for a particular algorithm and
platform can be challenging. We describe an
automated approach to this problem that first
conducts experiments to explore the performance
space on a particular platform and then uses the
resulting performance data to construct an
optimal hybrid algorithm on that platform. We
implement this technique in a tool, Ouroboros,
that automatically constructs a high-performance
hybrid algorithm from a set of registered
algorithms. We present results obtained with this
tool for several classical divide and conquer
algorithms, including matrix multiply and
sorting, and report speedups of up to six times
achieved over non-hybrid algorithms.

are equidistant and instructions are issued
sequentially and in order. Asymptotic analysis
and the RAM model represent an effective
framework for classifying and relating abstract
algorithms that can provide useful guidance to
the algorithm designer. However, the
performance of real computational systems
deviates from that of ideal machines, to degrees
that can range from inconsequential to
pathological. Indeed, interactions between the
structure and parameterization of an algorithm
and the architectural and software characteristics
of a target system fundamentally determines the
overall performance of the algorithm. Favorable
and unfavorable algorithm structure-system
architecture combinations can differ in
performance by orders of magnitude.

There are many aspects of algorithdarchitecture
structure that influence performance and the
potential parameter space can be intractably
large for an exhaustive analysis. We focus here
on the important class of divide and conquer
(D&C) problems and the single algorithmic
parameter of problem size.

1 Introduction It is well known that the performance of D&C

We address the challenge of designing
pegormance portable algorithms, i.e.,
algorithms that can perform well, without
manual intervention, on a wide variety of
platforms.

The traditional analytic approach to this problem
applies the macroscope of asymptotic analysis to
an algorithm within the abstraction of an ideal
RAM machine in which all memory locations

* This work was performed under the auspices of the
U. S . Department of Energy by the University of
California Lawrence Livermore National Laboratory
under contract No. W-7405-Eng-48.

algorithms such as sorting, matrix multiply, and
fast Fourier transform (FFT) can be improved
significantly by switching to an iterative
implementation when the problem size drops
below a certain machine-dependent threshold
161. The optimal algorithm is thus a hybrid.
However, for a given operation, such as sorting
or matrix multiply, there may be a plethora of
potential algorithms to use when building a
hybrid. Selecting the appropriate choice of
algorithms and switching point to create the
hybrid implementation for a given instance can
be a daunting task for the algorithdapplication
designer even when the target system is known.
When the target system is unknown at
development time-as in the case of a portable
library, a library with a lifetime that will span

multiple hardware generations, or a Grid
computation-it may not be possible to design
an algorithm analytically that will run near
optimally on all potential systems.

Our approach to this problem, incorporated in
the Ouroboros system, is to use empirical
methods to determine automatically a collection
of implementations that together constitute a
satisfactory high-performance hybrid code. In all
cases that we have studied to date, Ouroboros
succeeds in detecting automatically the best
threshold for switching between D&C and
iterative implementations. In the case of sorting,
Ouroboros produces a hybrid algorithm that is as
much as six times faster than either the iterative
or D&C approach alone.

2 Related Work
Several analytic models have been proposed for
describing and predicting arbitrary machine
performance. Some models focus on narrow
substructures of the algorithdarchitecture
interface (e.g., communication or YO) [8, 171,
while others are applied to large applications [1,
3, 16, 231. However, these models typically
provide large performance bounds and/or have
narrow scope.

Another approach to algorithm design combines
empirical methods with techniques for exploiting
a priori knowledge of the general structure of
components in a hierarchical memory system
(such as registerkache blocking, loop unrolling,
etc.) [2, 12, 13, 18, 22, 24, 281. Typically these
empirical adaptive algorithms are generated
automatically from a code suite that performs
extensive testing (offline or online) on a
particular platform to identify good
configurations. These successful studies have
been applied successfully to generate highly-
tuned kernel operations, and provide an example
of algorithms that can be expected to perform
well on a wide variety of machinehystem
architectures.

Ouroboros synthesizes the concepts developed in
these early studies into a generalized framework
and tool to aid the algorithm designer. It is
distinct from these approaches in that it employs
an analytical framework based solely on the
behavior of an instance of an algorithm on a
particular system rather than the interaction of its
structure with the system and thus relieves the
algorithm designer from explicitly understanding
all the nuances of a given algorithm
implementation or its pathological behavior on a

runtime system. This purposeful relinquishing
of detail still yields high performance algorithms
while allowing the framework to be more
general.

3 Analytic Framework
A traditional analysis expresses a D&C
algorithm in terms of a recurrence relation:

fin) = ,ZaJln/bi) + c(n)

where the ai and bi are constants and c is a
function describing the cost of splitting and
merging at the given level of recursion [6] .

The behaviorally based analytical framework
employed in Ouroboros uses a more restrictive
recurrence:

Here, q = n/bi, c(n) is a function of n, and ai and
bi are constants. oi represents the size of the
problem at level i . f, is the function to be applied
to a problem of size 0. ci(n) is the cost of the
divide and combine at this level of the
recurrence.

The distinction between (1) and (2) is in the
choice of fm To make the description of f,
explicit we use the following formalism.

Let @ be a family of functions, @ = v h ...fi}.
Define the relation that admits a function to this
set as follows:

1) IfJ and& are in @ then3 andJ; operate on
the same data type and format and have the
same signature.

2) IfJ and& are in @ thenJ and& perform the
“same” computation.

Now for each data size, s, we can induce an
ordering on @based on the performance of each
J on the s for a particular machine. F , is then
defined to be the “best” performing function for
a data size 0. (For clarity, we have dropped the
explicit reference to the machine in our notation.
It is to be understood that o refers to O, for some
machine p.)

We refer to (2) as a generalized D&C (GDC)
algorithm.

4 Ouroboros
Ouroboros is a tool for implementing GDCs. It
operates by performing empirical tests of a
collection of registered algorithms on a particular
architecture for a range of problem sizes, and
then using the resulting data to construct a hybrid
algorithm, via the selection of the optimal
algorithm variants for each problem size. In
other words, it computes and storesf, for each (5

in a range of values.

We can see that for D&C algorithms there exists
a problem size so such that for problem sizes s >
so, a D&C approach is preferred to an iterate
approach while for problems of size s < SO the
iterative version achieves better performance.
We can express this assumption is as follows:

P (s) < P (S) 2 > so (3)

where P(s) indicates the performance of the
function on data of size s.

This expression implies that to address the
threshold problem we need only test problem
sizes { 1, .., so}, where so is again understood to
be machine dependent. Once the fD are
determined for each s in { 1, . . ., so} they can be
stored for use at runtime.

However, there exist D&C problems that depend
upon switching to an iterative approach for small
sizes in order to perform better than a strictly
iterative approach. For example, Strassen matrix
multiply has an expected performance bound of
C3(nlg7) = O(n2.”). But it also has a large hidden
constant. If the recursion is allowed to continue
to the smallest base state, then in practice,
Strassen always performs worse that naive
matrix multiply, which has an expected O(n3)
performance bound. Thus, no crossover point, SO,

can be found and equation (3) does not hold.

We address this problem by developing a more
restrictive formalization of the D&C assumption
that captures the recursion sensitivity of an
algorithm such as Strassen matrix multiply. We
express this formalization as follows:

D (S l z) < P (Z(i1 z)) S > so >= 7 (4)

where z is the explicit crossover point and P(sl2)
is the performance of the function on size s with
crossover 2. Without loss of generality, z is
assumed to be 1 in the case of an iterative
function.

We are now ready to test our algorithm variants.
We assume that we can classify available

algorithms for a problem into two classes,
iterative and recursive. We first test problem
sizes { 1, ..,so} for the iterative function(s) and
determine the fp Next we test the recursive
function(s). If we find a crossover point then we
can use equation (3). If not, we rerun the tests
varying z and using i& for the iterative steps
where $=refers to the best iterative function for
size z. From this, so can be defined as min(o)
such that zfp > $m for all z where rfm is the best
recursive function on size (3 that switches to the
best iterative function for size z.

At run-time a problem of a given size N is
factored into problems of smaller sizes. Once the
problem size drops below so, the appropriate fD is
selected and applied to the problem.

Ouroboros implements this technique via the use
of three components: function registration,
installation test and analysis routines, and run-
time configuration mechanisms.

4.1 Function Registration
This component allows the designer to register
known algorithms for use by the installation and
test and run-time configuration routines to
construct a hybrid algorithm.

The designer supplies a collection of functions
that all perform the “same” computation. Once
registered, these functions are stored as an array
of pointers. For each function pointer in the array
there is also an associated metadata structure that
describes the function. The metadata structure
contains information such as the type of data on
which the function operates (double, int, etc.. .),
the function signature (e.g., for matrix multiply
does it accept an additional array for scratch), the
data-layout (e.g.. 1-D array, HDF-5, etc..),
constraints (e.g., power-of-two input), and
annotations (i.e. anything else the algorithm
designer would like to add).

The registry also maintains miscellaneous
indexes that are used to filter functions with
metadata constraints. For example, if the
problem size is an odd prime, then functions that
only operate on power-of-two are filtered. Or if
the problem data type is double then integer-only
functions are filtered.

If the function is recursive then the function’s
source is instrumented replacing recursive calls
with a wrapper that encapsulates the calls to the
appropriate function for the given problem size.

4.2 Installation Test & Analysis Routines
At build time, the test and analysis routines
create a performance matrix for all registered
functions by empirically testing each function on
a range of data sizes (e.g., 1 to s for some s). For
a given data size, the functions are sorted by
performance. This information is stored as an
array that maps problem size to the function
registry index of the function that performed best
for that size. The test and analysis routines also
empirically determine the value so, used to bound
size of the performance matrix.

I

4.3 Run-time Configuration
At run-time a problem of a given size N is
factored into problems of smaller sizes. The
factoring is done in order to maximize the use of
factor sizes that have good performance. The
result is a generated code, (e.g., sort(int size, ...))
that consists of a single switch that applies the
appropriate registered function for the problem
size size.

To show that this factoring can be done on a
problem of size N, we make use of the notion of
a well-behaved GDC algorithm. Essentially this
requirement assumes that beyond a certain point,
Q,, as size increases, the performance of the
function decreases although not necessarily
monotonically. Given this assumption, we just
start at the best performing size < Q, and walk
down the list of sizes in order of performance
until we find all the factors less than for our
given problem size. Once we have exhausted this
list, we select the remaining factors of N, all
greater than to be as small as possible.

I

5 Experimental Studies
We have applied Ouroboros to two classical
algorithm problems: sorting (merge, insertion)
and dense matrix multiply (Strassen, nafve). The
data for each problem uses randomly generated
double precision arrays. Tests are run on a single
processors of the machines described in Table 1.

Table 1: Processors used for experiments

Alpha Ev68 lGHz 64K tru64-5

5.1 Sorting
5.1.1 POWER3

Figure 1 shows the performance of insertion sort
and merge sort for small problem sizes on the
POWER 3. The x-axis represents the problem
size (i.e. vector length). The y-axis represents
time. We see that between problem sizes of 100
and 200 merge sort starts performing better than
insertion sort. Ouroboros selected a crossover
point of 124. In other words, Ouroboros chose to
use merge sort until the problem size dropped
below 124, at which point it switched to
insertion sort. The resulting performance
comparison between merge sort and the
Ouroboros hybrid for larger sizes is shown in
Figure 2. A speedup of greater than six times is
achieved for some problem sizes.

O o o o 8

0 COO5

Timg ooo4

O w 0 3

0 0002

0 m1

0

I 0 100 200 300 400 500 6W

Problem Size I
Figure 1: POWER 3 crossover detection

0 0008
0 wO7
0 COO6

nmt) 0005
0 COO4
0 0003
0 ooo2
0 0001

0

I 200 700 1200 1700 2203

Problem Size I
Figure 2: POWER 3 with crossover of 124

5.1.2 Alpha Ev68

Figure 3 shows the performance of insertion sort
and merge sort for small problem sizes on the
Alpha Ev68. From this figure the actual
crossover point is less clear, but occurs
somewhere between 190 and 300. Ouroboros
selected 190.

0 100 200 300 400 500 6M)

Problem Size

Figure 3: Alpha Ev68 detection of crossover

The resulting performance comparison between
merge sort and the Ouroboros hybrid for larger
sizes is shown in Figure 4. We achieve a speedup
of up to six times for some problem sizes.

I 1
0 0012

0 M)1

0 0008

2 oooo6
F

0 0004

0 0002

0
200 700 12M) 1700 2200

Problem Size

Figure 4: Alpha Ev68 with crossover of 190

Note that the crossover point of 190 selected by
Ouroboros on the Alpha Ev68 would also have
worked well on the POWER 3. Similarly, the
crossover point of 124 on the POWER 3 would
also have produced good results on the Alpha
Ev68. However, this correspondence is a
fortuitous artifact of the way in which Ouroboros
selects the crossover point and not necessarily
inherent in the interaction of the algorithm with
the architecture. For example, a crossover point
of 295 could have been chosen for the Alpha
Ev68 without significantly changing its
performance signature for larger problem sizes.
If, however, this value were used on POWER 3
rather than 124, the speedup, as can be seen from
Figure 1, would be diminished.

5.2 Matrix Multiply
The test suite for matrix multiply uses the
gemmw implementation of Winograd’s variant of
Strassen matrix multiply and the BLAS 3 gemm
implementation of naive matrix multiply, both
available from netlib. It should be noted that the

distribution of gemmw is configured to crossover
from the recursive gemmw to the iterative BLAS
3 gemm at a handful of hardcoded machine-
dependent sizes. For the tests described here, we
modified the code to allow this parameter to vary
in the Ouroboros framework.

5.2.1 POWER3

Figure 5 shows the performance of matrix
multiply on the POWER 3 for various crossover
points. The x-axis represents the array size @.e.
an array size of N is an NxN matrix). The y-axis
represents time. Ouroboros chose a crossover of
212. This yields very close performance to the
gemmw hard-coded crossover of 192 for AIX
systems. Some analytical models have
suggested a crossover as low as 8. As can be
seen in Figure 5, on the POWER 3, this results in
a dramatic slowdown array size gets larger with
a distinct jump when the array size is near
1000x1000.

I 0 500 i wo ism
Array Size (n)

Figure 5: POWER 3 comparison of crossover

In the next section we will see that the crossover
selected for the Alpha Ev68 is 40. The
Ouroboros crossover of 212 on the POWER 3
offers a modest speedup (from approximately
10% up to around 40%) over using the crossover
of 40 as can be seen in Figure 6.

2
F

2

800 1000 1200 1400 1600

Array Size (N)

Figure 6: Alpha Ev68 crossover on POWER 3

Comparing Ouroboros with DGEMM on the
POWER 3 we see that as the array size gets
larger, Ouroboros begins to outperform the
iterative BLAS 3 gemm library.

18

16

14

12

E 10

F 8
6

4

2
0

I 0 500 1OW 1500 2wO
h a y Size (N)

Figure 7: POWER 3 Ouroboros vs. DGEMM

5.2.2 Alpha Ev68

Figure 8 shows the performance of matrix
multiply on the Alpha Ev68 for various
crossover points. Ouroboros chose a crossover of
40. We can see that, as was the case for POWER
3, the Ouroboros-selected crossover corresponds
very closely to the gemmw hard-coded crossover
(32 for DEC Alpha). We also note that the
crossover of 40 results in up to a 60% speedup
over using the crossover of 212 that was chosen
for POWER 3. This is a much more significant
speedup than was seen using the the Alpha Ev68
crossover of 40 on the POWER 3. The
Ouroboros crossover results in a two times
speedup over the analytical lower-bound
crossover of 8.

I 1oW 1200 1400 1600 1800 2wO
A m y Size (N) I

Figure 8: Alpha Ev68 crossover comparison

Figure 9 shows that speedup of the hybrid
Ouroboros algorithm over the BLAS 3lgemm
library. This is a more striking speedup in the
array sizes tested. One would expect that the
DGEMM curve would begin to level off as the
array size gets larger.

50

40

E 3 0
F

20

10

0
0 500 1000 1500 2000

Array Size (N)

Figure 9: Alpha Ev68 Ouroboros vs.
DGEMM

6 Conclusions and Future Work
We have presented that the use of a behavior-
based model to construct hybrid algorithms
automatically can produce high-performance
results without requiring explicit knowledge of
machine or algorithm structure. Our Ouroboros
tool allows the algorithm designer to construct
generic code that is then used by Ouroboros to
instantiate a hybrid algorithm automatically
using empirically derived performance data.

Since performance is machine dependent, it is a
daunting task to create an algorithm that is
sensitive to structural hardware nuances.
Empirical approaches have been shown to be
successful in addressing this challenge and there
have been recent successes with empirically-
tuned kernel libraries. However, for the
algorithm designer, the challenge remains. The
Ouroboros approach allows the designer the
benefit of empirically-based hybrid algorithms
without the need for specialized
algorithdarchitecture knowledge.

We are currently extending Ouroboros and its
test suite to address Fourier Transform and All
Pairs Shortest Path. We are also implementing a
parallel version of Ouroboros capable of
selecting from among parallel algorithm variants.

References

1. G . Almasi, C. Cascaval, et al.
“Demonstrating the Scalability of a
Molecular Dynamics Application on a
Petaflop Computer.” International
Conference on Supercomputing,
Sorrento, 2001.

2. J. Bilmes, K. Asanovic, C-W. Chin,
J. Demmel, “Optimizing Matrix

Multiply using PHiPAC: a Portable,
High-Performance, ANSI C Coding
Methodology.”, International
Conference on Supercomputing,
Vienna, 1997.

3. J. Cao, D. J. Kerbyson, “Modelling of
ASCI High Performance Applications
Using PACE.”
http://www.dcs. warwick.ac.uk/-hpsg.

4. S. Chatterjee, A.R. Lebeck, et al.,
“Recursive Array Layouts and Fast
Matrix Multiplication”, IEEE
Transactions on Parallel and Distributed
Systems 13(11): 1105-1 123 (2002)

5. S. Chatterjee, V.V. Jain, A. R.
Lebeck, S., Mundhra, “Nonlinear Array
Layouts for Hierarchical Memory
Systems”, International Conference on
Supercomputing, Rhodes, Greece, 1999.

6. T. H. Cormen, C. E. Leiserson, et. al.
Introduction to Algorithms. MIT Press.
Boston. 2001.

7. R.E. Crandall. Projects in Scientific
Computing. Springer-Verlag. New
York. 1994.

8. A.C. Dusseau, D.E. Culler, et al.
“Fast Parallel Sorting under LogP:
Experience with the CM-5”, IEEE
Transactions on Parallel and Distributed
Systems 7(8): 791-805 (1996)

9. I. Foster, C. Kesselman, eds., The
Grid: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann, San
Francisco, 1998.

10. I. Foster, C. Kesselman, Globus: “A
Metacomputing Infrastructure Toolkit.”
International Journal of Supercomputer
Applications, vol. 11, no. 2, 1997.

11. M. Frigo and S. G. Johnson,
“FFTW: An Adaptive Software
Architecture For The FFT.” ZCASSP,
vol. 3, 1998.

12. M. Frigo and S. G. Johnson, “The
Fastest Fourier Transform in the West.”

13. K.S. Gatlin, L. Carter,
“Architecture-Cognizant Divide and
Conquer Algorithms”, Supercomputing,
Portland. 1999.

MIT-LCS-TR-728, MIT, 1997.

14. K.S. Gatlin, L. Carter, “Faster FETs
via Architecture-Cognizance”,
International Conference on Parallel
Architectures and Compilation
Techniques, Philadelphia, 2000.

15. G. Golub, C. VanLoan, Matrrix
Computations, 3Td Ed. The Johns
Hopkins University Press. Baltimore.
1996

16. A. Hoisie, 0. Lubeck, H.
Wasserman “Performance and
Scalability Analysis of Teraflop-Scale
Parallel Architectures Using
Multidimensional Wavefront
Applications”, The International
Journal of High Performance
Computing Application 14(4): 330-347

17. J. Hong, H.T. Kung, “IIO
Complexity: The Red-Blue Pebble
Game”, ACM Symposium on the Theory
of Computing, Milwaukee, 1981.

18. E. Im, K. Yelick. “Optimization of
Sparse Matrix Kernels for Data
Mining”,
httv://www.cs.berkelev.edu/-eiidvubli
cation/icdm.vs

19. T. Katagiri, H, Kuroda, Y, Kanada,
“A Method for Automatically Tuned
Parallel Tridiagonalization on
Distributed Memory Vector-Parallel
Machines”, Vector and Parallel
Processing, Porto, Portugal, 2000.

20. K. Kennedy, M. Mazina, et. al.,
“Toward a Framework for Preparing
and Executing Adaptive Grid
Programs”, International Parallel and
Distributed Processing Symposium,
Fort Lauderdale, 2002

21. A. R. Krommer, C.W. Ueberhuber,
“Architecture Adaptive Algorithms”,
Parallel Computing, 19, 1993.

22. D. Mirkovic, S. L. Johnsson,
“Automatic Performance Tuning in the
UHFFT Library”, International
Conference on Parallel Computing,
2001.

23. A. Snavely, N. Wolter, L.
Carrington, “Modeling Application
Performance by Convolving Machine
Signatures with Application Profiles”,

(2002)

IEEE Workshop on Workload
Characterization, Austin, 200 1 .

24. S. S. Vadhiyar, G. E. Fagg, and J.
Dongarra, “Automatically Tuned
Collective Communications”,
Supercomputing, Dallas, 2000.

25. J. S. Vitter, “External Memory
Algorithms and Data Strucutures”,
DIMACS Series in Discrete
Mathematics and Theoretical Computer
Science, 199 1.

26. R. Vuduc, J.W. Demmel, “Code
Generators for Automatic Tuning of
Numerical Kernels: Experiences with
FFTW”, Semantics Applications, and
Implementation of Program Generation
Montreal, 2000.

27. R. Vuduc, J. W. Demmel, J. Bilmes,
“Statistical Models for Automatic
Performance Tuning”, International
Conference on Computational Science
San Francisco, 2001.

28. R. C. Whaley, A. Petitet, J. J.
Dongarra, “Automated Emprical
Optimizations of Software and the
ATLAS Project.” Parallel Computing,
27(2), 2001.

29. J. Xiong, J. Johnson, et. al. “SPL: A
Language and Compiler for DSP
Algorithms”, Programming Language
Design and Implementation, Snowbird,
2001.

