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Abstract 
A hybrid divide and conquer algorithm is one 
that switches from a divide and conquer to an 
iterative strategy at a specified problem size. 
Such algorithms can provide significant 
performance improvements relative to 
alternatives that use a single strategy. However, 
the identification of the optimal problem size at 
which to switch for a particular algorithm and 
platform can be challenging. We describe an 
automated approach to this problem that first 
conducts experiments to explore the performance 
space on a particular platform and then uses the 
resulting performance data to construct an 
optimal hybrid algorithm on that platform. We 
implement this technique in a tool, Ouroboros, 
that automatically constructs a high-performance 
hybrid algorithm from a set of registered 
algorithms. We present results obtained with this 
tool for several classical divide and conquer 
algorithms, including matrix multiply and 
sorting, and report speedups of up to six times 
achieved over non-hybrid algorithms. 

are equidistant and instructions are issued 
sequentially and in order. Asymptotic analysis 
and the RAM model represent an effective 
framework for classifying and relating abstract 
algorithms that can provide useful guidance to 
the algorithm designer. However, the 
performance of real computational systems 
deviates from that of ideal machines, to degrees 
that can range from inconsequential to 
pathological. Indeed, interactions between the 
structure and parameterization of an algorithm 
and the architectural and software characteristics 
of a target system fundamentally determines the 
overall performance of the algorithm. Favorable 
and unfavorable algorithm structure-system 
architecture combinations can differ in 
performance by orders of magnitude. 

There are many aspects of algorithdarchitecture 
structure that influence performance and the 
potential parameter space can be intractably 
large for an exhaustive analysis. We focus here 
on the important class of divide and conquer 
(D&C) problems and the single algorithmic 
parameter of problem size. 

1 Introduction It is well known that the performance of D&C 

We address the challenge of designing 
pegormance portable algorithms, i.e., 
algorithms that can perform well, without 
manual intervention, on a wide variety of 
platforms. 

The traditional analytic approach to this problem 
applies the macroscope of asymptotic analysis to 
an algorithm within the abstraction of an ideal 
RAM machine in which all memory locations 

* This work was performed under the auspices of the 
U. S .  Department of Energy by the University of 
California Lawrence Livermore National Laboratory 
under contract No. W-7405-Eng-48. 

algorithms such as sorting, matrix multiply, and 
fast Fourier transform (FFT) can be improved 
significantly by switching to an iterative 
implementation when the problem size drops 
below a certain machine-dependent threshold 
161. The optimal algorithm is thus a hybrid. 
However, for a given operation, such as sorting 
or matrix multiply, there may be a plethora of 
potential algorithms to use when building a 
hybrid. Selecting the appropriate choice of 
algorithms and switching point to create the 
hybrid implementation for a given instance can 
be a daunting task for the algorithdapplication 
designer even when the target system is known. 
When the target system is unknown at 
development time-as in the case of a portable 
library, a library with a lifetime that will span 



multiple hardware generations, or a Grid 
computation-it may not be possible to design 
an algorithm analytically that will run near 
optimally on all potential systems. 

Our approach to this problem, incorporated in 
the Ouroboros system, is to use empirical 
methods to determine automatically a collection 
of implementations that together constitute a 
satisfactory high-performance hybrid code. In all 
cases that we have studied to date, Ouroboros 
succeeds in detecting automatically the best 
threshold for switching between D&C and 
iterative implementations. In the case of sorting, 
Ouroboros produces a hybrid algorithm that is as 
much as six times faster than either the iterative 
or D&C approach alone. 

2 Related Work 
Several analytic models have been proposed for 
describing and predicting arbitrary machine 
performance. Some models focus on narrow 
substructures of the algorithdarchitecture 
interface (e.g., communication or YO) [8, 171, 
while others are applied to large applications [ 1, 
3, 16, 231. However, these models typically 
provide large performance bounds and/or have 
narrow scope. 

Another approach to algorithm design combines 
empirical methods with techniques for exploiting 
a priori knowledge of the general structure of 
components in a hierarchical memory system 
(such as registerkache blocking, loop unrolling, 
etc.) [2, 12, 13, 18, 22, 24, 281. Typically these 
empirical adaptive algorithms are generated 
automatically from a code suite that performs 
extensive testing (offline or online) on a 
particular platform to identify good 
configurations. These successful studies have 
been applied successfully to generate highly- 
tuned kernel operations, and provide an example 
of algorithms that can be expected to perform 
well on a wide variety of machinehystem 
architectures. 

Ouroboros synthesizes the concepts developed in 
these early studies into a generalized framework 
and tool to aid the algorithm designer. It is 
distinct from these approaches in that it employs 
an analytical framework based solely on the 
behavior of an instance of an algorithm on a 
particular system rather than the interaction of its 
structure with the system and thus relieves the 
algorithm designer from explicitly understanding 
all the nuances of a given algorithm 
implementation or its pathological behavior on a 

runtime system. This purposeful relinquishing 
of detail still yields high performance algorithms 
while allowing the framework to be more 
general. 

3 Analytic Framework 
A traditional analysis expresses a D&C 
algorithm in terms of a recurrence relation: 

fin) = ,ZaJln/bi) + c(n) 

where the ai and bi are constants and c is a 
function describing the cost of splitting and 
merging at the given level of recursion [6 ] .  

The behaviorally based analytical framework 
employed in Ouroboros uses a more restrictive 
recurrence: 

Here, q = n/bi, c(n) is a function of n, and ai and 
bi are constants. oi represents the size of the 
problem at level i .  f, is the function to be applied 
to a problem of size 0. ci(n) is the cost of the 
divide and combine at this level of the 
recurrence. 

The distinction between (1) and (2) is in the 
choice of fm To make the description of f, 
explicit we use the following formalism. 

Let @ be a family of functions, @ = v h  ...fi}. 
Define the relation that admits a function to this 
set as follows: 

1) IfJ and& are in @ then3 andJ; operate on 
the same data type and format and have the 
same signature. 

2) IfJ and& are in @ thenJ and& perform the 
“same” computation. 

Now for each data size, s, we can induce an 
ordering on @based on the performance of each 
J on the s for a particular machine. F ,  is then 
defined to be the “best” performing function for 
a data size 0. (For clarity, we have dropped the 
explicit reference to the machine in our notation. 
It is to be understood that o refers to O, for some 
machine p.) 

We refer to (2) as a generalized D&C (GDC) 
algorithm. 



4 Ouroboros 
Ouroboros is a tool for implementing GDCs. It 
operates by performing empirical tests of a 
collection of registered algorithms on a particular 
architecture for a range of problem sizes, and 
then using the resulting data to construct a hybrid 
algorithm, via the selection of the optimal 
algorithm variants for each problem size. In 
other words, it computes and storesf, for each (5 

in a range of values. 

We can see that for D&C algorithms there exists 
a problem size so such that for problem sizes s > 
so, a D&C approach is preferred to an iterate 
approach while for problems of size s < SO the 
iterative version achieves better performance. 
We can express this assumption is as follows: 

P ( s )  < P ( S )  2 > so (3 )  

where P(s) indicates the performance of the 
function on data of size s. 

This expression implies that to address the 
threshold problem we need only test problem 
sizes { 1, .., so}, where so is again understood to 
be machine dependent. Once the fD are 
determined for each s in { 1, . . ., so} they can be 
stored for use at runtime. 

However, there exist D&C problems that depend 
upon switching to an iterative approach for small 
sizes in order to perform better than a strictly 
iterative approach. For example, Strassen matrix 
multiply has an expected performance bound of 
C3(nlg7) = O(n2.”). But it also has a large hidden 
constant. If the recursion is allowed to continue 
to the smallest base state, then in practice, 
Strassen always performs worse that naive 
matrix multiply, which has an expected O(n3) 
performance bound. Thus, no crossover point, SO, 

can be found and equation (3) does not hold. 

We address this problem by developing a more 
restrictive formalization of the D&C assumption 
that captures the recursion sensitivity of an 
algorithm such as Strassen matrix multiply. We 
express this formalization as follows: 

D ( S l  z) < P (Z(i1 z)) S > so >= 7 (4) 

where z is the explicit crossover point and P(sl2) 
is the performance of the function on size s with 
crossover 2. Without loss of generality, z is 
assumed to be 1 in the case of an iterative 
function. 

We are now ready to test our algorithm variants. 
We assume that we can classify available 

algorithms for a problem into two classes, 
iterative and recursive. We first test problem 
sizes { 1, ..,so} for the iterative function(s) and 
determine the fp Next we test the recursive 
function(s). If we find a crossover point then we 
can use equation (3). If not, we rerun the tests 
varying z and using i& for the iterative steps 
where $=refers to the best iterative function for 
size z. From this, so can be defined as min(o) 
such that zfp > $m for all z where rfm is the best 
recursive function on size (3 that switches to the 
best iterative function for size z. 

At run-time a problem of a given size N is 
factored into problems of smaller sizes. Once the 
problem size drops below so, the appropriate fD is 
selected and applied to the problem. 

Ouroboros implements this technique via the use 
of three components: function registration, 
installation test and analysis routines, and run- 
time configuration mechanisms. 

4.1 Function Registration 
This component allows the designer to register 
known algorithms for use by the installation and 
test and run-time configuration routines to 
construct a hybrid algorithm. 

The designer supplies a collection of functions 
that all perform the “same” computation. Once 
registered, these functions are stored as an array 
of pointers. For each function pointer in the array 
there is also an associated metadata structure that 
describes the function. The metadata structure 
contains information such as the type of data on 
which the function operates (double, int, etc.. .), 
the function signature (e.g., for matrix multiply 
does it accept an additional array for scratch), the 
data-layout (e.g.. 1-D array, HDF-5, etc..), 
constraints (e.g., power-of-two input), and 
annotations (i.e. anything else the algorithm 
designer would like to add). 

The registry also maintains miscellaneous 
indexes that are used to filter functions with 
metadata constraints. For example, if the 
problem size is an odd prime, then functions that 
only operate on power-of-two are filtered. Or if 
the problem data type is double then integer-only 
functions are filtered. 

If the function is recursive then the function’s 
source is instrumented replacing recursive calls 
with a wrapper that encapsulates the calls to the 
appropriate function for the given problem size. 



4.2 Installation Test & Analysis Routines 
At build time, the test and analysis routines 
create a performance matrix for all registered 
functions by empirically testing each function on 
a range of data sizes (e.g., 1 to s for some s). For 
a given data size, the functions are sorted by 
performance. This information is stored as an 
array that maps problem size to the function 
registry index of the function that performed best 
for that size. The test and analysis routines also 
empirically determine the value so, used to bound 
size of the performance matrix. 

I 

4.3 Run-time Configuration 
At run-time a problem of a given size N is 
factored into problems of smaller sizes. The 
factoring is done in order to maximize the use of 
factor sizes that have good performance. The 
result is a generated code, (e.g., sort(int size, ...)) 
that consists of a single switch that applies the 
appropriate registered function for the problem 
size size. 

To show that this factoring can be done on a 
problem of size N, we make use of the notion of 
a well-behaved GDC algorithm. Essentially this 
requirement assumes that beyond a certain point, 
Q,, as size increases, the performance of the 
function decreases although not necessarily 
monotonically. Given this assumption, we just 
start at the best performing size < Q, and walk 
down the list of sizes in order of performance 
until we find all the factors less than for our 
given problem size. Once we have exhausted this 
list, we select the remaining factors of N, all 
greater than to be as small as possible. 

I 

5 Experimental Studies 
We have applied Ouroboros to two classical 
algorithm problems: sorting (merge, insertion) 
and dense matrix multiply (Strassen, nafve). The 
data for each problem uses randomly generated 
double precision arrays. Tests are run on a single 
processors of the machines described in Table 1. 

Table 1: Processors used for experiments 

Alpha Ev68 lGHz 64K tru64-5 

5.1 Sorting 
5.1.1 POWER3 

Figure 1 shows the performance of insertion sort 
and merge sort for small problem sizes on the 
POWER 3. The x-axis represents the problem 
size (i.e. vector length). The y-axis represents 
time. We see that between problem sizes of 100 
and 200 merge sort starts performing better than 
insertion sort. Ouroboros selected a crossover 
point of 124. In other words, Ouroboros chose to 
use merge sort until the problem size dropped 
below 124, at which point it switched to 
insertion sort. The resulting performance 
comparison between merge sort and the 
Ouroboros hybrid for larger sizes is shown in 
Figure 2. A speedup of greater than six times is 
achieved for some problem sizes. 
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Figure 1: POWER 3 crossover detection 
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Figure 2: POWER 3 with crossover of 124 

5.1.2 Alpha Ev68 

Figure 3 shows the performance of insertion sort 
and merge sort for small problem sizes on the 
Alpha Ev68. From this figure the actual 
crossover point is less clear, but occurs 
somewhere between 190 and 300. Ouroboros 
selected 190. 
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Figure 3: Alpha Ev68 detection of crossover 

The resulting performance comparison between 
merge sort and the Ouroboros hybrid for larger 
sizes is shown in Figure 4. We achieve a speedup 
of up to six times for some problem sizes. 

I 1 
0 0012 

0 M)1 

0 0008 

2 oooo6 
F 

0 0004 

0 0002 

0 
200 700 12M) 1700 2200 

Problem Size 

Figure 4: Alpha Ev68 with crossover of 190 

Note that the crossover point of 190 selected by 
Ouroboros on the Alpha Ev68 would also have 
worked well on the POWER 3. Similarly, the 
crossover point of 124 on the POWER 3 would 
also have produced good results on the Alpha 
Ev68. However, this correspondence is a 
fortuitous artifact of the way in which Ouroboros 
selects the crossover point and not necessarily 
inherent in the interaction of the algorithm with 
the architecture. For example, a crossover point 
of 295 could have been chosen for the Alpha 
Ev68 without significantly changing its 
performance signature for larger problem sizes. 
If, however, this value were used on POWER 3 
rather than 124, the speedup, as can be seen from 
Figure 1, would be diminished. 

5.2 Matrix Multiply 
The test suite for matrix multiply uses the 
gemmw implementation of Winograd’s variant of 
Strassen matrix multiply and the BLAS 3 gemm 
implementation of naive matrix multiply, both 
available from netlib. It should be noted that the 

distribution of gemmw is configured to crossover 
from the recursive gemmw to the iterative BLAS 
3 gemm at a handful of hardcoded machine- 
dependent sizes. For the tests described here, we 
modified the code to allow this parameter to vary 
in the Ouroboros framework. 

5.2.1 POWER3 

Figure 5 shows the performance of matrix 
multiply on the POWER 3 for various crossover 
points. The x-axis represents the array size @.e. 
an array size of N is an NxN matrix). The y-axis 
represents time. Ouroboros chose a crossover of 
212. This yields very close performance to the 
gemmw hard-coded crossover of 192 for AIX 
systems. Some analytical models have 
suggested a crossover as low as 8. As can be 
seen in Figure 5, on the POWER 3, this results in 
a dramatic slowdown array size gets larger with 
a distinct jump when the array size is near 
1000x1000. 

I 0 500 i wo ism 
Array Size (n) 

Figure 5: POWER 3 comparison of crossover 

In the next section we will see that the crossover 
selected for the Alpha Ev68 is 40. The 
Ouroboros crossover of 212 on the POWER 3 
offers a modest speedup (from approximately 
10% up to around 40%) over using the crossover 
of 40 as can be seen in Figure 6. 
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Figure 6: Alpha Ev68 crossover on POWER 3 



Comparing Ouroboros with DGEMM on the 
POWER 3 we see that as the array size gets 
larger, Ouroboros begins to outperform the 
iterative BLAS 3 gemm library. 
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Figure 7: POWER 3 Ouroboros vs. DGEMM 

5.2.2 Alpha Ev68 

Figure 8 shows the performance of matrix 
multiply on the Alpha Ev68 for various 
crossover points. Ouroboros chose a crossover of 
40. We can see that, as was the case for POWER 
3, the Ouroboros-selected crossover corresponds 
very closely to the gemmw hard-coded crossover 
(32 for DEC Alpha). We also note that the 
crossover of 40 results in up to a 60% speedup 
over using the crossover of 212 that was chosen 
for POWER 3. This is a much more significant 
speedup than was seen using the the Alpha Ev68 
crossover of 40 on the POWER 3. The 
Ouroboros crossover results in a two times 
speedup over the analytical lower-bound 
crossover of 8. 
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Figure 8: Alpha Ev68 crossover comparison 

Figure 9 shows that speedup of the hybrid 
Ouroboros algorithm over the BLAS 3lgemm 
library. This is a more striking speedup in the 
array sizes tested. One would expect that the 
DGEMM curve would begin to level off as the 
array size gets larger. 

50 

40 

E 3 0  
F 

20 

10 

0 
0 500 1000 1500 2000 

Array Size (N) 

Figure 9: Alpha Ev68 Ouroboros vs. 
DGEMM 

6 Conclusions and Future Work 
We have presented that the use of a behavior- 
based model to construct hybrid algorithms 
automatically can produce high-performance 
results without requiring explicit knowledge of 
machine or algorithm structure. Our Ouroboros 
tool allows the algorithm designer to construct 
generic code that is then used by Ouroboros to 
instantiate a hybrid algorithm automatically 
using empirically derived performance data. 

Since performance is machine dependent, it is a 
daunting task to create an algorithm that is 
sensitive to structural hardware nuances. 
Empirical approaches have been shown to be 
successful in addressing this challenge and there 
have been recent successes with empirically- 
tuned kernel libraries. However, for the 
algorithm designer, the challenge remains. The 
Ouroboros approach allows the designer the 
benefit of empirically-based hybrid algorithms 
without the need for specialized 
algorithdarchitecture knowledge. 

We are currently extending Ouroboros and its 
test suite to address Fourier Transform and All 
Pairs Shortest Path. We are also implementing a 
parallel version of Ouroboros capable of 
selecting from among parallel algorithm variants. 
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