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Quantum-shell corrections are made directly to the

finite-temperature Thomas-Fermi-Dirac statistical model
of the atom by a partition of the electronic density into
bound and free components. The bound component is
calculated using analytic basis functions whose
parameters are chosen to minimize the energy. Poisson's
equation is solved for the modified density, thereby
avoiding the need to solve Schroedinger's equation for a
self-consistent field. The shock Hugoniot is calculated for
aluminum: shell effects characteristic of quantum self-
consistent field models are fully captured by the present

model.



The finite-temperature Thomas-Fermi-Dirac (TFD) statistical
model of the atom [1-2] has been extremely useful in calculating the
equation of state (EOS) for hot, dense materials. Quantum self-
consistent-field (QSCF) models [3-5] followed as an improvement to
TFD theory. The QSCF models however are plagued by uncertainties
in boundary conditions and in convergence problems.

In this paper we make quantum shell corrections directly to the
TFD model by a partition of the electronic density into bound and
free components. The bound component is calculated using analytic
basis functions whose parameters are chosen to minimize the
energy. The local kinetié energy is calculated from the operation of
the Laplacian on each basis function, divided by the basis function;
contributions are retained only if the sum of the local kinetic and
potential energies is negative. The free component is calculated
from the standard TFD kinetic energy integral, which is modified by
retention only of contributions in which the sum of the local kinetic
and potential energies is positive. This procedure avoids double
counting of bound and free contributions. The local potential energy
is then calculated by solving Poisson's equation for the partitioned
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density, subject to 'the standard TFD boundary conditions. The

exchange contribution is calculated using Slater's local exchange

potential [3-4].

Next we present the mathematical development of the model.
solve Poisson's equation,
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where in Egs. (1b) and (1d) x = e/kT and in Egs. (1¢) and (1d) u is the

chemical potential [1-2]. Eq. (1a) is solved subject to the boundary

condition V = -Z/r near r = 0 (atomic units used henceforth) and the

constraint,
f&pAB=Z



In practical condensed-matter applications the atom is confined
within an ion sphere [1-4] whose radius rg is determined from the
reciprocal of the material n-umber density or average volume per
atom. Writing V(r) = vo(r)/r the boundary value v(0) = -Z and the
constraint given by Eqg. (2), which guarantees electrical neutrality
within the ion sphere, determine the boundary value of the

derivative v'(rg) = v(rg)/rg on the surface of the ion sphere; the
chemical potential is given by p =v(rg)/rg, which ensures that the
potential energy vanishes at rg. It is convenient to integrate the
radial equation backwards for trial values of v(rg) until Eq. (2) is

satisfied. The basis-set members used in Eqg. (1c) and (1e) (Table 1)
are normalized within the ion sphere.

As pointed out in [1] the vanishing of the potential energy at rg
means that the electronic pressure at rg is that for a free-electron
gas, which is 2/3 times the kinetic-energy density at rq.

We further constrain the solution of Eq. (1a) by accepting
contributions to the bound and free components of the electronic
density [Egs. (1c) and (1d) respectively] only if the sum of the local
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kinetic and potential energies satisfies the conditions (Ej + V)/KT <

0 in Eq. (1c) and x + V/KT > 0 in Eqg. (1d). The standard TFD model is
recovered by dropping the bound component and accepting both
negative and positive local total energy contribitions to Eq. (1d).

The set of basis functions indicated in Egs. (1c) and (1e) are
chosen to be Slater-type-orbitals (STO's), whose exponents (Table 1)
are chosen to minimize the total energy ét kT = 0.026 EV and normal
density subject to the constraint given by Eqg. (2). The total energy

is given by,

-
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The solution of Eqg. (1a) gives the partitioned density, which is
used to calculate the energy. The parameters of the basis set are

varied and the solution of Poisson's equation is repeated until the



energy reaches a minimum. Numerical experiments suggest that a
minimum principle‘exists for a cold material (kT = 0.026 eV) but not
for a hot material (kT = 10 eV); therefore the set of Slater-type-
~orbital (STO) parameters fdund to minimize the enrgy at kT = 0.026
eV and normal density (Table 1) is used over the entire range of
shock Hugoniot temperatures and densities apparently with
satisfactory results (Figs. 1-2).

Since this solution self-consistently finds both the potential
energy and the density, as in the standard TFD model, it avoids th.e
need first to solve Schroedinger's equation for a self-consistent
field in order to obtain the density. Quantum-shell effects however
appear in the solution th.rough the partition of the density into bound
and free components. It is unclear if the upper bound on the energy
of variational quantum mechanics is retained; however numerical
experiments show that the total energy of the present model
compares favorably with the total energy of the QSCF model, which
typically is 25% higher than the total energy of standard TFD theory
(Table 1). This result suggests that the partitioned density

overcomes a defect of the TFD density, namely a singularity at the



origin which is responsible for overestimating the binding energy.

A broad minimum near -6.25 keV is shown in Table 1. Energies
versus (pg = (op eventually fall again for larger {pg = Cop: however

Eq. (2) cannot then be satisfied. Moreover it is always possible to
choose a set of parameters, for example one in which the subshell
parameters are not equal, in which the energy is lower compared to
the set shown in Table 1 and yet Eq. (é) is simultaneously satisfied;
however these cases do not give sensible electronic densities, as in
Fig. 1. It may be possible (although we have not investigated it) to
choose a basis set, for example one in which the members are all
mutually orthogonal as in the QSCF models, in which the present
restriction that subshell parameters be equal is lifted. However the
simplicity and accuracy of the present model compared to QSCF
models is part of its appeal.

Our results are shown in Figs. 1-2. Fig. 1 shows the radial
electronic density at 10 eV and 1g/cc for Al for the TFD, the QSCF
and the present quantum-shell corrected TFD (QSCTFD) models.

We use the same computer code for all three models (Bulirsch-



Storer automatic error control ODE solver [6]); in the QSCF model
finite value and zero slope are taken for an orbital wave function

and its derivative at rg. At 10 eV it is satisfactory to represent the

continuum using several positive-eigenvalue orbitals from an
original set of 12 orbitals of s, p, and d symmetries.

The QSCTFD result shows what appears to be a discontinuity near
the L-shell maximum and a discontinui{y and region of instability
between 1 and 2 a. u. These artifacts are likely caused by the |
energy constraint on the partitioned density; nevertheless the model
sensibly and robustly captures the shell structure of the atom
(Figs. 1-2).

The oscillation of the QSCF result about the QSCTFD result above
2 a. u. in Fig. 1 reflects the quantum-continuum character of the
former model. Nevertheless it seems satisfactory to represent the
continuum contribution using the TFD prescription, as in the
standard TFD model, in the present energy-constrained QSCTFD
model, and, at least for the high-energy part of the contnuum, in our
referenced QSCF models [3-5] .

Fig. 2 shows the shock Hugoniots for the various models
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compared with experimental data [7-12]. The INFERNO [4] result is
taken from [5]. Since the publication of [5], an error has been
discovered in the INFERNO code, whose correction gives a less
compressible Hugoniot for high-Z materials; however this correction
is not expected to be as important for low-Z materials [13].

In summary we have proposed and tested a modified form of the
TFD statistical model of the atom, in which quantum-shell
corrections are realized by partitioning the electronic density into
bound and free components. Future work will include applications to
high-Z materials.
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Table 1. Aluminum: total energies and variational parameters for

n+l-1 -G
the Slater-type-orbitals ¥am=Nuaf €™ Yim ot kT = 0.026 eV and a
normal density of 2.7 g/cc. Filled subshells are automatically
spherically symmetric and unfilled subshells are spherically
averaged. At this level of simplicity the energy [Eq. (3a)] has a

minimum and Eq. (2) is simultaneously satisfied if Ea=Car,
C,=13.0

(ge=0pp=14.5

Cae=s,=2:0

EQSCTED = -6.25 keV (present model)

EQSCF = -6.55 keV (Ref. 3)

ETED = -8.49 keV (Ref. 3)

Example of the minimum energy versus (o for fixed values shown
above for the other parameters:

EQscTFD C2s =C2p
-6.09 keV 3.5
-6.25 keV 4.5
-6.23 keV 5.5
-6.03 keV 6.5
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Figure Captions
Fig. 1 Radial electronic density for aluminum at 10 eV and 1 g/cc.
The pressures calculated for the various models are PTpp=0.853 Mb,

PascF=0.63 Mb (converged to 2 places after 20 iterations), and

PQSCTFD=O.666 Mb.

Fig. 2. Shock Hugoniots for aluminum fbr the various models and
from experiment. QEOS is based on the Thomas-Fermi model with
"cold curve" empirical adjusments (Ref. 5). The QSCTFD result does
not include the ion contribution, which is small and is included in

the other models using the ideal gas law.
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