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9 ABSTRACT Deformation at grain boundaries is observed and a framework for bound 
specific constitutive laws based upon geometric considerations of slip transfer IS 
developed. Orientation images of a pseudo-internal surface during interrupted channel 
die deformations of a Cu bi-crystal show the heterogeneity of lattice rotation near the 
grain boundary. The experiments demonstrate that a region near the boundary is strongly 
influenced by neighboring grain deformation and lend support to the development of 
deformation models that include the effects of non-local slip system interaction. 

INTRODUCTION: At low temperatures, crystalline metals plastically deform by 
dislocation motion along given slip systems that are a fknction of the Bravais lattice and 
atomic motif of the crystal. As such, plastic deformation is inherently anisotropic and 
deformation behavior within a single crystallite is a function of the local structure and 
orientation of the crystallite. The classic works of Taylor (1 938) and others describe such 
phenomena. These models ignore any non-local effects that might be presented by a 
sudden change in crystal structure or in orientation of the lattice, such as are encountered 
by dislocations at phase boundaries, grain boundaries, and dislocation cell walls (or 
subgrain boundaries). Finite element models have incorporated crystal plasticity 
formulations with compatibility constraints of the mesh at boundaries, but generally 
contain no additional consideration for the presence of internal interfaces. Strain gradient 
plasticity models have also been developed that inherently include crystallite boundary 
effects as positions of potentially high strain gradients, but generally lack the inclusion of 
anisotropy or effects of boundary character in the formulation [Fleck and Ashby, 19951. 
The present discussion examines deformation at grain boundaries in general and develops 
the framework for a boundary specific constitutive law based upon geometric 
considerations of crystal plasticity and slip transfer phenomena. 

PROCEDURES, RESULTS AND DISCUSSION: Interrupted channel die deformation 
experiments were performed on diffusion bonded Cu bi-crystals [King, et.al., 1993 J and 
multi-crystals. A polished surface of the material is well characterized by orientation 
imaging prior to deformation. The characterized surface is covered by a single crystal 
slice to protect the surface from frictional effects of the channel dies as shown in Fig. 1. 
The single crystal is removed after a slight deformation, and the structure is again fully 
characterized to determine lattice rotations as a function of position on this “internal” 
surface. Experiments on bi-crystals and multi-crystals of pure copper show that 
dislocation cell structure evolution can be reasonably tracked to about 50 percent 
compressive deformation. 
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Figure 1 - Schematic of channel dies and deformation of a bi-crystal with an ‘‘internal” polished surface. 

Orientation imaging offers the capability of identifying dislocation cell structure 
evolution for these interrupted deformation experiments, so evolution of “internal” 
structure (albeit on a surface), can be directly observed. Crystallite lattice rotation is also 
measured giving an indication of what slip systems must be active to produce such 
rotations. Orientation images of the deformed structures reveal that significant breakup 
of the grain structure occurs during deformation and that the lattice re-orientation near the 
grain boundary is significantly different than that far from the boundary. Fig. 2 shows an 
image collected from the SE signal during orientation imaging after 10 percent 
deformation. Slip lines are apparent on the surface that can be used to determine active 
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Figure 2 - SE image collected during orientation mapping, showing the grain boundary of the 
bi-crystal and slip traces indicating active slip systems (scale bar indicates 12 -m). The pole 
figure on the left shows the positions of { 11 1 )  planes. The shared { 11 1) slip trace is 
apparent. 

slip systems (in addition to measurements and analysis of lattice rotation). The grain 
boundary of the bi-crystal is revealed as are slip traces indicating active slip systems. 
The pole figure on the left shows the positions of { 11 1 ] planes. One of the active slip 
systems is in the same orientation in each grain. This is evident from the slip trace that 
passes through both crystallites. Similar deformation experiments on multi-crystals have 
revealed additional insights into the character of deformation near grain boundaries. 
Orientation images of a specimen deformed in channel dies to 30 percent compression 
show that the crystallite lattice near a triple junction containing an annealing twin 
boundary contains regions of inhomogeneous flow near the boundary. These regions are 



directly related to the structure observed in the neighboring grain. The evolution and 
extent of such inhomogeneities are a function of the local stress state in relation the grain 
boundary character. Post-mortem TEM analysis reveals additional information related to 
the dislocation structure near the grain boundary, the dislocation density and structure 
within the cell walls, and direct observation of slip through crystallite interfaces. 

Various models that predict dislocation phenomena near grain boundaries have been 
proposed. Specifically, slip transfer coefficients based on the crystallographic structure 
of the grain boundary in relation to the operative slip systems in each crystallite have 
been developed. Shen and co-workers, (1 988) developed a slip transmission criterion 
that incorporates an explicit dependence upon the interface normal orientation as well as 
the geometry of the slip planes in each crystallite. This criterion suggests that the extent 
of slip interaction between neighboring grains will be governed according to the 
following relation: 

M ,  = (li ?1 xbi ?b j ) .  

In this equation, 1 is a unit vector defining the line of intersection between the grain 
boundary plane and the slip plane for potential slip systems in grains i andj, and b is the 
unit slip direction (Burgers vector) for each. Employing such concepts in conjunction 
with existing models of polycrystal deformation allows for deformation and lattice 
rotation near grain boundaries to be modeled more accurately. The effects of neighboring 
grains on deformation near a crystallite interface dissipate with displacement from the 
boundary. The distance over which these effects are significant must be a function of 
chemistry and the geometric parameters of the interface. For a given alloy chemistry, a 
function of the type 

where d j ,  is the change in slip rate expected on slip system i in one grain as influenced 
by the slip rate j j  on slip systemj in the neighboring grain. Mu is a slip transmission 
number and 6 is the distance from the boundary plane along a direction normal to the 
local boundary tangent. The functional form of Eq. 2 is dependent upon details of the 
constitutive equations that govern slip behavior. 

dY, = d Y i @ s , 6 , Y j )  (2) 
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