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ABSTRACT 

An artificial neural network (ANN) method is developed for treating the spatial 
variable of the one-group slab-geometry discrete ordinates (SN) equations in a 
homogeneous medium with linearly anisotropic scattering.  This ANN method takes 
advantage of the function approximation capability of multilayer ANNs.  The discrete 
ordinates angular flux is approximated by a multilayer ANN with a single input 
representing the spatial variable x  and N outputs representing the angular flux in each of 
the discrete ordinates angular directions.  A global objective function is formulated which 
measures how accurately the output of the ANN approximates the solution of the discrete 
ordinates equations and boundary conditions at specified spatial points.  Minimization of 
this objective function determines the appropriate values for the parameters of the ANN.  
Numerical results are presented demonstrating the accuracy of the method for both fixed 
source and incident angular flux problems. 

1.   INTRODUCTION 

Artificial neural network (ANN) methods have been researched extensively 
within the nuclear community for applications in systems control, diagnostics, and signal 
processing. Multilayer ANNs are capable of representing continuous functions to an 
arbitrary accuracy (Fausett, 1994).  Despite this ability, ANNs have not been previously 
considered as an approach for obtaining numerical solutions of neutron transport 
problems.  In this paper, we investigate ANNs as a method for treating the spatial 
variable in the discrete ordinates (SN) approximation to the slab geometry neutron 
transport equation. 

We consider the use of multilayer perceptron ANNs (Fausett, 1994) as an 
alternative to standard spatial discretization methods for the slab-geometry discrete 
ordinates equations.  The work presented in this paper is based on a method proposed by 
van Milligen et al. (1995) to obtain solutions of the differential equations arising in 
plasma physics applications.  Brantley (2000) recently utilized the method to obtain 

 



 

solutions of slab geometry neutron diffusion problems with Marshak boundary 
conditions. 

The proposed ANN method approximates the discrete ordinates angular flux as a 
multilayer ANN.  The ANN has a single input representing the spatial variable x  and N 
outputs representing the angular flux in each of the discrete ordinates angular directions.  
Since the ANN approximation to the angular flux is continuous and differentiable, the 
accuracy with which the ANN approximation to the angular flux satisfies the discrete 
ordinates equations and boundary conditions can be evaluated analytically.  A global 
objective function is formulated which measures how accurately the output of the ANN 
approximates the solution of the discrete ordinates equations and boundary conditions at 
specified spatial points.  Minimization of this objective function determines the 
appropriate values for the parameters of the ANN.  The ANN can then be used to 
compute the angular flux at any point in the spatial domain.  Hence, any angular 
moments such as the scalar flux and current can also be readily computed. 

This paper is organized as follow.  In Sec. 2, we describe the discrete ordinates 
transport problem to be solved, provide a brief description of the ANN architecture used, 
and present the ANN solution algorithm.  In Sec. 3, we present numerical results from 
both a fixed source and an incident angular flux problem.  We conclude with a brief 
discussion in Sec. 4. 

2.   ARTIFICIAL NEURAL NETWORK SOLUTION ALGORITHM 

We consider the following discrete ordinates (SN) problem in a homogeneous slab 
 with linearly anisotropic scattering: RL xxx ≤≤
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Our notation is standard (Lewis, 1993): ( )xnψ  is the angular flux of particles traveling in 
the discrete ordinates direction nµ , tσ  is the macroscopic total cross section, 0sσ  and 

1sσ  are the isotropic and linearly anisotropic components of the macroscopic differential 

scattering cross section, respectively,  is an interior source, and Q inc
nψ  is a prescribed 

incident angular flux on the boundary.  Here we use a standard even-order ( ) 
Gauss-Legendre quadrature set 
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that .  The neutron scalar flux and current are computed from the discrete 

ordinates angular flux by 
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respectively. 

Standard approaches to the spatial discretization of Eq. (1a) involve exact 
integration over a spatial cell coupled with approximate auxiliary conditions relating the 
resulting cell-edge and cell-average angular fluxes.  Instead, we propose to approximate 
the discrete ordinates angular flux by an ANN that has a single input for the spatial 
variable x and N outputs Y  representing the angular flux in each of the discrete ordinates 
angular directions.  We consider in this paper only multilayer, feedforward artificial 
neural networks, often called multilayer perceptrons (Fausett, 1994). 

n

Consider an ANN with a single input node x , one hidden layer with J  nodes, 
and  output nodes Y  representing the discrete ordinates angular flux.  This ANN 
architecture is shown schematically in Fig. 1, where connections between nodes 
explicitly represented are shown.  At least one hidden layer is necessary so that the ANN 
can learn a continuous mapping to an arbitrary accuracy (Fausett, 1994).  Each hidden 
and output layer node has a so-called bias term representing a base level of activation for 
the node.  This bias term increases the flexibility and accuracy of the ANN.  In addition, 
each hidden and output layer node has an activation function that determines the response 
of the node to the input it receives from nodes in the previous layer.  We denote the 
connection weight from the input layer node to the j

n

th hidden layer node as jα , the 

hidden layer bias as , and the hidden layer activation function as .  We denote 

the connection weight from the j
ju ( )sfh

th hidden layer node to the nth output layer node as jnβ , 

the output layer bias as , and the output layer activation function as .  The total 
number of parameters in the ANN (connection weights and bias terms) is then given by 

. 
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For a specific input x  value, the computed input to the jth hidden layer node is 
given by  

.jjj uxs += α  (4) 
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Given this input, the response or activation of the jth hidden layer node is obtained by 
applying the hyperbolic tangent activation function given by 
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Fig. 1  Multilayer ANN architecture. 

This function is a continuous analog to the hidden layer node being “on” for positive 
argument values and “off” for negative argument values.  We note that other forms of the 
activation function, such as binary or bipolar sigmoid, are often used (Fausett, 1994).  
Given the activation of each of the hidden layer nodes, the input to the nth output layer 
node is computed as  

( ) .
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n
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j
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=
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The ANN approximation of the angular flux in the discrete ordinates direction nµ  is 
obtained by applying the output layer activation function: 
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As implied by Eq. (7), the identity function was used as the output layer activation 
function for all of the work presented in this paper.  We discuss possible alternate forms 
for the output layer activation function in Sec. 4. 
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The connection weights and bias terms are typically initialized to small random 
values and are systematically adjusted during the training of the ANN.  The ANN is 
trained to approximate the solution of the discrete ordinates problem Eqs. (1) by 
minimizing an objective function E  given by 
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where I  is the number of spatial training points (including two points on the boundaries 
of the slab) and  and ( )xann

0φ ( )xann
1φ  are the ANN approximations of the neutron scalar 

flux and current given by 
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respectively.  The sum over nµ  in the first term of Eq. (8) represents a sum over all 
discrete ordinates directions in the interior of the slab and a sum over exiting directions 
on the boundaries of the slab.  The incident directions on the boundaries of the slab are 
accounted for in the second and third (boundary condition) terms of the objective 
function.  The γ  weights in Eq. (8) serve both to increase the accuracy and efficiency of 
the ANN method, as described below. 

The objective function given by Eq. (8) is a measure of how accurately the ANN 
approximation to the angular flux satisfies the discrete ordinates problem at the spatial 
training points.  This objective function is minimized by systematically adjusting the 
weights of the ANN using a minimization algorithm.  We utilize the conjugate gradient 
and BFGS variable metric methods as implemented in the CONMIN algorithm (Shanno, 
1980).  The derivatives arising from the action of the discrete ordinates transport operator 
on the ANN can be calculated analytically.  In addition, the gradient of the objective 
function with respect to the ANN parameters, utilized by the minimization algorithm, can 
be calculated analytically.  The minimization is deemed to have converged when 
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( )
22

,1max pEp ε≤∇ , i.e. the L2 norm of the gradient of the objective function with 

respect to the ANN parameters is less than or equal to the convergence criterion ε  times 
the maximum of one and the L2 norm of the ANN parameter vector p . 

The training of the ANN requires minimization of a nonlinear objective function, 
which can be susceptible to trapping in local minima. The γ  weights in Eq. (8) are 
adapted during (but independent from) the minimization procedure without user 
intervention and are set to larger values at spatial training points with larger residuals.  
These weights help to alleviate the local minima problem by focusing the effort of the 
minimization on the spatial points with larger residuals.  In addition, the γ  terms 
incorporate an inverse scalar flux weighting such that all spatial training points contribute 
roughly equally to the objective function regardless of the magnitude of the scalar flux at 
the point.  This was found to be important for obtaining consistently accurate results, 
particularly in deep penetration problems. 

After the ANN is trained, the angular flux can be efficiently computed at any 
spatial point in the slab.  In addition, any angular moments of the angular flux (such as 
the scalar flux or current) can be readily computed from this angular flux. 

3.   NUMERICAL RESULTS 

To demonstrate the accuracy of the ANN method, we consider two numerical 
problems solved in a homogeneous slab 0 1≤≤ x  with total cross section 10=tσ  (i.e. a 
ten mfp slab).  Problem I has isotropic scattering with 5.90 =sσ , a constant interior 
source , and vacuum boundaries.  Problem II has linearly anisotropic scattering 
with 

5.0=Q
5.90 =sσ  and 0.51 =sσ , an isotropic incident angular flux on the left edge of the 

slab of 1=inc
nψ , 0>nµ , no interior source, and a vacuum boundary on the right edge of 

the slab.  We solve these problems using quadrature sets of order two and four and 
compare to fine-mesh discrete ordinates reference solutions of the same quadrature order 
obtained using a standard linear discontinuous spatial discretization (Lewis, 1993).  For 
the S2 case, the ANN used five hidden layer nodes and was trained using eleven spatial 
training points spaced one mean free path apart (one point on each of the two boundaries 
and nine interior points).  For the S4 case, the ANN used ten hidden layer nodes and was 
trained using twenty-one spatial training points spaced one-half mean free paths apart 
(one point on each of the two boundaries and nineteen interior points).  The trained ANN 
was then used to compute the scalar flux at 1000 equally-spaced intervals within the slab.  
All calculations utilized a minimization convergence criterion of ε = 10-6. 

Both the discrete ordinates angular flux and the scalar flux for Problem I are 
concave-down.  Fig. 2 plots the S2 scalar flux and the percent relative error (PRE) in the 
scalar flux obtained using the ANN method for this problem.  The ANN scalar flux is 
virtually indistinguishable from the standard S2 results.  The magnitude of the PRE in the 
ANN solution is less than 0.3% at all points in the slab.  The ANN solution is extremely 
accurate in the interior of the slab, with a small degradation in accuracy within a couple 
of mean free paths of the boundary (i.e. in the boundary layer region).  We note that the 
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boundary layers of the transport solution were not spatially resolved.  The root-mean-
squared (RMS) error in the ANN scalar flux is shown in Table 1 for both the S2 and the 
S4 calculations.  This RMS error represents an average error in the scalar flux across the 
slab.  Both of the average errors in the scalar flux are reasonably small, with the S4 error 
being extremely small since a larger number of hidden layer nodes and spatial training 
points were used.  This problem illustrates that the ANN method is able to accurately 
compute a concave-down cosine-shaped solution.  Although the true solution to the 
problem is symmetric, the ANN solution is not rigorously symmetric. 

Table 1 shows the computed absorption and leakage rates obtained from the 
reference calculation and the PRE of the computed ANN quantities.  The ANN 
absorption rates were obtained by computing the ANN scalar flux at 1000 intervals in the 
slab and using the trapezoidal rule to perform the integration across the slab.  The ANN 
method yields very accurate results for the integral absorption rate and slightly less 
accurate results for the leakage rates.  In all cases, the ANN method yields values with a 
PRE less than 0.2%.  It is evident from the error in the S4 leakage rates that the ANN 
solution is not rigorously symmetric. 

Table 1  Computed Errors for Problem I 

 Leakage Rate 
Quadrature 

Order 
 Scalar Flux 

RMS Error 
Absorption 

Rate 
Left Right 

2 Ref. − 0.296065 0.101968 0.101968 
 ANN 0.112% -0.095% -0.182% -0.182% 
4 Ref. − 0.303815 0.098093 0.098093 
 ANN 0.015% 0.001% -0.029% 0.003% 

 

Both the discrete ordinates angular flux and the scalar flux for Problem II are 
concave-up.  Problem II is a reasonably challenging problem, with the scalar flux 
decreasing by a factor of over thirty across the slab.  Fig. 3 plots the S4 scalar flux and the 
percent relative error (PRE) in the scalar flux obtained using the ANN method for this 
problem.  Again, the ANN scalar flux is virtually indistinguishable from the standard S4 
results.  The magnitude of the error in the ANN solution is less than 0.2% at all points in 
the slab, with the largest error occurring deep in the slab at the right boundary.  The RMS 
errors in the ANN scalar flux are shown in Table 2 for the S2 and the S4 calculations.  As 
for Problem I, these RMS scalar flux errors are small.  This problem illustrates that the 
ANN method is able to accurately compute a concave-up exponential-shaped solution. 
This problem also demonstrates the ability of the ANN method to compute accurate 
solutions for problems with linearly anisotropic scattering. 

Table 2 shows the computed absorption and leakage rates obtained from the 
reference calculation and the PRE of the computed ANN quantities.  As for Problem I, 
the ANN method yields very accurate results for the integral absorption rate.  In addition, 
the leakage rates at both the left and right edges of the slab are in close agreement with 
the reference solution. 
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Table 2  Computed Errors for Problem II 

 Leakage Rate 
Quadrature 

Order 
 Scalar Flux 

RMS Error 
Absorption 

Rate 
Left Right 

2 Ref. − 0.251049 0.299013 0.027288 
 ANN 0.015% 0.010% 0.017% -0.025% 
4 Ref. − 0.239014 0.256208 0.026045 
 ANN 0.034% -0.002% 0.020% -0.061% 

 

4.   CONCLUSIONS 

We have examined the use of artificial neural networks for the treatment of the 
spatial variable in the discrete ordinates approximation of the slab-geometry neutron 
transport equation.  In this paper, we considered homogeneous slabs with linearly 
anisotropic scattering.  The proposed ANN method approximates the discrete ordinates 
angular flux as a multilayer ANN with a single input representing the spatial variable x  
and N outputs representing the angular flux in each of the discrete ordinates angular 
directions.  A global objective function is formulated which measures how accurately the 
output of the ANN approximates the solution of the discrete ordinates equations and 
boundary conditions at specified spatial points.  Minimization of the objective function 
determines the appropriate values for the parameters of the ANN.  The ANN can then be 
used to efficiently compute the angular flux at any point in the spatial domain.  Hence, 
any angular moments such as the scalar flux and current can also be readily computed. 

Our numerical results demonstrate that the ANN method can provide accurate 
results for the scalar flux using a small number of spatial points for problems whose 
solutions are either concave-up or concave-down.  The solutions obtained by the method 
are reasonably accurate in the boundary layers of the transport solution, even though 
these boundary layers were not spatially resolved.  In addition, the computed integral 
absorption rate and leakage rates at the boundaries of the slab show good agreement with 
values obtained from the reference solution.  Although not examined in detail in this 
paper, our numerical experiments also demonstrate that, much like standard discretization 
methods (Lewis, 1993), the number of spatial training points used in the ANN method 
must be increased as the quadrature order is increased to maintain the accuracy of the 
solutions.  In addition, for a given number of spatial training points, increasing the 
number of hidden layer nodes increases the accuracy of the solutions with a 
commensurate increase in computational effort. 

The ANN method presented in this paper possesses some negative characteristics 
as well.  From a theoretical viewpoint, the method does not rigorously preserve particle 
balance or any symmetry present in the solution.  However, the numerical experiments 
examined to date show that the particle conservation errors are small (typically less than 
0.1%) for globally converged solutions.  The method is also not guaranteed to produce 
strictly positive angular fluxes.  However, the production of negative angular fluxes has 
not been problematic in the numerical problems examined to date with the exception of 
strongly absorbing deep-penetration problems in which the scalar flux varies by many 
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Fig. 2  ANN S2 scalar flux and percent relative error for Problem I. 

 

(9) 



 

 

0.1

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

Incident Flux Problem - S4 Scalar Flux
ANNRef

 

 

-0.18
-0.16
-0.14
-0.12
-0.1

-0.08
-0.06
-0.04
-0.02

0
0.02

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

Incident Flux Problem - PRE in S4 Scalar Flux

 

Fig. 3  ANN S4 scalar flux and percent relative error for Problem II. 
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orders of magnitude.  We are currently investigating the use of an exponential activation 
function for the output layer nodes to eliminate the production of negative angular fluxes 
for these types of problems.  This approach has the potential added benefit of allowing 
the ANN to accurately compute a much broader range of angular flux values.  From an 
operational viewpoint, the proposed ANN method converts the solution of a linear 
transport problem into a nonlinear minimization problem.  Nonlinear minimization can 
be numerically intensive and comes with pitfalls of its own, such as trapping in local 
minima. 

We have not discussed the numerical efficiency of the ANN method in this paper.  
The number of ANN parameters, and hence the computational expense of the ANN 
method, grows as the quadrature order and the number of hidden layer nodes is increased.  
In addition, the evaluation of the global objective function and its gradient during the 
minimization becomes computationally more expensive as the number of spatial training 
points is increased.  Our current implementation combines an object-oriented 
implementation of the ANN coupled with a procedural implementation of the 
minimization algorithm.  This coupling possesses inherent inefficiencies, but we believe 
that it can be improved.  Future efforts will be directed at improving the efficiency of the 
ANN method through both implementation and algorithmic improvements. 

We considered the case of linearly anisotropic scattering in this paper, and the 
extension of the ANN method to general anisotropic scattering is straightforward.  The 
extension to inhomogeneous cross sections and interior sources is similarly 
straightforward, although the accuracy of the method for inhomogeneous slabs remains to 
be seen.  Furthermore, there are no conceptual difficulties in extending the method to 
solve the multidimensional discrete ordinates equations.  However, the accuracy and 
efficiency of the ANN method for these multidimensional problems remains an open 
question. 

We have not addressed in this paper the application of the ANN method to 
optically-thick, highly-scattering problems.  An appealing aspect of the application of 
this method to these thick diffusive problems is that source iteration, which can converge 
arbitrarily slowly for these problems, is avoided.  We plan to investigate this topic in 
future work. 

NOMENCLATURE 

nn w,µ  Gauss-Legendre quadrature directions and weights 
x    spatial variable 

( )xnψ   discrete ordinates angular flux at position x in direction nµ  
( ) ( )xx 10 ,φφ  scalar flux, current 

tσ    macroscopic total cross section 

10, ss σσ  isotropic, linearly anisotropic components of macroscopic differential 
scattering cross section 

Q    interior source 
inc
nψ    incident angular flux 
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( )xYn  ANN approximation to discrete ordinates angular flux at position x in 
direction nµ  

( )
( )x

x
ann

ann

1

0 ,

φ

φ
 ANN approximations to the scalar flux, current 

 
Subscripts 

n   discrete ordinates angular direction 
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