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INTRODUCTION 

In [l], we presented the stretched filtered 
transport synthetic acceleration method (SFTSA) 
for homogeneous media. Both SFI‘SA and SFI’SA 
preconditioned Krylov were shown to be effective 
iterative schemes in homogeneous media due to the 
predictable structure of the iteration eigenvalues. 
In heterogeneous media or on non-uniform grids, 
the eigenvalue structure is unpredictable for gen- 
eral problems, making the filter strength a for op- 
timal SFTSA extremely problem dependent. Leav- 
ing Q set to the optimal value (in each cell by ta- 
ble lookup) predicted by homogeneous media the- 
ory can make SFTSA divergent, even for relatively 
mild heterogeneities. Thus, SFTSA is more frag- 
ile than DSA in the sense that most DSA schemes 
break down only for much more severe hetero- 
geneities. Fortunately, breakdown of SFTSA oc- 
curs with large negative eigenvalues, and Krylov 
methods preconditioned with SFTSA remain ef- 
fective for such problems. Therefore, with a 
Krylov scheme “wrapped around“ SFTSA, the re- 
sulting method is relatively insensitive to the filter 
strength, and a user may achieve reasonably good 
performance, if not optimal, with a fixed a over a 
wide range of heterogeneous problems. 

HETEROGENEOUS SFTSA 

To stretch the exact error transport equation 
into a single pure absorber problem, the stretch E 

in each cell depends on the material properties of 
that cell. Cells with different scattering ratios have 
different stretches, such that the mean free path in 
each cell of the stretched problem is &L for the 
cell, where L is the diffusion length. The stretch in 
a heterogeneous problem is not uniform across the 
grid; hence, there is not a PI equivalence between 
the stretched transport problem and the associated 
stretched diffusion approximation. This is an un- 
derlying physical reason for some of the instabil- 
ities related to heterogeneities. This also means 
that the boundary condition for the stretched prob- 
lem corresponding to an inhomogeneous boundary 
condition in the original problem is allowed to be 

a vacuum boundary instead of the albedo desribed 
in Part I. (In practice, this prevents generation of 
spurious near-singular eigenvalues that may cause 
restarted GMRES to stagnate.) 

Unfortunately, for c close to unity, relatively 
mild heterogeneities can have a large negative im- 
pact on SFTSA. In Figure 1, we show three plots 
of iteration eigenvalues for the two-region peri- 
odic problem indicated. Figure l a  shows a uni- 
form medium and grid result with a spectral ra- 
dius of 0.86 when the optimum filter strength a! 

is used. The mild grid heterogeneity in Figure lb  
causes the spectral radius to jump to 1.72, with 
the filter strength Q for each cell set to optimize 
an infinite homogeneous problem. Increasing the 
filter strengths (ad hoc) as in Figure IC removes 
the instability but drives the spectral radius to 0.93, 
closer to the source iteration value of 0.9999. With 
a sufficiently large filter strength, any heteroge- 
neous problem may be stabilized, but the opti- 
mum filter strength then becomes highly problem- 
dependent and performance is not guaranteed to be 
significantly better than source iteration. 

We have observed that material hetero- 
geneities and grid heterogeneities have similar ef- 
fects. For c far from unity in all cells, stronger het- 
erogeneities are required to cause instability than in 
problems with c closer to unity, but a stronger filter 
is still required than for a homogeneous problem. 
From our analysis and testing in 1-D with the ES 
method, we conclude that SFTSA without Krylov 
is not viable for heterogeneous problems, except 
for smooth material variation on smooth grids. 

HETEROGENEOUS KRYLOV SFTSA 

When a Krylov solver, such as restarted GM- 
RES, is “wrapped around” SFTSA, the method be- 
comes much more effective. Furthermore, perfor- 
mance is relatively insensitive to variation in the 
filter strength a. Certainly, performance on a given 
problem can be optimized by trial and error (or by 
Fourier analysis for a nearly periodic heterogene- 
ity), but performance does not significantly dete- 
riorate if one simply fixes a for many problem 
types. The reason is that heterogeneities generate 



(a) C t h  = [I, 11, (b) Cth  = [2,0.5], (c) C t h  = [2,0.5], 
a = 0.0854 a = [0.1470,0.0427] a = [0.19,0.1] 

Figure 1: Periodic Two-Region SFTSA Eigenvalues for h 3 1 and c 3 0.9999. 

large negative eigenvalues in SFTSA. When one 
“wraps” a Krylov scheme around the method and 
solve the linear system directly as in [2, 31, the lin- 
ear system eigenvalues are unity minus the eigen- 
values of SFTSA. Hence, eigenvalues of SFTSA 
with negative real part are pushed out to the right 
of unity in the linear system solved by Krylov it- 
eration. While this can slow convergence, stagna- 
tion or divergence does not occur. When c is close 
to unity in many parts of the problem, the diffu- 
sive eigenvalues get pushed by the SFTSA precon- 
ditioner from close to the origin to close to unity, 
and this gives a tremendous speedup to the Krylov 
iterations. 

NUMERICAL RESULTS 

We consider three heterogeneous test prob- 
lems in Table 1. In each case we consider a 10,000 
cell planar grid with vacuum boundaries, a uni- 
form volume source Q = 0.01, and an S 16 quadra- 
ture set. We compare SFTSA (labelled SFT) with 
Q 0.3 to (i) unpreconditionedGMRES (restarted 
with a maximum subspace dimension of 20 and la- 
belled G), (ii) SFTSA preconditioned GMRES (la- 
belled G-SFT) with a optimized for homogeneous 
performance, and (iii) G-SFT with a 0.3. We 
also compare to the inconsistent cell-centered DSA 
scheme of [2 ] .  With our convergence criterion of 

residual norm, source iteration by itself re- 
quires more than 10,000 iterations to convergeeach 
of Problems A-C. 

In Problem A, c increases smoothly across the 
grid from c,in on the left to 0.9999 on the right. 
Ct is fixed and h is varied as specified in Table 1 to 
resolve a diffusion length. Since both the materi- 

als and grid vary extremely smoothly, SFTSA with 
a = 0.3 converges. However, GMRES precondi- 
tioned with SFTSA performs better than all other 
methods except DSA. 

Problem B is a two-material periodic medium 
for which performance of SFTSA preconditioned 
Krylov is the worst we have seen. The first cell is 
diffusive with optical thickness r and the second 
cell is a pure absorber with optical thickness 1/r. 
The heterogeneity is non-smooth, so SFTSA with- 
out Krylov diverges. Furthermore, it is not bene- 
ficial to precondition GMRES with SFTSA in any 
of the cases in Problem B. 

In Problem C the optical thickness and scatter- 
ing ratios of each cell are selected randomly within 
the constraints shown in Table 1. Despite the sever- 
ity of the heterogeneity, the SFTSA preconditioner 
is effective with Q = 0.3. 

CONCLUSIONS 

For non-smooth heterogeneous problems, 
SFTSA without Krylov is unstable. However, 
Krylov preconditioned with SFTSA is stable and 
effective. The SFTSA preconditioner effective- 
ness does degrade, however, in the pathologically 
hard heterogeneous cases of Problems B and C. 
For realistic heterogeneities and reasonable grids, 
we expect SFTSA preconditioned Krylov to be 
significantly more effective than unpreconditioned 
Krylov when a large part of the problem is diffu- 
sive. 

Although less efficient than DSA in this 1-D 
setting, SFTSA with Krylov has two major advan- 
tages over DSA. First, the stretch and filter equa- 
tions are pure absorber transport problems, which 



Table 1: Numerical Results: CPU Time Relative to a Single Source Iteration Sweep 

cmj” SET (Q0.3) G G-SET  opt) G-SFT ( a 0 . 3 )  

Prob. A 0 79 533 45 36 
c = (.9999 - cmin)j/ J 0.5 77 740 56 37 

C+h = O . l / J T Z  0.9 73 1307 55 39 

DSA 
9 
9 
9 

~ -- 
~ I .  

1 5 j 5 J = 10,000 0.99 67 1297 1 47 
0.9999 54 113 I 62 

37 9 
30 6 

cost less time to solve (due to the lower quadrature 
order) than a single source iteration sweep. Sec- 
ond, the stretch and filter equations use the same 
spatial discretization (ES in this summary) as the 
underlying source iteration. Therefore, SFTSA 

scheme has not been derived or where it is costly to 
solve the DSA diffusion equation. The second au- 
thor, who originally developed the SFTSA method, 
has successfully implemented SFTSA in a 3-D un- 
structured grid code with a corner-balance spatial 
discretization [4] and has seen results similar to 
those we have presented for the ES scheme in 1- 
D. Hence, we believe that this method (SFTSA) is 
quite general in applicability, and relatively inde- 
pendent of the spatial discretization scheme. 

can be used for problems where an effective DSA [41 

r SFT(ao.3)  G G-SFT(aOpt) G-SFT(cuo.3) 
Prob. B 0.1 nc 7 19 16 
Period-2 1 nc 14 67 54 

Cth = IT, 1/71 10 nc 33 77 279 
c = [0.9999, 01 100 nc 20 40 43 

Prob. C 0.1 49 81 32 30 
Random 1 nc 96 94 53 
5 C t h  5 r 10 nc 183 203 147 

0.95 5 c 5 0.9999 100 nc 289 114 96 
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