

Lawrence
Livermore
National
Laboratory

U.S. Department of Energy

Approved for public release; further dissemination unlimited

UCRL-ID-150000

RPF: An Extensible, Cross-Platform,
Binary File Format for
Radiation Physics Data
A Compendium of Technical Work papers

Cheryl L. Ham

September 10, 2002

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U. S. Department of Energy by the University of
California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from the

Office of Scientific and Technical Information
P.O. Box 62, Oak Ridge, TN 37831

Prices available from (423) 576-8401
http://apollo.osti.gov/bridge/

Available to the public from the

National Technical Information Service
U.S. Department of Commerce

5285 Port Royal Rd.,
Springfield, VA 22161
http://www.ntis.gov/

OR

Lawrence Livermore National Laboratory

Technical Information Department’s Digital Library
http://www.llnl.gov/tid/Library.html

University of California
Lawrence Livermore National Laboratory
Technical Information Department
Livermore, CA 94551

September 11, 2002

RPF: An Extensible, Cross-Platform,
Binary File Format for
Radiation Physics Data
A Compendium of Technical Work Papers

Cheryl L. Ham

Lawrence Livermore National Laboratory
s a
er of
 to
 for

 of
 is

ty
ing
hese
. It
 be
ments
were
mes

ped
hat
ou-
stan-
 Sun
Introduction

Lawrence Livermore National Laboratory’s Radiation Technology Group (RTG) use
number of computer codes for simulation and analysis of radiation data. The numb
incompatible data formats that these data presented themselves in have continued
multiply. In the 1980’s a Common Data Format (CDF, see Appendix A) was devised
internal use by the RTG. This format represented a single gamma-ray spectrum as
ASCII energy/count pairs preceded by an ASCII header. The ASCII representation
the data assured that it was compatible on any computing platform and this format
still in use.

In the mid 1990’s it became apparent that instrument systems of greater complexi
would demand a file format of larger capacity to support systems then on the draw
board, including networks of sensors collecting time series of gamma-ray spectra. T
systems were in the planning stage and defined data structures were not available
became apparent that a new storage format for nuclear measurements data would
needed and it would have to be flexible and extensible to accommodate the require
of systems of the future. As part of an LDRD, we began to investigate what others
doing, especially in the high-energy physics community, to deal with the large volu
of data being generated.

Of particular interest was the very general Hierarchical Data Format (HDF), develo
and maintained by the National Center for Supercomputing Applications (NCSA), t
we ultimately used to develop the Radiation Physics Format (RPF). The HDF subr
tine library provides users with the ability to customize a data file format based on
dard calls to the HDF subroutine library. The RPF was developed and deployed on
and Hewlett-Packard workstations running their proprietary versions of UNIX.

Contents

Introduction 1

RPF Spectral Data Format 3

RPF Software Suite
 Overview 7

RPFTools Reference
 Manual 10

Data Dictionary: Header
 Keywords for the
 Radiation Physics Format 24

RPF Future Directions 34

Appendix A: An Introduction
 to the Common Data
 Format (CDF) 36

Appendix B: About HDF and
 Supported Platforms 47
1

Introduction

s com-
HDF

s

ools
ry.
d-
e
ility

the

titute
ion

eans
ols, to
ode a
ily

 code
 As a
f
e

An RPF spectral data file format consists of one or more data pages. A data page i
posed of a header and its associated spectral data. It was implemented using the
vset paradigm which establishes a logical grouping of diverse, but related data item
using only two basic types of storage elements: vgroups and vdatas. Vgroups contain
only references to vdatas or other vgroups. Vdata contain only data.

Reading, writing, and printing RPF data files is accomplished by calls to the RPFT
library, written by the author, that in turn relies on calls to the HDF subroutine libra
The RPFTools library, developed in ANSI C, currently contains 18 functions for rea
ing, writing, and printing RPF data files. Its dependencies are the HDF package, th
standard C libraries, and clhtools, which is a collection of miscellaneous ANSI C ut
functions, also written by the author.

In addition to the RPFTools, two stand-alone programs were written that illustrate
use of the library: cdf2rpf translates a CDF data file into an RPF file and showrpf
allows a user to open and browse the contents of an RPF file.

It is important to summarize the fact that the RPFTools do not, of themselves, cons
a finished data format. They are tools for the creation of application-specific radiat
physics data formats that can be structured to satisfy a user’s requirements. This m
that once such a structure is defined, some code must be written, using the RPFTo
read, write, and print out the user’s data. The RPFTools make the creation of that c
relatively simple task and the user can be assured that his or her data can be read
transferred intact and be ready to use on other computing platforms.

Upon reaching the stage of development described in this document, the RPFTools
suite was frozen at HDF version 4.1r3 pending the identification of a specific need.
result, no final report was produced. This document is an unedited compendium o
informal technical work papers produced by the author during various stages of th
project. As a result some of the material is repetitive. Nevertheless, while informal,
these papers give a view of the RPF at considerable technical depth.
RPF: An Extensible, Cross-Platform, Binary File Format for Radiation Physics Data2

RPF Spectral Data File Format

 data.
ans-
le

uld
ccom-
work

d
e

ing a
a self-
ppli-

rgy,
lcu-
s of

for-

orms
dify-

-
. Cur-
nd

tages
n-

r

tion

RPF Spectral Data File Format

History Neutron and gamma-ray spectrometry experiments can produce a large volume of
At various times, these data need to be collected, annotated, collated, analyzed, tr
ported, archived, and retrieved. In practice, these operations often occur on multip
platforms.

We needed a data file format that was flexible in the type and amount of data it co
store, portable across different computer platforms, and was easily extensible to a
modate new data storage requirements. Finding an existing, well-developed frame
that had freely distributed pre-compiled binaries for a wide variety of platroms; was
open source for compilation on other platforms; had a large, diverse user base; an
available user support was a bonus which helped to reduce the complexity and tim
required to implement a solution.

The Radiation Physics Format (RPF) spectral data file format is the result of design
standard data file format for spectral data that meets these and other criteria. It is
describing binary file that is based upon the National Center for Supercomputing A
cations (NCSA) Hierarchical Data format (HDF) paradigm.

Requirements This file format must accommodate neutron (count) data, gamma-ray spectral (ene
flux pairs) data, and statistical data. These data can be either collected from or ca
lated for any number of detectors as either a single count/spectrum or a time serie
counts/spectra.

In addition, the data files must also accommodate varying types and amounts of in
mation describing the origin, history, and contents of the data. It is desired that this
header information be readable by the user.

These data files must also be flexible/extensible, and portable across various platf
in order to avoid the problem of converting vast quantities of legacy data when mo
ing/adding information to the files, or changing platforms.

The implementation of these data files is based upon ANSI C using as few system
dependent extensions as possible in order to promote cross-platform compatibility
rent platforms under consideration are UNIX (HP, Sun), PC (DOS and Windows), a
Mac (Mac-OS).

A pre-existing, widely used, noncommercial basis for the data files gives the advan
of not having to develop low-level routines from scratch, low cost availability, a pote
tially large user base from which to draw utilities and expertise, and freedom from
dependence on an inflexible commercial product and the longevity of any particula
company.

The HDF file format package available from NCSA provides a good basis for a solu
to our problem. (The HDF WWW home page is found at http://hdf.ncsa.uiuc.edu/.) The
NCSA anonymous ftp server is located at ftp.ncsa.uiuc.edu.) The following portion of
RPF: An Extensible, Cross-Platform, Binary File Format for Radiation Physics Data3

RPF Spectral Data File Format

fer

el
ting,

nd

her
ets for
r own

ard-

le
em, say

nd

r-
ifically
ntains
ge.

orts

 a
tent

this requirements section was excerpted from the beginning of the HDF FAQ and
explains why the HDF framework was selected.

What is HDF? HDF stands for Hierarchical Data Format. It is a multi-object file format for the trans
of graphical and numerical data between machines.

HDF is a versatile file format. It supports six different data models. Each data mod
defines a specific type of data and provides a convenient interface for reading, wri
and organizing a unique set of data elements.

HDF is a self-describing format, allowing an application to interpret the structure a
contents of a file without any outside information.

HDF is a flexible file format. With HDF, you can group sets of related objects toget
and then access them as a group or as individual objects. There are pre-defined s
raster images and floating point multidimensional arrays. User can also create thei
grouping structures using an HDF feature called vgroups.

HDF is an extensible file format. It can easily accommodate new data models, reg
less of whether they are added by the HDF development team or by HDF users.

HDF is a portable file format. HDF files can be shared across platforms. An HDF fi
created on one computer, say a Cray supercomputer, can be read on another syst
IBM PC, without modification.

HDF is available in the public domain.

What is in the HDF library? HDF currently supports six data structure types: 8-bit raster images, 24-bit raster
images, color palettes, scientific data sets (multi-dimensional arrays), text entries a
vdatas (binary tables).

The HDF library contains two parts: the base library and the multi-file library. HDF
library functions can be called from C or FORTRAN user application programs.

The base library contains a general purpose interface and six application level inte
faces, one for each data structure type. These application level interfaces are spec
designed to read, write and manipulate one type. The general purpose interface co
functions, such as file I/O, error handling, memory management and physical stora

The multi-file part integrates netCDF model with HDF Scientific data sets, and supp
simultaneous access to multiple file and multiple object. This part is referred to as
netCDF/HDF library in the rest of this FAQ.

Conceptual Solution Our previous attempt at implementing a spectral file format, the CDF file, provides
good starting point. A CDF file is an ASCII file which has a variable length and con
header consisting of keyword labels followed by value (e.g. nchan=4096) delimited by
the keywords ::beginheader:: and ::endheader:: followed by the spectral data. The
RPF: An Extensible, Cross-Platform, Binary File Format for Radiation Physics Data4

c-

nt,
t edi-
er can

con-

uite,
in-
de
 in
tent,

ibing

e imple-

le

,

g
ne to
is is
g the
f rank
s SDS
a

ges of

and

ta file
e

imes
ng

 the
ader
spectral data could consist of up to five columns of information. More than one spe
trum could be sequentially stored in one CDF file.

The advantages of this solution is that the header is variable length, variable conte
and easy to read, write, and modify by an application and by the user with any tex
tor. This also leads to the disadvantages of non-standard keywords and that the us
easily corrupt the file.

The major disadvantage to CDF is the amount of storage space that the data can
sume.

Specifications for the Actual
Solution

The RPFTools software suite, and a couple of simple applications illustrating the s
were written debugged and deployed on HP-UX, Solaris, and MacOS. A port to W
dows was never completed. The suite was implemented using ANSI C standard co
within the HDF version 4 framework. It is a binary variation on the CDF file solution
which there is a variable length, variable content header describing the HDF file con
and one or more sets of data with a variable length, variable content header descr
the data.

The headers can be thought of as metadata since they are data about data and ar
mented as HDF vgroups. The data file header consists of a variable number of vdatas
that describe the data. The vdata’s name can be thought of as its description or variab
name. The vdata’s class is its category. And the vdata’s data are its values. For example
one header vdata entry might have a name of location, a class designation of
experiment_identification, and a data value of measurement lab.

Data are represented by default as 16-bit integers or 64-bit floating point numbers
depending upon their requirements unless specified otherwise by the user. Floatin
point numbers are automatically converted from the native format of the host machi
the standard HDF format of IEEE 32- or 64-bit floating point format as required. Th
to promote cross-platform portability, a feature that is hindered by storing data usin
native format option. Neutron data are stored as scientific data set (SDS) arrays o
3 to allow fields for time, neutron count, and detector. Gamma spectra are stored a
arrays of rank 4 to allow fields for time, energy, flux and detector. Calculated gamm
spectra can have additional rank for relative error, absolute error, etc., if desired.

Editing an RPF Header The use of the HDF model places a hurdle before the user who wants the advanta
an easily editable ASCII header. An HDF data file is binary. Tests performed on an
annotated HDF data file show that the ASCII strings of the annotations are visible
comprehensible with listing utilities such as UNIX more and with text editors such as
emacs. While RPF annotations are in order, they are spread throughout the RPF da
rather than being contiguous in any one place in the file. If you want to hand edit th
string, you can. However, if you substitute another string with a different length, the
whole HDF data file becomes unreadable. A similar situation has occurred many t
in the past with CDF files. The HDF hurdle performs a useful service by encouragi
the user to make header modifications with a more disciplined approach.

The disciplined approach is to create utilities for viewing, extracting, and replacing
header information. A viewing utility simply opens the RPF data file, extracts the he

RPF Spectral Data File Format

r-
 text

RPF

an-

l
rma-
 and
 for
information, and displays it. A utility for extracting the header writes the header info
mation to an ASCII file. This file can be hand edited by the user with his/her favorite
editor. A utility for replacing the header information will take this or any other valid
ASCII header file plus an RPF data file and replace the header information of that
data file with that found in the ASCII header file.

This will provide the user with the flexibility and data integrity desired in a timely m
ner while minimizing demands on the implementer.

Keyword Integrity There will be a standard set of keyword labels with specific definitions. This list wil
evolve with time and will be made available in documented form. Some header info
tion updates in existing RPF data files may be required depending upon the scope
nature of the evolution of the RPF. This uniformity of labels and usage is essential
the successful integration of utilities and applications.
RPF: An Extensible, Cross-Platform, Binary File Format for Radiation Physics Data6

RPF Software Suite Overview

-
ata

e

iew,

ams.

d to
or-
Tools

s com-
F

ing

com-
y-

f

g
 the
t
ture

s for
loped
at)
n cen-
alcu-
., if

ri-
 Total
RPF Software Suite Overview

Introduction The Radiation Physics Format (RPF) spectral data file format is an extensible, self
describing, binary data file format that can accommodate multiple sets of nuclear d
within a single file and is portable across computing platforms. It is based upon the
Hierarchical Data Format (HDF) software package developed and supported by th
National Center for Supercomputing Applications (NCSA).

The RPFTools Software Suite comprises a variety of tools to initialize, read, write, v
and manipulate RPF data files. It contains source code, include files, linkable object
modules of RPF-related and other miscellaneous functions, and stand-alone progr
It is written in ANSI standard C and links against the standard C I/O libraries and
INCAS’s HDF version 4.x libraries. Standalone programs exist to view RPF files an
create RPF files from existing CDF files. Tools for file conversion from other data f
mats can be made by writing programs using the appropriate functions in the RPF
Software Suite.

Anatomy of an RPF file An RPF spectral data file format consists of one or more data pages. A data page i
posed of a header and its associated spectral data. It is implemented using the HDvset
paradigm which establishes a logical grouping of diverse, but related data items us
only two basic types of storage elements: vgroup and vdata. Vgroups contain only refer-
ences to vdatas or other vgroups. Vdatas contain only data.

The headers can be thought of as metadata since they are data about data. They
prise a variable number of keywords selected from a pre-established list of valid ke
words and their values. The data page header is a vset that contains a variable number o
vgroups and vdatas that describe the data. The vdatas name can be thought of as its
description or variable name. The vdata’s class is its category. And the vdatas data are
its values. For example, one header vdata entry might have a name of location, a class
designation of experiment_identification, and a data value of measurement lab.

Data are represented by default as 32-bit integers or 64-bit floating point numbers
depending upon their requirements unless specified otherwise by the user. Floatin
point numbers will automatically be converted by the underlying HDF package from
native format of the host machine to the standard HDF format of IEEE 32- or 64-bi
floating-point format as required. This is to promote cross-platform portability, a fea
that is hindered by storing data using the native format option.

Neutron data are stored as Scientific Data Set (SDS) arrays of rank 3 to allow field
time, neutron count, and detector. Gamma spectra converted from the locally deve
Common Data Format (CDF is an early Radiation Technology group data file form
data files are stored as SDS arrays of rank 3 to allow fields for bin edge energy, bi
ter energy, and flux. Rank can be increased to allow fields for time and detector. C
lated gamma spectra can have additional rank for relative error, absolute error, etc
desired.

RPF data can originate as instrumental data or computational simulations of expe
ments from single detectors, detector arrays, and networks of disparate detectors.
RPF: An Extensible, Cross-Platform, Binary File Format for Radiation Physics Data7

RPF Software Suite Overview

 can
ectral
e
a sin-
 of
nt

n-

sing

2 run-
olaris

rred to

ls.c,
g
nd clh-

n
c-

d
ure

or-

count data can be stored as a time series or as multichannel scaling. Spectral data
currently be stored as pulse-height spectra. Time-stamped list mode storage for sp
data is planned for a later version. Data can be mixed within a single RPF file. Tim
series of spectra or gross count data from multiple detectors can be stored within
gle RPF file. This would allow, for example, disparate measurements from a series
related experiments or from arrays of detectors from a network. RPF is an importa
new contribution to our core competency and has broad applicability.

Platforms The RPFTools Software Suite was initially developed on an HP 9000 model 735 ru
ning HP-UX v 9.01 using the HDF version 4.0r2 release that was precompiled for
HPUX v 9.03. The current version, v2.2, was developed on the same HP platform u
the HDF version 4.1b1 release that was precompiled for HPUX v 9.03.

The RPFTools Software Suite has also been ported to a Sun SPARCstation 10/51
ning Solaris 2.5.1 using the HDF version 4.0r2 release that was precompiled for S
2.4. The current version is v1.0b2.

It has been demonstrated that an RPF file created on the HP or Sun can be transfe
the Sun or HP, respectively, and viewed.

RPFTools library The RPFTools library, rpftools.o, is generated from the source code module, rpfoo
written in ANSI C. It currently contains 18 functions for reading, writing, and printin
RPF data files. Its dependencies are the HDF package, the standard C libraries, a
tools, which is a collection of miscellaneous ANSI C utility functions.

Function name Function description

init_rpf_header Initializes the space to hold the RPF header informatio
and returns a pointer to the new RPF header data stru
ture.

reset_rpf_header Resets the RPF header values to initialized values.

free_rpf_header Frees the space used by the RPF header.

init_rpf_header_status Initializes the space to hold the RPF header status an
returns a pointer to the RPF header status data struct

add_rpf_comment Adds a string to the RPF header comment field.

parse_cdf_header Parses the header of a local-CDF file and fills in the c
responding variables in a RPF header.

print_current_rpf_header Prints the portion of the RPF header that is currently
valid to stdout.

print_full_rpf_header Prints the full RPF header to stdout.

read_open_rpf_file Opens an RPF file for reading.

write_open_rpf_file Opens an RPF file for writing.

close_rpf_file Closes an RPF file.

read_rpf_header Reads an RPF header from an RPF data file.
RPF: An Extensible, Cross-Platform, Binary File Format for Radiation Physics Data8

RPF Software Suite Overview

s

the

ite.

ut.
write_rpf_header Writes an RPF header into an RPF data file.

read_rpf_data Reads the RPF data from an RPF data file and return
pointer to the array of RPF data values.

write_rpf_data Writes the RPF data into an RPF data file and returns
reference number of the RPF data scientific data set
(SDS).

print_rpf_data Prints the RPF data to stdout.

read_rpf_page Reads an RPF page from an RPF file.

write_rpf_page Writes an RPF page to an RPF file.

Stand-alone applications There are currently two standalone RPF applications in the RPFTools Software Su
However, showrpf requires some additional debugging on the Sun.

Program name Program description

cdf2rpf Translates a CDF data file into an RPF file.

showrpf Generates user-controlled display an RPF file to stdo
RPF: An Extensible, Cross-Platform, Binary File Format for Radiation Physics Data9

RPFTools Reference Manual

-
 is
al

rmat

a

 same

tific

Single
 with

 spec-

,

 pro-
 and

a-
s, in

RPFTools Reference Manual

Introduction The Radiation Physics Format (RPF) spectral data file format is an extensible, self
describing, binary data file format which is portable across computing platforms. It
based upon the Hierarchical Data Format (HDF) software developed by the Nation
Center for Supercomputing Applications (NCSA).

This document describes the Radiation Physics Format (RPF) spectral data file fo
and the software tools used to manipulate the RPF data files.

Information Pages An RPF data file consists of one or more pages of information. A page consists of
header describing the spectral data plus the associated spectral data.

Each page of information is stored as an HDF vgroup in the RPF file. The vgroup class
is rpf_page. The page name is generated by concatenating the string page_, the page
index and the string “_” before it is stored as the vgroup name. There is a header vgroup
and a data vgroup associated with each page vgroup. The vgroup classes of these are
rpf_page_header and rpf_page_data, respectively.

The header vgroup consists of a variable number of keyword vdatas that encapsulate the
header information. The name of the keyword vdata is the variable name in the corre-
sponding RPF header data structure. The keyword vdata class is the name of the key-
word category designation for that keyword inside the RPF header_type data structure.
The keyword data fields are defined with the appropriate data type and named the
as the keyword vdata. Only those keywords which contain valid data as indicated by
their corresponding rpfheader_status fields being set to ON will be written to the RPF
file when the header is stored.

The data vgroup consists of a multidimensional data block which is stored as a scien
data set (SDS). The dataset name is generated by concatenating the string data_, the
data index and the string “_.” The data label attribute is set to gamma_data. The first
three dimensions are labeled bins, units, and boxes, respectively to designate, single
spectra, temporal series of spectra, and spectra gathered from array of detectors.
spectra are normally concerned with energy bins. Temporal spectra are concerned
spectra taken within slices of time. A box of spectra would be those collected from an
array of detectors. Alternatively, one may think of the second dimension as adding
tra and the third dimension as adding detectors.

RPF Software Tools The RPFTools software suite comprises of a variety of tools to initialize, read, write
view, and manipulate RPF data files. It contains source code, include files, linkable
object modules of RPF related and other miscellaneous functions, and standalone
grams. It is written in ANSI standard C and links against the standard C I/O libraries
NCSA's HDF version 4.3 libraries.

The include file, rpftools.h, defines a data structure to contain the RPF header inform
tion, plus a data structure to hold an indicator variable for each of the keyword field
addition to the function declarations for each of the functions defined in rpftools.c. For a
RPF: An Extensible, Cross-Platform, Binary File Format for Radiation Physics Data10

RPFTools Reference Manual

ocu-

s.

 con-

er2)

r-
n-

s

es
of

tatus,
more detailed description of the keywords contained in the RPF header, see the d
ment, RPF keyword data dictionary.

The RPFTools library, rpftools.o, is generated from the source code module, rpftools.c.
It contains various ANSI C functions for reading, writing, and printing RPF data file
Its dependencies include the HDF include files (HDF inc directory) and libraries (HDF
bin and lib directories), and the standard C libraries (include files and object modules).
Non-HDF include files required at compilation time are rpftools.h, and clhtools.h. Non-
HDF object modules required at linking time are rpftools.o, and clhtools.o. The two
files, clhtools.h and clhtools.o, are the include file and object module, respectively, for a
collection of miscellaneous ANSI C utility functions used by RPFTools.

Data Structure Definitions Example Usage. Use read_rpf_page to read a page of information from an RPF file.
Use write_rpf_page to write a page of information to an RPF file.

Reference Section Overview This section of the RPFTools Reference Manual contains a listing of every function
tained in RPFTools.c. The functions are ordered alphabetically according to their C
function name. Each function is described in the following form:

Function name

Return_type function_name (type paramaeter1, type parameter2, … type paramet

Parameter1 Definition of the first parameter

Parameter2 Definition of the second parameter

…

ParameterN Definition of the Nth parameter

Purpose Section containing a short description of the function.

Return value Section describing the return value, if any, and error
conditions.

Description This section describes the function and any special ci
cumstances surrounding the use of this function. It ide
tifies any functions that must precede it and describes
any known complications related to the use of it.

Example This optional section consists of one or more example
of the use of the function. The examples are not com-
plete programs and are intended for illustrative purpos
only. For complete programs and further descriptions
the function, refer to the RPFTools User’s Guide.

Functions add_rpf_comment

void add_rpf_comment (header_type *rpfheader, header_status_type *rpfheader_s
char *t)
RPF: An Extensible, Cross-Platform, Binary File Format for Radiation Physics Data11

RPFTools Reference Manual

rma-

ld.
”)

 is

-

s-
s to

s
rpfheader OUT:The space to store the RPF header information

rpfheader_status OUT:The space to store the RPF header status info
tion

t IN:The string to add to the comment field

Purpose Adds a string to the RPF header comment field.

Return Value None.

Description This function adds a string to the header comment fie
If there is already an existing comment, a newline (“\n
is added before the new comment is appended. The
resulting string is null terminated (“\0”) and the rpf-
header status field, rpfheader_status->got_valid_one,
set to ON before the function returns.

close_rpf_file

void close_rpf_file (int32 *file_id, int32 sd_id, int32 sds_id, int32 vgroup_id)

file_id IN:The RPF file id

sd_id IN:The RPF data SD id

sds_id IN:The RPF data SDS id

vgroup_id IN:The RPF data vgroup id

Purpose Terminates access to the SD interface and the V inter
face, and then closes an RPF file.

Return Value None.

Description This function terminates access to the SD interface de
ignated by the sd_id and the sds_id, terminates acces
the V interface designated by the vgroup_id, and then
closes an RPF file designated by the file_id.

free_rpf_header

void free_rpf_header (header_type *rpfheader)

rpfheader IN: A pointer to the RPF data structure to destroy.

Purpose Frees the space used by the RPF header.

Return Value None.

Description This function frees the memory space previously allo-
cated to hold the full RPF header information. Use thi
destructor function to avoid memory leaks due to
incomplete release of header storage space.
RPF: An Extensible, Cross-Platform, Binary File Format for Radiation Physics Data12

RPFTools Reference Manual

-

-

get_line

int get_line (char *s, FILE *fp)

s OUT:The string of input data

fp IN:The pointer to the pre-opened file to be read

Purpose Get a single valid line of input data while ignoring com
ment lines.

Return Value It returns a 0 if it finds the EOF at the beginning of a
line, a -1 if it finds a # at the beginning of a line (com-
ment line), and a 1 otherwise.

Description This function grabs a single valid line of input data
while ignoring comment lines that are indicated by a
leading #. The original version was written for the
UNIX operating system and obtained from Mark Wag-
ner. During the most recent port to the Macintosh plat
form, it was rewritten. It now grabs a line as delimited
by a newline (\n), a carriage return (\r) or an end of file
(EOF).

have_rpf_file

void have_rpf_file (char *rpffname, int *eflag)

rpffname IN:The name of the RPF file

eflag OUT:An error flag, initialized to 0.

Purpose Determines whether a file is an RPF file.

Return Value None.

Description This function determines whether the file specified by
rpffname is indeed an RPF file.

 Eflag is set to 1 if the file not found. It is set to 2 if the
file that is found is not an RPF file.

init_cdf_data

specdat_type *init_cdf_data (int tsize)

tsize IN:the initial number of bins in the data arrays

Purpose Initialize the space to hold the CDF data.

Return Value A pointer to the initialized CDF data structure.
RPF: An Extensible, Cross-Platform, Binary File Format for Radiation Physics Data13

RPFTools Reference Manual

2.
l-

.
+ 1
 set

am-

n.

et
les
t
c-

or-

-

r
 of
er

 to
Description This function creates and then initializes the space to
hold the CDF data.

If tsize is less than or equal to zero, tsize defaults to 4
The data arrays, e_center, flux, d1, d2, and d3 are ma
loc-ed to a length of tsize and each value is set to 0.0
The e_edge data array is malloc-ed to a dize of tsize
to accommodate the bin edges and then each value is
to 0.0.

The parameters nbins and xstart are set to 0. The par
eter asize is set to tsize.

init_rpf_header

header_type *init_rpf_header (void)

Purpose Initializes the space to hold the RPF header informatio

Return Value Returns a pointer to the newly created and initialized
RPF header data structure.

Description This function initializes the space to hold the full RPF
header information. Character string variables are ini-
tialized to hold one null character (“\0”) to show that
they start off as empty strings. Integer variables are s
to 0. Double variables are set to 0.0. Pointers to doub
are malloc-ed to a length of 1 and the value of the firs
array space is set 0.0. See the RPF Keyword Data Di
tionary for a complete description of the RPF header
fields.

init_rpf_header_status

header_status_type *init_rpf_header (void)

Purpose Initializes the space to hold the RPF header status inf
mation.

Return Value Returns a pointer to the RPF header status data struc
ture.

Description This function initializes the space to hold the status fo
all the fields in the full RPF header and sets the value
all status fields to OFF (don't have). As the RPF head
fields filled their corresponding status field values will
be set to ON. OFF and ON are defined in RPFTools.h
be 0 and !OFF, respectively.

parse_cdf_header
RPF: An Extensible, Cross-Platform, Binary File Format for Radiation Physics Data14

RPFTools Reference Manual

.

nd-

ing

 is
ed
e

y-

n

ec-

n-

le

tatus)

er

der
void parse_cdf_header (char *fname, header_type *rpfheader, header_status_type
*rpfheader_status, int verbose, int *eflag)

fname IN:name of the CDF file.

rpfheader OUT:A pointer to the RPF header information.

rpfheader_status OUT:A pointer to the RPF header status information

verbose IN:A flag to control the amount of output.

eflag OUT:An error flag, initialized to 0.

Purpose Parses the header of a CDF file and fills the correspo
ing variales in a RPF header.

Return Value None.

Description This function opens an ASCII CDF file, parses its
header line by line, places whatever information it can
into a RPF header structure, and sets the correspond
variables in the RPF header status structure to ON.

If the verbose flag is set to ON, when an RPF keyword
matched, it and its corresponding data value are print
to stdout. Also, when no RPF keyword is matched in th
line of CDF header the message did not match rpf ke
word:’ followed by the CDF line is printed to stdout.

If the number_of_bins keyword value is redefined, a
warning will be printed to stdout and eflag will be
changed from its initial value of 0 to 1. This can happe
when the CDF keywords nchan and/or Channels=
occurs more than once within the same CDF header s
tion.

Note that the CDF file referred to here is the Common
Data Format developed at LLNL and should not be co
fused with netCDF developed by UCAR.

This function covers only a small number of the possib
keywords that can be found in a CDF file. Please see An
Introduction to the Common Data Format (CDF) for
further information for additional information.

print_current_rpf_header

void print_current_rpf_header (header_type *rpfheader, header_type *rpfheader_s

rpfheader IN:A pointer to the space which stores the RPF head
information

rpfheader_status IN:A pointer to the space which stores the RPF hea
status information
RPF: An Extensible, Cross-Platform, Binary File Format for Radiation Physics Data15

RPFTools Reference Manual

r-

s)

er

der

to

e
f
Purpose Prints the portion of the RPF header that is currently
valid.

Return Value None.

Description This function prints the fields of the RPF header data
structure whose corresponding status variables are cu
rently set to ON to stdout.

print_full_rpf_header

void print_full_rpf_header (header_type *rpfheader, header_type *rpfheader_statu

rpfheader IN:A pointer to the space which stores the RPF head
information

rpfheader_status IN:A pointer to the space which stores the RPF hea
status information

Purpose Prints the full RPF header.

Return Value None.

Description This function prints the full RPF header data structure
stdout.

print_rpf_data

void print_rpf_data (double *rpfdata, int32 rank, int32 *dims, int npl)

rpfdata IN:The buffer containing the RPF data

rank IN:The rank of the data block to be printed

dims IN:Array specifying the size of each dimension

npl IN:Number of data values to print per line

Purpose Prints the RPF data.

Return Value None.

Description This function prints the RPF data to stdout. The rank
and dimension size of the data block is followed by th
data itself. Currently, this function is set up for a rank o
2.

An example output looks as follows:

rank: 2

index: 0 dims[0]: 4

index: 1 dims[1]: 3

 [0][0]: 2 [1][0]: 3 [2][0]: 24

 [0][1]: 4 [1][1]: 5 [2][1]: 26
RPF: An Extensible, Cross-Platform, Binary File Format for Radiation Physics Data16

RPFTools Reference Manual

-

E
-

um

un-
 if

 [0][2]: 6 [1][2]: 7 [2][2]: 28

 [0][3]: 8 [1][3]: 0 [2][3]: 0

readcdf

void readcdf (char *fname, int *nbin, EF_TYPE **dat1, EF_TYPE **dat2, EF_TYPE
**dat3, EF_TYPE **dat4, EF_TYPE **dat5, int max_size, int *eflag)

fname IN:The name of the CDF file to be opened, read, and
then closed

nbin OUT:The number of energy bins in the data matrix

dat1 OUT:A pointer to the energy bin data array

dat2 OUT:A pointer to the flux data array

dat3 OUT:A pointer to the relative error array

dat4 OUT:A pointer to the absolute error data array

dat5 OUT:A pointer to the original flux data array

max_size IN:The maximum allowed size of the data array

eflag OUT:An error flag, initialized to 0.

Purpose Read an ASCII CDF file containing up to five data val
ues per line into separate double arrays.

Return Value None.

Description This function reads an ASCII CDF file containing from
two to five data values per line into separate EF_TYP
arrays. The read continues is until an EOF is hit. Com
ments as indicated by a leading # and blank lines are
ignored.

The data arrays are resized as needed up to a maxim
size of max_size elements. If the data to be returned
occupies less than 75% of the malloc-ed space, the
arrays are realloc-ed to use only the required space.

The parameter eflag is incremented each time it enco
ters a line of data with only one number. It is set to -1
the ::ENDHEADER:: or ::endheader:: keyword is not
found. It is set to –2 if there were no valid lines of data
found.

read_open_rpf_file

void read_open_rpf_file (char *rpffname, int32 *file_id, int32 sd_id, int *eflag)

rpffname IN:The name of the RPF file
RPF: An Extensible, Cross-Platform, Binary File Format for Radiation Physics Data17

RPFTools Reference Manual

-

-
r
 of

ing

rs

file_id OUT:The RPF file id returned by HDF function Hopen

sd_id OUT:The RPF data SD id returned by HDF function
SDstart

eflag OUT:An error flag, initialized to 0.

Purpose Opens an RPF file for reading.

Return Value None.

Description This function opens an RPF file for reading, initializes
the SD interface, and initializes the RPF file for subse
quent vgroup access. The file_id and the sd_id are
returned in the parameter list.

 Eflag is set to 1 if the file not found. It is set to 2 if the
file that is found is not an RPF file.

read_rpf_data

double *read_rpf_data (int32 vgroup_id, int32 sd_id, int32 *rank, int32 *dims, int
*eflag)

vgroup_id IN:The RPF vgroup id

sd_id IN:The RPF data SD id

rank OUT:The rank of the data to be read

dims OUT:Array specifying the size of each dimension

eflag OUT:An error flag, initialized to 0.

Purpose Reads the RPF data from an RPF data file.

Return Value Pointer to the array of RPF data values.

Description This function reads the RPF data section from a previ
ously opened rpf file and returns a pointer to the buffe
containing the RPF data. The rank and the dimension
the data is returned in the parameter list.

The space for dims needs to be allocated before enter
this function. A safe way would be to define it as
dims[MAX_VAR_DIMS]. MAX_VAR_DIMS is
defined as 32 in the HDF include file hlimits.h.

Eflag is incremented by 1 for each read error that occu
from a call to SDreaddata.

read_rpf_header

void read_rpf_header (int32 file_id, int32 vgroup_id, header_type *rpfheader,
header_status_type *rpfheader_status, int *eflag)

file_id IN:The RPF file id previously returned by HDF function
Hopen.
RPF: An Extensible, Cross-Platform, Binary File Format for Radiation Physics Data18

RPFTools Reference Manual

vi-
-

the

re-
me

 int

e

PF

ted

ein-
vgroup_id IN: The id of the header vgroup to be read.

rpfheader OUT:The RPF header information.

rpfheader_status OUT:The RPF header status information.

eflag OUT:An error flag, initialized to 0.

Purpose Reads an RPF header from an RPF data file.

Return Value None.

Description This function reads the RPF header vgroup from a pre
ously opened rpf file. It fills the RPF header data struc
ture and sets the corresponding indicator variables in
header_status structure to “ON”.

Eflag is incremented by 1 for each read error. It is inc
mented by 1000 for each time the vdata class and na
does not match those for an RPF keyword.

read_rpf_page

void read_rpf_page (char *rpffname, int pageindex, header_type **rpfheader,
header_status_type **rpfheader_status, double **rpfdata, int32 *rank, int32 *dims,
*eflag)

rpffname IN:The name of the RPF file

pageindex IN:The index of the RPF page to read.

rpfheader OUT: A pointer to the RPF header structure

rpfheader_status OUT: A pointer to the RPF header status structure

rpfdata OUT:A pointer to the buffer containing the RPF data

rank OUT:The rank of the data to be read.

dims OUT:Array specifying the size of each dimension in th
data block.

eflag OUT:An error flag, initialized to 0.

Purpose Reads a RPF page.

Return Value None

Description This function opens a RPF file and reads a page of R
data.

The space for dims, start, and edges need to be alloca
before entering this function. A safe way would be to
define dims as dims[MAX_VAR_DIMS].
MAX_VAR_DIMS is defined as 32 in the HDF include
file hlimits.h.

Eflag is initialized to 0. It is set to –1 if the RPF page
designated by pagename that is created from the pag
RPF: An Extensible, Cross-Platform, Binary File Format for Radiation Physics Data19

RPFTools Reference Manual

e
. It
th

r.
e

.0.

PF
f
dex is not found and the function returns from there.
Eflag is set to –2 if there were any errors during the
reading of the header vgroup. Eflag is set to –3 if ther
were any errors during the reading of the data vgroup
is set to –4 if errors occurred during the reading of bo
the header and data vgroups.

reset_rpf_header

void reset_rpf_header (header_type *rpfheader)

rpfheader IN: The RPF data structure to reset.

Purpose Resets the RPF header values to initialized values.

Return Value None.

Description This function resets the values for the full RPF heade
Character string variables are initialized to just hold on
\0 to show that they start off as empty strings. Integer
variables are set to 0. Double variables will be set to 0
Pointers to doubles are initialized to a length of 1 and
the value of the first array space is set 0.0. See the R
Keyword Data Dictionary for a complete description o
the RPF header fields.

strchop

void strchop (char *instring, char *outstring)

instring IN:The original string

outst OUT: The original string truncated to remove trailing
white spaces

Purpose Remove the trailing white spaces in a string.

Return Value None.

Description This function removes the trailing white spaces in a
string. The resulting string is null terminated (‘\0’).

write_open_rpf_file

void write_open_rpf_file (char *rpffname, int32 *file_id, int32 sd_id, int *eflag)

rpffname IN:The name of the RPF file

file_id OUT:The RPF file id returned by HDF function Hopen

sd_id OUT:The RPF data SD id returned by HDF function
SDstart

eflag OUT:An error flag, initialized to 0.

Purpose Opens an RPF file for writing.
RPF: An Extensible, Cross-Platform, Binary File Format for Radiation Physics Data20

RPFTools Reference Manual

f
n

a,

n

id.

ta
r

a

1st

ter

g
Return Value None.

Description This function opens an RPF file for writing. The SD
interface is then initialized and the file is prepared for
vgroup access.

Eflag is set to 1 if the file not found. A new RPF file is
then created with read/write access. Eflag is set to 2 i
the file that is found is not an RPF file. The function the
returns.

write_rpf_data

int32 write_rpf_data (int32 file_id, int32 sd_id, char *datasetname, double *rpfdat
int32 rank, int32 *dims, int32 *start, int32 *edges, int *eflag)

file_id IN:The RPF file id returned by HDF function Hopen

sd_id IN:The RPF data SD id returned by HDF function
SDstart

datasetname IN:The name of the RPF data vgroup.

rpfdata IN:The buffer containing the RPF data.

rank IN:The rank of the data to be written.

dims IN:Array specifying the size of dimension.

start IN:Array specifying the starting location.

edges IN:Array specifying the number of values to be writte
along each dimension.

eflag OUT:An error flag, initialized to 0.

Purpose Writes the RPF data into an RPF data file.

Return Value The reference number of the RPF data SDS vgroup_

Description This function opens a RPF file, and writes the RPF da
as an HDF scientific data set (SDS). It is up to the use
to create the rpfdata block to pass to this function.

For example, Type 2 CDF data storing a single gamm
ray spectrum can be written as a rank 2 data matrix in
which the 0th dimension, dims[0], is the number of bin
edges (equivalent to the number of bins + 1), and the
dimension, dims[1], is equal to 3. This would facilitate
the storage of energy bin edge values, energy bin cen
values and bin fluxes.

Eflag is set to the number of errors that occurred durin
the writing of the data.
RPF: An Extensible, Cross-Platform, Binary File Format for Radiation Physics Data21

RPFTools Reference Manual

ion.

nfor-

s

ng

c-

tus

t-
write_rpf_header

int32 write_rpf_header (int32 file_id, char *headername, header_type*rpfheader,
header_status_type *rpfheader_status, int *eflag)

file_id IN:The RPF file id previously returned by HDF function
Hopen

headername IN:The name of the RPF header vgroup.

rpfheader IN:The space which stores the RPF header informat

rpfheader_status IN:The space which stores the RPF header status i
mation.

eflag OUT:An error flag, initialized to 0.

Purpose Writes an RPF header into an RPF data file.

Return Value The vgroup_id of the header vgroup that is written

Description This function writes the RPF header information into a
vgroup of a previously opened rpf file designated by it
file_id. Only those keywords whose corresponding
rpfheader_status fields are set to ON will be written.

 Eflag is set to the number of errors that occurred duri
the writing of the header data using VSwrite.

write_rpf_page

void write_rpf_page (char *rpffname, int pageindex, header_type **rpfheader,
header_status_type **rpfheader_status, double **rpfdata, int32 *rank, int32 *dims,
int32 *start, int32 *edges, int *eflag)

rpffname IN:The name of the RPF file.

pageindex IN:The index of the RPF page to return.

Rpfheader OUT: A pointer to the pointer to the RPF header stru
ture.

rpfheader_status OUT: A pointer to the pointer to the RPF header sta
structure.

rpfdata OUT:A pointer to the buffer containing the RPF data.

rank OUT:The rank of the data to be written.

dims OUT:Array specifying the size of dimension.

start OUT:Array specifying the starting location.

edges OUT:Array specifying the number of values to be wri
ten along each dimension.

eflag OUT:An error flag, initialized to 0.

Purpose Writes a RPF page.
RPF: An Extensible, Cross-Platform, Binary File Format for Radiation Physics Data22

RPFTools Reference Manual

F

he

p.
rit-

s.
Return Value None.

Description This function opens a RPF file and writes a page of RP
data.

Eflag is initialized to 0. It is set to –1 if the file desig-
nated by rpffname is found not to be an RPF file and t
function returns from there. Eflag is set to –2 if there
were any errors during the writing of the header vgrou
Eflag is set to –3 if there were any errors during the w
ing of the data vgroup. It is set to –4 if errors occurred
during the writing of both the header and data vgroup
RPF: An Extensible, Cross-Platform, Binary File Format for Radiation Physics Data23

Data Dictionary: Header Keywords for the Radiation Physics Format

d set
tains
 files.

u

xible
fi-

cted
mod-

e for-
en

 rele-

 fol-

rge
PF
ld
g

the
 of the
nd

t of
 to
-

lve
ired
Data Dictionary: Header Keywords
for the Radiation Physics Format

Description It is imperative for the portability of data between our applications to have a standar
of keywords in the header information section(s) of our RPF files. This section con
the data dictionary for the keywords that are used to describe the fields in our RPF
The initial list of keywords was declared by fiat by the RPF file designer, Cheri Ham
(ham1@llnl.gov) after receiving input from users Tom Gosnell (gosnell1@llnl.gov),
Zach Koenig (koenig@llnl.gov), Bert Pohl (pohl1@llnl.gov), Dave Knapp
(knapp2@llnl.gov), Jim Wolford (wolford@llnl.gov), and Alexis Schach von Wittena
(schachvonwittenau@llnl.gov).

In order for the RPF spectral file header format and its associated software to be fle
and yet maintain their extensibility with minimal backtracking and reworking, the de
nitions of the header keywords and their uses must be strictly controlled. It is expe
that the list of header keywords will evolve with use over time. Procedures to add,
ify, delete, and exclude header keywords are described below. These procedures,
although draconian in appearance, must be strictly followed until or unless they ar
mally modified. Maintaining a tight rein on the keywords from the beginning will less
the chaos that keyword changes will cause in the future.

Remember, not all keywords will appear in each RPF header. Only those keywords
vant to each particular header will be included in the RPF file.

Adding/modifying keywords Changes and additions may be made to the accepted keyword list according to the
lowing 6-step procedure.

Step 1: Submit written request for data dictionary modification to the person in cha
of the keyword data dictionary. Initially and currently the keyword Czar will be the R
file designer, Cheri Ham. For modifications of existing keywords, this request shou
include the a list of the current keyword(s) to be modified, a list of the correspondin
keyword(s) that the requester would like to be used, and a justification for each of
requested changes. To incorporate new keywords, the request should include a list
new keyword(s) to be added, a complete definition of each of the new keywords, a
justification for each of the requested new keywords.

Step 2: The keyword Czar will submit the written request to the appropriate subse
the local community of RPF file users for feedback. They will have 7 calendar days
provide oral and/or written feedback. Initially and currently, the members of the key
word review committee will be Tom Gosnell (gosnell1@llnl.gov), Zach Koenig
(koenig@llnl.gov), Bert Pohl (pohl1@llnl.gov), Dave Knapp (knapp2@llnl.gov), Jim
Wolford (wolford@llnl.gov), and Alexis Schach von Wittenau (schachvonwit-
tenau@llnl.gov).

Step 3: The keyword Czar will consider the initial request and all the feedback, reso
any and all conflicts, and render a ruling upon the request, plus generate the requ
update to the RPF spectral file accepted keyword data dictionary.
RPF: An Extensible, Cross-Platform, Binary File Format for Radiation Physics Data24

Data Dictionary: Header Keywords for the Radiation Physics Format

e
levant
mu-

cess

ary

ill be
 pro-

rge
PF
rd(s)

t of
 to
-

lve
ired

dis-
e
levant
n

cess

ary

e
Step 4. A detailed written ruling on the request to add/modify keywords will be dis-
seminated to the local RPF file user community. This will include information on th
original request, the feedback received, and the ruling rendered, plus any other re
information such as the potential keyword data dictionary entry. The local user com
nity will have 7 calendar days to submit a written appeal to the keyword Czar.

Step 5. They keyword Czar will resolve any appeals by repeating the described pro
as required.

Step 6. They keyword Czar will make a detailed entry into the keyword data diction
logbook and update the keyword data dictionary as required.

Deleting/excluding keywords There will be occasions that certain keywords and the information they represent w
deleted or excluded from the accepted list of keywords. The following describes the
cedure to delete or exclude a keyword from the accepted header keyword list.

Step 1: Submit written request for data dictionary modification to the person in cha
of the keyword data dictionary. Initially and currently the keyword Czar will be the R
file designer, Cheri Ham. This request should include the a list of the current keywo
to be deleted or excluded and a justification for each of the requested changes.

Step 2: The keyword Czar will submit the written request to the appropriate subse
the local community of RPF file users for feedback. They will have 7 calendar days
provide oral and/or written feedback. Initially and currently, the members of the key
word review committee will be Tom Gosnell (gosnell1@llnl.gov), Zach Koenig
(koenig@llnl.gov), Bert Pohl (pohl1@llnl.gov), Dave Knapp (knapp2@llnl.gov), Jim
Wolford (wolford@llnl.gov), and Alexis Schach von Wittenau (schachvonwit-
tenau@llnl.gov).

Step 3: The keyword Czar will consider the initial request and all the feedback, reso
any and all conflicts, and render a ruling upon the request, plus generate the requ
update to the RPF spectral file rejected keyword data dictionary.

Step 4. A detailed written ruling on the request to delete/exclude keywords will be
seminated to the local RPF file user community. This will include information on th
original request, the feedback received, and the ruling rendered, plus any other re
information. The local user community will have 7 calendar days to submit a writte
appeal to the keyword Czar.

Step 5. They keyword Czar will resolve any appeals by repeating the described pro
as required.

Step 6. They keyword Czar will make a detailed entry into the keyword data diction
logbook and update the keyword data dictionary as required.

Modifying the keyword
change procedure

It its allowed that the procedures for changing the header keyword list might requir
modification at some point in time.
RPF: An Extensible, Cross-Platform, Binary File Format for Radiation Physics Data25

Data Dictionary: Header Keywords for the Radiation Physics Format

of
F
fica-

sub-

ed-
om

lve
ired

e
levant
n

cess

ary
Step 1: Submit written request for procedure modification to the person in charge
the keyword data dictionary. Initially and currently the keyword Czar will be the RP
file designer, Cheri Ham. The requester should include a description of and a justi
tion for each of the requested changes, additions, and/or deletions.

Step 2: The keyword Czar will consider the request, and if deemed necessary will
mit the written request to the appropriate subset of the local community of RPF file
users for feedback. They will have 7 calendar days to provide oral and/or written fe
back. Initially and currently, the members of the keyword review committee will be T
Gosnell (gosnell1@llnl.gov), Zach Koenig (koenig@llnl.gov), Bert Pohl
(pohl1@llnl.gov), Dave Knapp (knapp2@llnl.gov), Jim Wolford (wolford@llnl.gov),
and Alexis Schach von Wittenau (schachvonwittenau@llnl.gov).

Step 3: The keyword Czar will consider the initial request and all the feedback, reso
any and all conflicts, and render a ruling upon the request, plus generate the requ
update to the Modifying the keyword change procedure.

Step 4. A detailed written ruling on the request to add/modify keywords will be dis-
seminated to the local RPF file user community. This will include information on th
original request, the feedback received, and the ruling rendered, plus any other re
information. The local user community will have 7 calendar days to submit a writte
appeal to the keyword Czar.

Step 5. They keyword Czar will resolve any appeals by repeating the described pro
as required.

Step 6. They keyword Czar will make a detailed entry into the keyword data diction
logbook and update the keyword change procedure as required.
RPF: An Extensible, Cross-Platform, Binary File Format for Radiation Physics Data26

Data Dictionary: Header Keywords for the Radiation Physics Format

ai

te

al

.

e

RPF spectral file
accepted keyword data
dictionary

This data dictionary contains a list of the accepted HDF spectral file keywords, their defined data type, an example, and a detled
description of the information that they contain. This list is ordered to group keywords by functionality as opposed to alphabetically.

File creation keywords

The following three keywords preserve information on the initial creation of the HDF spectral data file.

date_file_written char * Ex: mm-dd-yyyy e.g., 03-14-1995. This ASCII string contains the original da
 that this file was written.

time_file_written char * Ex: hh:mm:ss XXX e.g., 14:12:00 PST. This ASCII string contains the origin
 time that this file was written.

original_filename char * E.g., \data\U071_414.CNF. This ASCII string contains the original file name
 used when this file was written.

Experiment identification keywords

The following keywords contain basic information to identify the experiment.

location char * This ASCII string contains the location where the experiment was performed

experimenters_names char * This ASCII string contains the names of the people involved in conducting th
 experiment.

experiment_id char * This ASCII string contains the experiment identification label.

run_number int32 This is the run number which resulted in the data attached to this header.

number_of_channels int32 This contains the number of channels in the data block associated with this
 header.
RPF: An Extensible, Cross-Platform, Binary File Format for Radiation Physics Data 27

Data Dictionary: Header Keywords for the Radiation Physics Format

nd

n.

me

e

hen
.

s.
Hardware Identification Keywords

These keywords identify the experimental hardware and their parameters. The use of high_voltage, fine_gain, coarse_gain, a
shaping_time are dependent upon the type of instrument used.

instrument_type char * This ASCII string describes the type of instrument used in the experiment.

instrument_id char * This ASCII string contains the instrument serial number or other identificatio

high_voltage real64 This describes the high voltage adjustment used.

fine_gain real64 This describes the fine gain adjustment used.

coarse_gain real64 This describes the coarse gain adjustment used.

shaping_time real64 This describes the shaping time used.

detector_type char * This ASCII string describes the type of detector used in the experiment.

detector_id char * This ASCII string contains the detector serial number or other identification.

Experiment Time Keywords

The following keywords contain timing and location information for the experiment.

count_clock_time char * Ex: hh:mm:ss XXX e.g., 14:12:00 PST. This ASCII string contains the clock ti
 when the experiment was started stored in ANSI standard format.

count_start_date char * Ex: mm-dd-yyy e.g., 03-14-1995. This ASCII string contains the date when th
 experiment’s data collection was started stored in ANSI standard format.

count_start_time char * Ex: hh:mm:ss XXX e.g., 14:12:00 PST. This ASCII string contains the time w
 the experiment’s data collection was started stored in ANSI standard format

count_live_time real64 This contains the live time of the experiment measured in decimal seconds.

count_dead_time real64 This contains the dead time of the experiment measured in decimal second
RPF: An Extensible, Cross-Platform, Binary File Format for Radiation Physics Data 28

Data Dictionary: Header Keywords for the Radiation Physics Format

.
ergy

et].

rder

red

n.

he

his
Energy Calibration Keywords

These keywords describe various energy calibration parameters.

energy_calibration_type char * This describes the type of energy calibration used. Valid options are none,
 normal, polynomial, and binned. None means that no calibration is available

Normal uses the keywords intercept, slope, and quadratic to calculate the en
calibration via the formula

 energy value = [quadratic * bin_number *bin_number] + [slope * bin_number] + [offs
Polynomial uses the number_of_energy_coeffs coefficients stored in
energy_calibration_coeffs to calculate the energy calibration using a higher o
polynomial equation. The intercept is stored in energy_calibration_coeffs[0].
The slope is stored in energy_calibration_coeffs[1]. The quadratic term is sto
in energy_calibration_coeffs[2], and so on. The spectrum option stores the
number_of_energy_bin_edges bin edges in the energy_calibration_spectrum

 array.

intercept real64 This is the intercept for the normal mode of energy calibration.

slope real64 This is the slope for the normal mode of energy calibration.

quad real64 This is the quadratic factor for the normal mode of energy calibration.

number_of_energy_coeffs int16 This is the number of energy coefficients for the polynomial calibration optio

energy_calibration_coeffs real64 array This contains the actual coefficients for the polynomial calibration option. T
 intercept is stored in energy_calibration_coeffs[0]. The slope is stored in
 energy_calibration_coeffs[1]. The quadratic term is stored in
 energy_calibration_coeffs[2], and so on.

number_of_energy_bin_edges int16 This is the number of energy bin edges required for the energy calibration. T
 value should equal [number_of_channels + 1].
RPF: An Extensible, Cross-Platform, Binary File Format for Radiation Physics Data 29

Data Dictionary: Header Keywords for the Radiation Physics Format

r.
ing
in

,
meter

The

 the
 the
energy_calibration_spectrum real64 array This contains the energy bin edges for the data associated with this heade
 energy_calibration_spectrum[0] contains the leftmost bin edge. The remain
 [number_of_energy_bin_edges - 1] bin edges are the energies of the right b
 edges.

energy_calibration_filename char * This ASCII string contains the name of the file from which energy calibration
information was obtained for the data associated with this header.

Efficiency calibration keywords

These keywords describe various peak efficiency calibration parameters.

efficiency_calibration_type char * This describes the type of efficiency calibration used. Valid options are none
parameter, and spectrum. None means that no calibration is available. Para
uses the number_of_efficiency_coeffs parameters stored in
efficiency_calibration_params to store the efficiency calibration information.
spectrum option stores the efficiency calibration information in the
efficiency_calibration_spectrum array.

efficiency_calibration_filename char * This ASCII string contains the name of the file from which energy calibration
information was obtained for the data associated with this header

Geometry keywords

These keywords describe the geometry of the experiment.

source_detector_distance real64 This is the closest approach [a.k.a. fact-to-face] distance from the source to
detector in meters. It is assumed to be the closest approach distance unless

 geometry_description field describes otherwise.

geometry_description char * This describes relevant experimental geometry information.

%_solid_angle real64 This is the % solid angle.
RPF: An Extensible, Cross-Platform, Binary File Format for Radiation Physics Data 30

Data Dictionary: Header Keywords for the Radiation Physics Format

nd s

ment.

ta
Material description keywords

These keywords describe the material(s) used in the experiment and are grouped according to source, absorber, collimator, ahield
parameters that are described in more detail below.

Source Description Keywords

These keywords describe the source used in the experiment.

source_description char * This describes the source used in the experiment.

source_id char * This is the serial number or other identifier for the source used in the experi

source_material char * This is the index of the source material.

declared_enrichment real64 This is the declared enrichment value.

declared_enrichment_error real64 This is the error associated with the declared enrichment value.

measured_enrichment real64 This is the measured enrichment value.

measured_enrichment_error real64 This is the error associated with the measured enrichment value.

wall_thickness real64 This is the wall thickness value.

thickness_error real64 This is the error associated with the wall thickness value.

geom_correction real64 This is the geometric correction factor associated with this source.

wall_material real64 This is the index of the wall material.

Absorber description keywords

These keywords describe the absorber(s) used in the experiment.

number_of_absorbers int32 This is the number of absorber layers which are described in the absorber da
 block.

absorber_material char* array This is the description of the absorber material.
RPF: An Extensible, Cross-Platform, Binary File Format for Radiation Physics Data 31

Data Dictionary: Header Keywords for the Radiation Physics Format

r
absorber_thickness real64 array This is the thickness of the absorber material layer.

Collimator description keywords

These keywords describe the collimator(s) used in the experiment

number_of_collimators int32 This is the number of collimators which are described in the collimator data
 block.

collimator_type char * array Currently acceptable collimator types include none, cylindrical, and complex

collimator_description char * array This describes the collimators

Shield Description keywords

These keywords describe the shielding material(s) used in the experiment.

number_of_shields int32 This is the number of shields that are described in the shields data block

shield_type char * array This describes the shield type

shield_description char * array This describes the shields

Comment keywords

This keyword field allows for user comments.

comments char * This is an ASCII string that can include newlines, tabs, etc., in which the use
 may make additional comments. It is terminated with a null character ('\n').
RPF: An Extensible, Cross-Platform, Binary File Format for Radiation Physics Data 32

Data Dictionary: Header Keywords for the Radiation Physics Format

y

ppened

p
h-
ave
HDF spectral file rejected
keyword data dictionary

There will be occasions that certain keywords and the information they represent will be excluded from the accepted list of kewords.
This data dictionary contains a list of the rejected HDF spectral file keywords, their description of the information, and why they were
rejected.

count_end_time It was decided by consensus by the attendees at the LDRD meeting on 12/15 (who also ha
to be the initial members of the keyword review committee will be Tom Gosnell
(gosnell1@llnl.gov), Zach Koenig (koenig@llnl.gov), Bert Pohl (pohl1@llnl.gov), Dave Knap
(knapp2@llnl.gov), Jim Wolford (wolford@llnl.gov), and Alexis Schach von Wittenau (schac
vonwittenau@llnl.gov) that this field was not necessary since the information that it would h

 contained can be calculated from other header fields.
RPF: An Extensible, Cross-Platform, Binary File Format for Radiation Physics Data 33

RPF Future Directions

ion
ools
 them

ould

 a tem-
ctor
ity,

ow-
th ease.
.

ll be

he
h
 are
sing
ith the

he
fore

ea-

d be
ction,
tilla-
e a
ased

tion
. Ide-

 par-
are
eans
ribe
RPF Future Directions

Current Status of RPF As mentioned in the introduction, the RPFTools subroutine library was frozen at vers
4.1r3 of HDF. Since that time NCSA has released version 5 of HDF and, if the RPFT
are to be applied to a significant data storage application, it would be wise to upgrade
to be compatible with the latest version of HDF. Because the entire RPFTools library
source code comprises only 4500 lines, many of them comment lines, this upgrade w
not be arduous.

RPF and Event-Mode
Data

It is sometimes desirable to collect nuclear data in event mode. Event mode data are
poral series of information vectors associated with each detected event such as dete
ID, pulse height address, arrival time, GPS coordinates, altitude, temperature, humid
barometric pressure, etc.

Currently the Radiation Physics Format does not accommodate event-mode data. H
ever, the extensible nature of the RPF means that event mode data can be stored wi
Since RPF files are self-describing, a variety of event vectors can be accommodated
Should we wish to extend the RPF to include event-mode data, the event vectors wi
buffered and then stored to the RPF file as slabs in order to increase data collection
throughput.

Single Experiment,
Multiple Detectors

RPFTools functionality currently supports writing more than one data page per file. T
stand-alone RPF application cdf2rpf demonstrates this when translating a CDF file whic
contains a two-part spectrum. The photopeak spectrum and the continuum spectrum
detected by a decrease in the list of bin energies that should be monotonically increa
for a spectrum. It then writes the data into one RPF file as two separate data pages w
same information in the header.

One of the strengths of the RPF file structure lies in its ability to group related data. T
challenge lies in determining what is related and what constitutes a group and there
should be contained in one RPF file. This is dependent upon not only what is being m
sured but at what level the grouping is to be done.

For example, on a very high level, all the data related to a particular experiment coul
considered a group and therefore be written to a single RPF file. But on closer inspe
there could be several different detector types (e.g. NaI, HPGe, neutron, plastic scin
tor, temperature, barometric pressure, etc.) and perhaps each detector type should b
group and therefore an RPF file. However, it may make more sense if groups were b
upon location and an RPF file would contain data from all co-located detectors.

Determining the optimal grouping of data inside an RPF file must take into considera
not only the type of data that are to be stored but also the eventual use of those data
ally, this should be done in a thoughtful way before the data are gathered.

To make the RPF viable for long-term use, a rigid structure must be imposed upon a
ticular implementation of the RPF data files. Remember that although the RPF files
self describing, the data and tools to manipulate them are very tightly coupled. This m
that it must be decided a priori which data will be stored and what keywords will desc
RPF: An Extensible, Cross-Platform, Binary File Format for Radiation Physics Data34

RPF Future Directions

PF

ssfully

 that
tful
e par-

store,

eader

nt

ed

-
cribing

 exam-
peri-

the
. The
PS

 at var-

ds to
oped. It
mper-

gy

e,
it for each detector, experiment, etc., and that any additions or modifications of the R
structure must be done according to a strict protocol.

This is not as daunting a task as it may seem upon first inspection. It has been succe
done for CDF files. The standalone programs, cdf2rpf and showrpf are examples of that.

Using RPFTools In a
Large-Scale, Multiple-
Detector Experiment

The RPF was intended to be adapted to accommodate the copious amounts of data
result from a large-scale, multiple-detector experiment. It just requires a bit of though
planning beforehand to decide which data need to be included and how they should b
titioned. Then the appropriate programs can be written using the RPFTools library to
retrieve, and manipulate the resulting RPF files.

An RPF data file consists of one or more pages of information. A page consists of a h
describing the page plus its associated data. Each page is stored as an HDF vgroup.

One scheme establishes the RPF internal vgroup hierarchy with the overall experiment at
the root of the tree. The next level of interior nodes contains portions of the experime
broken into temporal chunks. This could segregate the members into chunks collect
daily, in the morning, or in the afternoon. The members of these temporal vgroups contain
portions of the experiment broken into spatial chunks. This would group data from co
located detectors. The leaf nodes of this simple hierarchical tree are data pages des
each detector.

Headers must be established that reflect relevant information at each node level. For
ple, the header of the root page should contain information describing the overall ex
ment such as experiment name, date, location, experimenter names, sponsoring
organization, etc. The first interior node level should contain information concerning
overall start and stop times of the portion of the experiment described in its members
second interior node level should contain information concerning the location (e.g. G
co-ordinates) of the detectors described in its members.

Experimental setup, source location, and other header information may be attached
ious levels. It needs to be decided beforehand where it makes most sense.

Currently we have a set of keywords to describe gamma-ray spectra. Sets of keywor
describe neutron, temperature, barometric pressure, and other data need to be devel
is expected that the neutron keywords will be similar to the gamma keywords. The te
ature and barometric keyword sets should be simpler.

Currently we have an established vdata to describe gamma-ray spectra. It contains ener
bin edges, energy bin centers, and flux values to describe a spectrum. A vdata for neutron
data should include a temporal index and the count value. The vdatas for temperature and
barometric pressure would contain a temporal value and the temperature or pressur
respectively.

The data label for the gamma-ray spectra is gamma_data. Data labels for the other types
of data mentioned would be neutron_data, temperature, and barometric_pressure.
RPF: An Extensible, Cross-Platform, Binary File Format for Radiation Physics Data35

Appendix A: An Introduction to the Common Data Format (CDF)

tore

 various
on-
ted

er

r

 con-
the
y bin
s the
rror,

d by a

ord

ot
Appendix A: An Introduction to the
Common Data Format (CDF)

Anatomy of a CDF file The Common Data Format (CDF) was developed in the mid-1980’s as a means to s
gamma ray spectral data in a manner which would be versatile in both the types and
amounts of data to store, easily readable by a human user, and transportable across
computing platforms. The CDF spectral file format is an ASCII format in which can c
tain more than one page of data. A page of data consists of a header and its associa
spectral data.

The header is delimited by ::beginheader:: and ::endheader:: (or ::BEGINHEADER::
and ::ENDHEADER::, if you really must). Between these delimiting keywords are a us
determined number of keyword & value pairs, one pair per line. For example,

FILETYPENO=2

The FILETYPENO keyword designates the number of columns in the data section. Fo
backwards/sideways compatibility please be sure to include this in future CDF files.
Another keyword to include would be CHANNELS=.

The data consist of up to five space-delimited fields of data per line. Type 2 CDF files
sist of energy bin edge, flux pairs that appear one pair per line. The first data pair is
leftmost energy bin edge with a dummy flux. The remaining pairs are the right energ
edge with the flux of that bin. Type 5 CDF files are constructed in the same manner a
Type 2 CDF files with the additional space delimited fields of relative error, absolute e
and original flux on each line.

There can be two-part data: peak data followed by continuum data. This is recognize
decrease in the normally monotonically increasing energy values.

The CDF file is automatically recognized based upon the presence of the initial keyw
::beginheader:: or ::BEGINHEADER::.

An example CDF file follows. Not all required keywords are present (e.g. FILETYPENO).
Also note that Dave Knapp had decided to preface his keywords with an ‘*’. This is n
wrong, just different.

Example CDF file ::beginheader::

TITLE=a_file_with_no_name

CHANNELS= 10

TIMECAL= 03-01-96 09:59:46

 slope....: 3.09249E+00

 quad.....: 0.00000E+00

 offset...:-4.24517E+01
RPF: An Extensible, Cross-Platform, Binary File Format for Radiation Physics Data36

Appendix A: An Introduction to the Common Data Format (CDF)
 nchan....: 10

 year.....: 1993

 day......: 173

 time.....: 36047

 livetime.: 2.97000E+02

 realtime.: 3.00000E+02

* TITLE=..\data\U071_414.CNF

* sample_id....: NBS071

* date.........: 14-Mar-1995

* time.........: 14:12:00

* operator.....: John Luke

* location.....: West Dome

* inspector_ID.: Inspectr2120C041

* offset.......: -0.38102504611

* slope........: 0.0769006758928

* livetime.....: 300.000

* realtime.....: 305.410

* deadtime.....: 1.77

* source_matl..: 1

* enrichment...: .711

* enrich_error.: .001

* wall_thick...: 2

* thick_error..: 0.001

* geom_correct.: 1.000

* wall_matl....: 1

* comment_1....: This sample is a 0.711% standard.

* comment_2....:

* comment_3....:

* comment_4....:

 Energy (MeV) Flux

through the night

15 datapairs in section 1 - 14 bins of data

 7 datapairs in section 2 - 6 bins of data
RPF: An Extensible, Cross-Platform, Binary File Format for Radiation Physics Data37

Appendix A: An Introduction to the Common Data Format (CDF)

en
g
al
::ENDHEADER::

-3.93593E-02 0.00000E+00

1 42

3 44

5 46

7 48

9 50

11 62

13 64

15 66

17 68

Sample C code for
reading & writing CDF
files

The following C code for reading and writing CDF files was stripped out of code writt
for Palatyi. No attampts were made here to streamline it for simple reading and writin
functionality, or to undo the wonderful mung-job that Microsoft Word did on the origin
formatting. However, it should be fairly straightforward to do so.

read_cdf_file stripped out of getdata.c

/***

 * read_cdf_file - read the cdf file

 * 19 aug 1992 clh create

 * 8 sep 1993 clh implement error handling if can't find ::ENDHEADER:: flag.

 * 18 mar 1994 clh incorporate processing for two part cdf file into here.

 * This has been tested and now works just fine.

***/

void read_cdf_file (d)

char *d;

{

 viewer_type *viewer;

 char r[256], s[256], t[256]; /* strings for filename manipulation. */

 int i, j; /* generic counters. */

 int havetwo; /* if > 0, then have two spectra and the value

 is the starting index for the 2nd one. */

 int tsize; /* #edges in the 2nd one. */
RPF: An Extensible, Cross-Platform, Binary File Format for Radiation Physics Data38

Appendix A: An Introduction to the Common Data Format (CDF)
 viewer = (viewer_type *)d;

 viewer->eflag = 0;

 havetwo = 0;

 if (viewer->ff_buttons_on == 1)

 free_ff_buttons (viewer); /* get rid of the button selection display */

 viewer->has_label = 1;

 viewer->wmcolor = 7; /* set text color to white */

 viewer->nwmsg = 1;

 strcpy (r, viewer->gamma_list[viewer->ngammas].fname); /* hold name root. */

 sprintf (viewer->wmsg[0], "Reading cdf file: %s.", r);

 write_msg (viewer, 57); /* dark blue gray */

 init_plot_pair (viewer, 0);

 readcdf (viewer->gamma_list[viewer->ngammas].fname,

 &(viewer->gamma_list[viewer->ngammas].odat->nbins),

 &(viewer->gamma_list[viewer->ngammas].odat->e_edge),

 &(viewer->gamma_list[viewer->ngammas].odat->flux),

 &(viewer->gamma_list[viewer->ngammas].odat->d1),

 &(viewer->gamma_list[viewer->ngammas].odat->d2),

 &(viewer->gamma_list[viewer->ngammas].odat->d3), MAX_PEAKS, &viewer-
>eflag);

 if (viewer->eflag == -1)

 {

 viewer->nwmsg = 3;

 sprintf (viewer->wmsg[0], "Error - Error reading cdf file named:");

 sprintf (viewer->wmsg[1], "%s",

 viewer->gamma_list[viewer->ngammas].fname);

 sprintf (viewer->wmsg[0], "::ENDHEADER:: flag was not found.",

 viewer->eflag);

 write_error_msg (viewer, 1);

 return;
RPF: An Extensible, Cross-Platform, Binary File Format for Radiation Physics Data39

Appendix A: An Introduction to the Common Data Format (CDF)

*/

/

 }

 if (viewer->eflag != 0)

 {

 viewer->nwmsg = 3;

 sprintf (viewer->wmsg[0], "Error - Error reading cdf file named:");

 sprintf (viewer->wmsg[1], "%s",

 viewer->gamma_list[viewer->ngammas].fname);

 sprintf (viewer->wmsg[0], "Found %d lines of invalid data.",

 viewer->eflag);

 write_error_msg (viewer, 1);

 }

 viewer->gamma_list[viewer->ngammas].odat->asize =

 viewer->gamma_list[viewer->ngammas].odat->nbins;

 /* to check for two spectra in one file, see if we can spot a decrease in the

 supposedly monotonically increasing energy. */

 for (i = 0; i < (viewer->gamma_list[viewer->ngammas].odat->nbins - 1); i++)

 {

 if (viewer->gamma_list[viewer->ngammas].odat->e_edge[i+1] <

 viewer->gamma_list[viewer->ngammas].odat->e_edge[i])

 {

 /* we found another one so fix the #things in the first one and the filename. */

 havetwo = i + 1;

 viewer->gamma_list[viewer->ngammas].odat->nbins = havetwo - 1;

 strcpy (s, viewer->gamma_list[viewer->ngammas].fname); /* hold name root.

 strcpy (t, viewer->gamma_list[viewer->ngammas].fname); /* hold name root. *

 strcat (s, ".peak");

 strcat (t, ".cntuum");

 free (viewer->gamma_list[viewer->ngammas].fname);

 viewer->gamma_list[viewer->ngammas].fname =

 (char *) malloc (sizeof(char) * (strlen(s)+1));
RPF: An Extensible, Cross-Platform, Binary File Format for Radiation Physics Data40

Appendix A: An Introduction to the Common Data Format (CDF)

S,
 strcpy (viewer->gamma_list[viewer->ngammas].fname, s);

 break;

 }

 }

 /* calculate the bin centers and the energy & flux bounds for the first one. */

 convert_to_center (viewer->gamma_list[viewer->ngammas].odat->nbins+1,

 viewer->gamma_list[viewer->ngammas].odat->e_edge,

 &(viewer->gamma_list[viewer->ngammas].odat->e_center));

 efbounds (viewer->gamma_list[viewer->ngammas].odat->e_edge,

 viewer->gamma_list[viewer->ngammas].odat->nbins + 1,

 &viewer->gamma_list[viewer->ngammas].odat->enmin,

 &viewer->gamma_list[viewer->ngammas].odat->enmax);

 efbounds (viewer->gamma_list[viewer->ngammas].odat->flux,

 viewer->gamma_list[viewer->ngammas].odat->nbins,

 &viewer->gamma_list[viewer->ngammas].odat->flmin,

 &viewer->gamma_list[viewer->ngammas].odat->flmax);

#undef DEBUG

#ifdef DEBUG

 print_struct_specdat_type (viewer->gamma_list[viewer->ngammas].odat, 1);

#endif

 /* set the other parameters for the first one. */

 viewer->gamma_list[viewer->ngammas].fmt_id = gdf_cdf;

 viewer->gamma_list[viewer->ngammas].visible = 1;

 viewer->gamma_list[viewer->ngammas].color = return_next(MAX_WAVE_COLOR

 viewer->used_colors);

 viewer->used_colors[viewer->gamma_list[viewer->ngammas].color]++;

 viewer->nwmsg = 1;

 sprintf (viewer->wmsg[0], "Finished reading CDF file: %s.", r);

 write_msg (viewer, 57); /* dark blue gray */
RPF: An Extensible, Cross-Platform, Binary File Format for Radiation Physics Data41

Appendix A: An Introduction to the Common Data Format (CDF)
 viewer->ngammas++; /* so we don't step on what we just made. */

 /* if we have a second one make space for the 2nd spectrum and fill it. */

 if (havetwo > 0)

 {

 viewer->gamma_list[viewer->ngammas].fname =

 (char *) malloc (sizeof(char) * (strlen(t)+1));

 strcpy (viewer->gamma_list[viewer->ngammas].fname, t);

 tsize = viewer->gamma_list[viewer->ngammas-1].odat->asize

 - viewer->gamma_list[viewer->ngammas-1].odat->nbins;

 init_plot_pair (viewer, tsize);

 for (j = 0; j < tsize; j++)

 {

 viewer->gamma_list[viewer->ngammas].odat->e_edge[j] =

 viewer->gamma_list[viewer->ngammas-1].odat->e_edge[j+havetwo];

 viewer->gamma_list[viewer->ngammas].odat->flux[j] =

 viewer->gamma_list[viewer->ngammas-1].odat->flux[j+havetwo];

 }

 viewer->gamma_list[viewer->ngammas].odat->asize = tsize - 1;

 viewer->gamma_list[viewer->ngammas].odat->nbins = tsize - 1;

 convert_to_center (viewer->gamma_list[viewer->ngammas].odat->nbins+1,

 viewer->gamma_list[viewer->ngammas].odat->e_edge,

 &(viewer->gamma_list[viewer->ngammas].odat->e_center));

 efbounds (viewer->gamma_list[viewer->ngammas].odat->e_edge,

 viewer->gamma_list[viewer->ngammas].odat->nbins + 1,

 &viewer->gamma_list[viewer->ngammas].odat->enmin,

 &viewer->gamma_list[viewer->ngammas].odat->enmax);

 efbounds (viewer->gamma_list[viewer->ngammas].odat->flux,
RPF: An Extensible, Cross-Platform, Binary File Format for Radiation Physics Data42

Appendix A: An Introduction to the Common Data Format (CDF)
 viewer->gamma_list[viewer->ngammas].odat->nbins,

 &viewer->gamma_list[viewer->ngammas].odat->flmin,

 &viewer->gamma_list[viewer->ngammas].odat->flmax);

#undef DEBUG

#ifdef DEBUG

 print_struct_specdat_type (viewer->gamma_list[viewer->ngammas].odat, 1);

#endif

 viewer->gamma_list[viewer->ngammas].fmt_id = gdf_cdf;

 viewer->gamma_list[viewer->ngammas].visible = 1;

 viewer->gamma_list[viewer->ngammas].color =
return_next(MAX_WAVE_COLORS,

 viewer->used_colors);

 viewer->used_colors[viewer->gamma_list[viewer->ngammas].color]++;

 viewer->nwmsg = 2;

 sprintf (viewer->wmsg[0], "Finished splitting CDF file: %s.", r);

 sprintf (viewer->wmsg[1], " into two spectra.",

 viewer->gamma_list[viewer->ngammas].fname);

 write_msg (viewer, 57); /* dark blue gray */

 viewer->ngammas++; /* so we don't step on what we just made. */

 }

 if (viewer->after_uget == 1)

 {

 add_curve ((char *)viewer);

 }

#undef DEBUG

} /* read_cdf_file */

write_cdf_waveform stripped out of viewer.c
RPF: An Extensible, Cross-Platform, Binary File Format for Radiation Physics Data43

Appendix A: An Introduction to the Common Data Format (CDF)

AL
/

 * write_cdf_waveform() writes wave data to an ascii CDF file.

 * A CDF header is followed by bin edges & flux pairs.

 * 15 jun 1993 clh create from write_waveform

 * 24 aug 1993 clh change CDF output file data format; add FILETYPENO & TIMEC

********/

void

write_cdf_waveform (w_id, d, e_id)

window_type *w_id;

char *d;

event_data_type *e_id;

{

 int i, iwhich;

 viewer_param_type *par;

 viewer_type *viewer;

 char oname[256];

 char s[256];

 FILE *fp;

 char dstring[20];

 struct tm *tp;

 time_t clock;

 par = (viewer_param_type *)d;

 viewer = par->viewer;

 iwhich = par->number;

 i = 0;

 sprintf (oname, "%s.cdf_%d", viewer->gamma_list[iwhich].fname, i);

 /* let's make sure we don't nuke anything important! */

 while (!access(oname, F_OK))
RPF: An Extensible, Cross-Platform, Binary File Format for Radiation Physics Data44

Appendix A: An Introduction to the Common Data Format (CDF)

ec);

);
 {

 sprintf (oname, "%s.cdf_%d", viewer->gamma_list[iwhich].fname, i++);

 }

 if ((fp = fopen (oname, "w")) == NULL)

 {

 viewer->nwmsg = 2;

 sprintf (viewer->wmsg[0], "Error - Cannot open the file named:");

 sprintf (viewer->wmsg[1], " %s", oname);

 write_error_msg (viewer, 0);

 }

 else

 {

 viewer->ncmsg = 3;

 sprintf (viewer->cmsg[0], "Writing CDF file:");

 sprintf (viewer->cmsg[1], " %s.", oname);

 sprintf (viewer->cmsg[0], "bin edge & flux pairs.");

 coef_msg (viewer);

 fprintf (fp, "::BEGINHEADER::\n");

 /* the filename */

 fprintf (fp, "TITLE= %s\n", viewer->gamma_list[iwhich].fname);

 /* when you wrote this CDF file */

 clock = time(0);

 tp = localtime (&clock);

 sprintf (dstring, "%02.2d-%02.2d-%02.2d %02.2d:%02.2d:%02.2d",

 tp->tm_mon+1, tp->tm_mday, tp->tm_year, tp->tm_hour, tp->tm_min, tp->tm_s

 fprintf (fp, "TIMECAL= %s\n", dstring);

 /* how many columns of data the CDF file has (2 = energy & flux) */

 fprintf (fp, "FILETYPENO= %d\n", 2);

 /* how many channels of data the CDF file has */

 fprintf (fp, "CHANNELS= %d\n", viewer->gamma_list[iwhich].odat->nbins);

 fprintf (fp, "::ENDHEADER::\n");

 fprintf (fp, "%13.6e %13.6e\n", viewer->gamma_list[iwhich].odat->e_edge[0], 0.0

 for (i = 0; i < viewer->gamma_list[iwhich].odat->nbins; i++)
RPF: An Extensible, Cross-Platform, Binary File Format for Radiation Physics Data45

Appendix A: An Introduction to the Common Data Format (CDF)
 {

 fprintf (fp, "%13.6e %13.6e\n",

 viewer->gamma_list[iwhich].odat->e_edge[i+1],

 viewer->gamma_list[iwhich].odat->flux[i]);

 }

 fclose (fp);

 viewer->ncmsg = 5;

 sprintf (viewer->cmsg[0], "Click on the output type to");

 sprintf (viewer->cmsg[1], "write the waveform to a file.");

 sprintf (viewer->cmsg[2], " ");

 sprintf (viewer->cmsg[3], "Wrote CDF file:");

 sprintf (viewer->cmsg[4], " %s.", oname);

 coef_msg (viewer);

 }

} /*
RPF: An Extensible, Cross-Platform, Binary File Format for Radiation Physics Data46

Appendix B: About HDF and supported platforms

rcom-

e
he
Appendix B: About HDF and supported platforms

In this appendix are a few web pages downloaded from the National Center for Supe
puting Applications (NCSA) web site, http://hdf.ncsa.uiuc.edu/, that define the Hierarchi-
cal Data Format (HDF) and list the platforms (with compiler information) on which th
DCSA HDF group tested HDF and for which pre-compiled binaries are provided on t
NCSA ftp server.
RPF: An Extensible, Cross-Platform, Binary File Format for Radiation Physics Data47

	Introduction
	RPF Spectral Data File Format
	History
	Requirements
	What is HDF?
	What is in the HDF library?
	Conceptual Solution
	Specifications for the Actual Solution
	Editing an RPF Header
	Keyword Integrity

	RPF Software Suite Overview
	Introduction
	Anatomy of an RPF file
	Platforms
	RPFTools library
	Stand-alone applications

	RPFTools Reference Manual
	Introduction
	Information Pages
	RPF Software Tools
	Data Structure Definitions
	Reference Section Overview
	Functions

	Data Dictionary: Header Keywords for the Radiation Physics Format
	Description
	Adding/modifying keywords
	Deleting/excluding keywords
	Modifying the keyword change procedure
	RPF spectral file accepted keyword data dictionary
	HDF spectral file rejected keyword data dictionary

	RPF Future Directions
	Current Status of RPF
	RPF and Event-Mode Data
	Single Experiment, Multiple Detectors
	Using RPFTools In a Large-Scale, Multiple- Detector Experiment

	Appendix A: An Introduction to the Common Data Format (CDF)
	Anatomy of a CDF file
	Example CDF file
	Sample C code for reading & writing CDF files

	Appendix B: About HDF and supported platforms
	cover2.pdf
	DISCLAIMER

