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Abstract

An electromagnetic hybrid scheme (fluid electrons and gyrokinetic ions) is elaborated in
example calculations and extended to toroidal geometry. The scheme includes a kinetic electron
closure valid for p.> mJm. (B, istheratio of the plasma electron pressure to the magnetic field
energy density). The new scheme incorporates partially linearized (6f) drift-kinetic electrons
whose pressure and number density moments are used to close the fluid momentum equation for
the electron fluid (Ohm's law). The test cases used are small-amplitude kinetic shear-Alfvén
waves with electron Landau damping, the ion-temperature-gradient instability, and the
collisionless drift instability (universal mode) in an unsheared slab as a function of the plasma ..

Attention is given to resolution and convergence issues in simulations of turbulent steady states.

PACS numbers: 52.65.-y, 52.65.Tt, 52.35.Qz



[.INTRODUCTION

Nonadiabatic electron effects significantly modify the stability and concomitant turbulent
transport of drift-waves in tokamaks. Incorporating electron kinetic and electromagnetic effects
into gyrokinetic particle-in-cell drift-wave turbulence simulations is computationally
challenging: electrons and el ectromagnetics introduce additional time and space scales that alter
numerical stability, increase temporal and spatial resolution requirements and, hence, increase
the computational burden. In previous work' we extended the electromagnetic hybrid scheme of

Chen and Parker? (fluid electrons and gyrokinetic ions) to include a kinetic electron closure valid

for Bem /my3 1 where B, =4nngTe/ B2, T, is the electron temperature, and B is the magnetic
field strength. We introduced a new closure scheme that makes particle simulation of
electromagnetic drift-wave turbulence with drift-kinetic electrons and gyrokinetic ions tractable
with realistic mass ratios and readlistic ..

The new algorithm incorporates partially linearized®* 6f drift-kinetic electrons whose
pressure and number density moments are used to close the fluid momentum equation for the
electron fluid (Ohm's law). Comparisons were made in Ref. 1 between the results of three
hybrid schemes with kinetic electron closures and a conventional 6f algorithm for drift-kinetic
electrons and gyrokinetic ionsin atwo-dimensional slab model. The test cases used were small-
amplitude kinetic shear-Alfvén waves with electron Landau damping, the ion-temperature-
gradient instability, and the collisionless drift instability (universal mode) in an unsheared slab as
afunction of .. The hybrid schemes have the desirable properties that they do not require that
the mesh size perpendicular to the applied magnetic field be smaller than the collisionless skin

depth c/w,, and naturally accommodate zonal flow physics (radial modes®) with non-adiabatic



electron effects. The best of the new hybrid schemes uses a variation of the split-weight scheme

introduced by Manuilsky and Lee.® In this case the electron distribution function f, is given by
fo = fin %, V) + O / ng) fy (X, V) + ho (%, V), )

where f,, isaMaxwellian velocity distribution function including possible equilibrium
temperature and density gradients, n, is the equilibrium electron density, dn.? is the lowest-order
fluid approximation to the total electron density perturbation (more explicitly defined in Sec. 11),
and h, is the non-adiabatic part of the electron density perturbation determined using a variant of
the &f method. The split-weight algorithm is found to be efficaciousin that statistical noise
arising from the particle representation is relegated to the relatively small h,termin Eq.(1). The
Hybrid Il agorithm introduced in Ref. 1 gives very good results for §om / m, 3 1 and poor results
in the opposite limit.

The new hybrid scheme departs from earlier work”#%% in several respects. The research

of Reynders’ and Cummings® did not use split-weight methods nor hybrid techniques, and their

algorithms could not efficiently address plasma conditions for which gom / m, >>1. The

research of Cohen and Dimits’ used implicit 8f methods, did not use split-weight methods, and

did not address f3,m / my >>1 plasma conditions. Chen and Parker have modeled kinetic

electrons in three-dimensional toroidal simulations using parallel canonical momentum and a
variant of the split-weight scheme; however, their smulations were still limited to fom / m, £ 1.
The approach taken in our extended hybrid algorithm resembles in some respects the work of Lin
and Chen™ who introduced a new split-weight algorithm and applied it to the propagation of
small-amplitude shear-Alfvén wavesin auniform plasma. Our extended hybrid algorithm
accommodates the nonlinear generation of zonal flows (radial modes’) not addressed in the work

of Lin and Chen."* The work presented here illustrates the Hybrid |1 algorithm in additional test



cases addressing accuracy and convergence in nonlinear simulations of drift-type turbulence and
extends the formulation of the algorithm to atoroidal flux-tube geometry.

The remainder of the paper is organized asfollows. In Section Il we review the Hybrid I1
kinetic extension of the Chen and Parker hybrid model.>? Section |11 reviews the results of the
Hybrid 11 algorithm in simulating the propagation and damping of small-amplitude shear-Alfvén
waves, small-amplitude collisionless drift and ion-temperature gradient (ITG) instabilities, and
simulation results for many-mode simulation of the linear growth and nonlinear saturation in two
gpatial dimensions of an ITG instability. The toroidal flux-tube extension of the Hybrid 11
algorithmisgivenin Sec. IV. In Section V we present simulation results that examine the
accuracy and convergence of the simulation results with respect to time step, size of the
simulation box, and particle statistics, and discuss the general accuracy and stability
characteristics of the Hybrid 11 algorithm. In Section VI we conclude.
[I.ELECTROMAGNETIC ALGORITHM FOR KINETIC SIMULATION OF DRIFT
AND SHEAR-ALFVEN WAVES

In this section we describe the basic ingredients of the Hybrid Il algorithm in aslab
configuration. lons are described as df gyrokinetic particles, and their trajectories are advanced
with a predictor-corrector scheme using atime step At that is the same as that used in the solution
of the field equations. Electrons are described jointly by fluid equations generated by taking
moments of the drift-kinetic equations and as 6f drift-kinetic particles, whose trajectories are also
advanced with a predictor-corrector scheme using the same time step as that for theions. lon
currents and charge densities, and electron parallel and perpendicular pressure moments and the

electron charge density are accumulated from the particles at each At and used in the fluid



equations, Ampere's law, and the quasi-neutrality equation to determine the electrostatic
potential and the parallel vector potential.
The ions and electrons satisfy the gyrokinetic reduced Vlasov-Maxwell equations®'%2

with the following orderings:

oty B

where p; © v;/ Q; istheion Larmor radius defined asthe ratio of theion thermal velocity to the

ion cyclotron frequency, Q; =gB/ mc, v; = (T; /' m; )1/ , g, m, and T, respectively, are theion
charge, mass, and temperature; c is the speed of light, B is the equilibrium magnetic-field
strength, 8B is the perturbed magnetic field, ¢ is the electrostatic potential, o is the frequency of
the field perturbation, L is a characteristic perpendicular equilibrium scale length of the system,
and L, isthe characteristic parallel wavelength of the perturbation. We use amulti-scale

treatment throughout.*** The electric and magnetic fields are given by

E

R - ctoA/atB=Bg+ N Az= B2+ By+K" Az, ?3)

Theion and electron kinetic distribution functions are represented by

<i

fei = Fl\?lyi +0fg i (X,V,1), Shg, 8f = "?‘Wieié(i' Xi)s(v‘ _)’ (4)

where 8f, = (0 / noe) fy (X,¥) + ho(X, V) using Eq.(1). The equilibrium distribution functions
F,\e/ii are Maxwellians in the parallel velocity and the magnetic moment. The marker particlesin

our simulations are initialized in velocity space using a Maxwellian distribution. The partially
linearized gyrokinetic ion and drift-kinetic electron Vlasov equations for a plasma with weak

magnetic shear in slab geometry are™**



Bhe Y& &fe- C%ﬂa—q}' B)afe

where b=2+98{0 /By + N” A2/ By, 5O =2+980 /85,
i ES — 2192 . : : :
-NInFy —Kns[1+ns(v | 2 - 3/3], K, 1S the magnitude of the density gradient for

species s, ng © dInTg/dInng,

¢ ° 5= odpg(R + p) 7)

and analogously for E, etc., R® X- p, p° Va ~ b/Q;, p isaunit vector in the direction of p
(theintegral in Eq.(7) isan integral around the Larmor orbit with respect to the gyrophase angle),

X isthe particle positon vector, V. isthe perpendicular velocity, 8fg; (R, w,vipt) isthe

gyroaveraged perturbed distribution function, and u °© \# /2. The dlectrons have avanishingly

small Larmor radius.

The electrostatic potential ¢ is given by the gyrokinetic Poisson equation, which for a

single-ion species (species subscript i and singly charged), is given by
K% - —‘UL = 457 - o), (8)
D

where<|~>(>*<)o 2—175 odudpo (% - p),t © T/ T, XZD ° To/ drrpee? isthe square of the electron Debye
length, n, is the unperturbed electron on density, 6Ry isthe gyroaveraged perturbed ion density,

dn, isthe perturbed electron density, and for simplicity we have assumed that the ions are singly



charged. Theangle averagesindicated in ér and q'> are replaced by averages over four points on

theion Larmor orbit. Thefield interpolations from the grid to the particles and the deposition of
distribution function moments from the particles onto the grid involve spatial weighting
functions. Ampere' s law relates the parallel component of the vector potential and the parallel

currents:
~D . .
-NEA, = (jg + i) )

and the ion current is computed to lowest significant order from the ion distribution

function, j;; = odudvyv;pf . We postpone discussion of the electron parallel current. The

equilibrium density gradients are in the x direction, and the unperturbed magnetic field hasits

principal component in the z direction with asmall component in they direction. With no
magnetic shear B, isa constant, and with shear B§/0) = By(X- Xg)/ Ls, Where L, isthe magnetic

shear length. In the unsheared slab, all quantities are subject to periodic boundary conditions.
With magnetic shear, the electric and vector potentials satisfy Dirichlet boundary conditionsin x

and are periodicin y.”*

The gyrokinetic ion particle equations of motion are given by

dX/dt=V =0y +{Ve g (10)
aw _fey =0 90 vibey\
#—\%Em-m(%ﬁ- JIB—)/, (11)

where the angle brackets in the right sides of Eq.(10) and (11) indicate a four-point average

around the ion Larmor orbit, NI(IO) o O xN, and w!' are theion particle weights.



For the electrons we compute the parallel velocity moment of the drift-kinetic equation
and obtain the modified electron momentum equation (Ohm’ s law) following the approach

introduced in Ref. 2 and rigoroudly justified in Ref. 16 for the orderingsin Eq.(2):

engeE X0 = - Ny Rl - Noeme(d /9t + Vg g N )Uje, (12
where N © bxK, with

o e L TO /(0 st - O .0 K -
NiFie = NiRjie” + Tie” Nipne ™+ nodNipTje = NjRjg” + Tje” Nj(One - Ang’) +nodNipTje,  (13)

0 _

using Eq.(1) to make the substitution 6ré ong - Ane’f, wheredn,© is the lowest-order fluid

component of the perturbed electron density, dn, = 6né0) + Anfe< isthe total perturbed electron

density including kinetic corrections consistent with the density moment of Eq.(1), and
A rﬁf = <‘113vhe is the split-weight kinetic electron increment to the charge density,

NII(-I_Il(eeq) +8Tjie) = 0 isimposed as a constraint on the fluid electron temperature representation,™

T"(eeq) is the equilibrium temperature (including gradients), Ffl(e?) = ngo)'ﬁl(?), ni0 isthe

0 isaconstant. Non-adiabatic kinetic corrections to

equilibrium density (including gradients), T

Egs.(12) and (13) derived from the second parallel velocity moment of EQ.(1) are higher order in
(o /k”ve)2 than are the terms coming from the adiabatic response. The representation of the

perturbed electron density as an expansion around the fluid density is completely analogous to

Ref. 11. In our formulation the expansion parameter is |AneK / 6né0)| <<1.



Ohm’slaw, Eq.(12) using (13) for the pressure gradient, is used to obtain E,. This electric

field together with A,/ at = E + Rig) @ isused to advance A, in time. With the updated A,,

Ampere' slaw determines the parallel electron current:

NoeUje = Zec NX A, +T)j (14)

where f”i isthe gyrokinetic parallel ion current per unit charge. The velocity integral of the

electron drift-kinetic equation yields the electron continuity equation which provides the

prescription for advancing the total electron density ahead in time:

% + nge (B + 5B ) WY +Vg g i, =0 (15)

where ng = n(eo) +0ne. Curvature and gradient-B drifts and toroidal effects are added in Sec.
IV.2" The electrostatic potential is obtained from the quasi-neutral form of Eq.(8) suppressing
the first term on the left side of EQ.(8) and using the updated total electron and ion charge
densities. The evolution of the drift-kinetic electron positions, velocities, and weights deduced

from Eq.(6) is computed with a predictor-corrector time integration (after using Egs.(12), (13),

and (15)),

dR/dt=V V=V +Vep (16)
we 0By  dn Inge o gs(0 2 B N
& =KeWg B *+(Ke- Kne)V| B i eTO""'VE’B*\'@T‘(e )/n0e+(V||/Ve)(%+VE’B>N)U1|e

. ~ R 2 ~ ~ ~
» (VE- X+ B%XMTe(ﬁ - 3) + Nupe + (V||/V§)(% +Ve g N)ye.  (17)



where we have used the lowest-order approximation dn, » 6né0) in the continuity equation

employed in obtaining the final expression on the right side of (17), which makes explicit use of
the small parameter |An('3< / 6n§0)| in our perturbation expansion and is consistent with the formal

expansion procedure in Ref. 11. The parallel electric field in Eq.(16) is determined by Eq.(8) for
the electrostatic field and Eq.(12) for the electromagnetic contribution. The last terms on the
right side of Eq.(17) arise from the electron inertiatermsin Eq.(12),

- NodMg(d / 3t + V- g N )uje . TO accommodate the electron inertia terms, we used an explicit

uncentered finite difference in time in the predictor step of the predictor-corrector time
integration of Egs.(13-16). With the exception of the electron inertia terms, the predictor-
corrector integration of the entire system is second-order accurate in time. Retention or omission
of the electron inertia terms had no significant influence the smulations. Our attempts so far to
include electron subcycling in the hybrid schemes have led to numerical instability and no
electron orbit-averaging™ has been undertaken. Because of the partial linearization®* no parallel
wave trapping of ions or electronsis allowed, and v, is a constant for both species
[11. TEST SSIMULATIONS

In this section we review the results of test simulations with the Hybrid 11 algorithm. The test
cases considered are kinetic shear-Alfven waves (including electron Landau damping), the
collisionless-drift instability, and the ion-temperature-gradient instability.
A. Simulations of small-amplitude waves

With afinite-f ordering, B,m/m_ 3 1, the electrons are dominantly adiabatic but have

important nonadiabatic kinetic correctionsin their dielectric response. Shear-Alfvén waves and
magnetized sound waves are the two fluid normal modes in a slab geometry with a uniform

plasma, lﬂ|<<k and o << Q; << Q,, where k|| is the wavenumber component parallel to the

10



equilibrium field and Q,; are the electron and ion cyclotron frequencies. In Figure 1 we present a
comparison of the results of the Hybrid Il simulations of kinetic shear-Alfvén waves and linear
theory. Plotted are scans of Re /2, and Imw/Q, vs. B, fork p_=p/8, T=T;, B,/B,=0.01,
ps=2Ay, and a32" 32 grid. Hybrid Il results are denoted with “0” and Hybrid I11 (see Ref. 1)
resultswith “x”. The dashed curveislinear theory. The agreement with theory is excellent

when Bem /m > 1. The hybrid algorithms become unstable for gm / m < 1; these algorithms
cannot recover the electrostatic limit because of the “backwards’ solution of Eq.(14). Thereisno
requirement that the skin depth be resolved. These results resemble those obtained in the
independent work of Lin and Chen."*

The Hybrid |1 algorithm yielded very good results for the collisionless drift-wave

instability. InFig. 2 we plot Rew/2 and growth rates Imw/<Q2. from Hybrid |1 and conventional

of simulationsvs. B . and o _Ayjcfor k p = p/4, p L = 0.2, T=T,, B,/B,=0.01, p=2Ay, 16" 16
grid, no magnetic shear, and only the (0,1) mode retained. The standard 6f simulation described

in Refs. 1 and 8 gave good results only for fm/my £ O@) and Ay<c/w,., while the Hybrid I

pe’
algorithm gave good results for gm /mg > 1 and any skin depth.

The Hybrid 11 algorithm also yielded very good results for 6f slab simulations of
unsheared ion-temperature-gradient instability (ITG) and was able to accommodate finiten,. In
Fig. 3 we present results from Hybrid Il ssmulations of ITG for asingle linear mode with
kyps » 7/ € p =2Ax, 32" 32 grid, no magnetic shear, B,/B;=0.01, T =T, n_=n=4, p/L =0.1,
Qe/mpe=1, and m/m=1836. The Hybrid Il smulations of unsheared ITG agree well with theory

for m /me > 1, and thereis no constraint on the skin depth, ¢/, relative to the cell size Ax.

Linear theory isindicated by the dashed curvein Fig. 3.
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B. Nonlinear Simulations of the lon-Temperature-Gradient I nstability

Previous simulation work™**" has concluded that the slab, multi-scale physics model
with kinetic electrons and ions presented here should lead to saturated states with the radial
modes>®° playing an important role. In Figs. 4 and 5 we present results of nonlinear simulations
of ITG instability performed with the conventional &f and Hybrid 11 algorithms showing linear
growth followed by nonlinear saturation mediated by the nonlinear generation of radial modes
(k,=0, k,* 0). Nonlinear, many-mode, two-dimensional slab simulation results with no shear,
B,”/B,=0.01, T =T, 1, =n =4, p/L =0.1, QJw =1, m/m=1836, p.=Ax, 16" 16 grid, and
Atc/L=0.4 are presented. Super-gaussian k-space smoothing, exp(-k'a’), was used in the
conventional df code, and a Heaviside-function was used in the Hybrid Il algorithm (modes
were suppressed completely for k’a?>1, with a=1 in both algorithms). When super-gaussian
smoothing was used in the Hybrid 11 algorithm, the shortest wavelength modes (ka p; >1)
affected by thefilter (but not completely suppressed) were numerically unstable. We believe

that this numerical instability is related to the instability observed when fom /my <1inall of

the hybrid algorithms,* which is associated with the backwards solution of Ampere’slaw in
Eq.(14) that becomesill-posed in the electrostatic limit. With adequate filtering, the ITG
instability saturates in the ssmulations; and the thermal flux across the pressure gradient and the
linear growth rates decrease together as a function of increasing 3, consistent with the quasilinear
argument in Ref. 9. Figure 4 shows the time histories of the fastest growing linear mode and the
cross-field ion thermal flux. Figure5 displays the accompanying mode energy spectrum at
saturation showing the dominance of the radial mode and that an inverse cascade to longer
wavelengths has occurred in these small simulations. The ion thermal fluxes (not time-averaged

or filtered) exhibit bursts of transport often seen in ITG simulations. 1n sum, the Hybrid I1

12



nonlinear ssmulations of the ITG instability exhibit well-behaved saturated states and yield
credible physics results.
IV.TOROIDAL FLUX-TUBE HYBRID || FORMULATION

Here we give the extension of the Hybrid 11 algorithm to atoroidal flux-tube geometry. The
paralel electric field is determined from the modified electron momentum equation (Ohm'’s law)

including toroidicity™®

- A ~ EB—/\ Y \7/ N
engeE =~ NRe + 5 *Renoeh - peme(d/ 0t + Vg xNye
; (%6F’Ae' 6F1|e)6(0) N InB (18)

o - OFN K N L _ :
where NRi, = Ny RE + T Ry @ne - Ang ) +ngeNpTye with Ny(T,& +8Tje) = 0. The Ohm's

law is then used to advance A intime, 9A;/cot = ( E+ K¢) p© = . with the updated A, we use
Ampere' slaw to determine the parallel electron flux from Eq.(14) asin the slab algorithm. The
electron continuity equation including magnetic curvature is next used to advance the total

electron density:

adn, = (0 = o~ . o~
Te +n0e(B( ) +6B/\)>N Héﬁ + Vg B>Nne

P 2
+ g (B (B NGoR +oRe) +

2 (B” RB)N =0, (19)

where Qg ° gsBy/me. Theelectric potential ¢ is determined from the quasineutrality relation

Eq.(8a) using the updated electron and ion densities.
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The equations of motion for the gyrokinetic ions and the drift-kinetic electrons are
extended from Egs.(11) and (16) to include both mirroring and the toroidal drifts as part of the
quiding center drifts Vgg: Vgs =V + Vg g+ Vgs . Vs = (vf +VA /28" NB/QgB® with

V) = (ds/ b XE- (ug/ m)b R B+y(bxRb) g g, (20)
where Vg- g isthe E” B drift velocity and gyro-averaging of the ionsisincluded in the standard
way.01#1418 | g partially linearized implementation, the first and third terms on the right side of
Eq.(20) are suppressed if there are no equilibrium electric fields. The gyrokinetic equation for
the ions yields the following equation for the ion weightsin toroidal geometry™®

S = -9 xRinRy - ¢LIn Ry (21)
where ¢ isthe particle energy and ¢ = e\/”6 E +mMVe g >{v||26><l§t3+ (V31 2)KInB]. Fromthe
drift-kinetic equation for electrons with split-weights (after cancellations obtained by using

Ohm’ s law and the continuity equation)

g wi® = (ke xne) XXV g+ Wjb) - Ve oM /e + BA (Uje! B) + (vj/¥& ) + Ve~ 8 xNuye
(b N InB)($8pne - 8P / CoeTE” ) +Ve g e o *b +3eaNInB) /10
H(npemeQeB*) (B RB) xN(dpje +30pe) +(2¢/ BY)(B” RB)xIy (22)

Flux-tube coordinates are used with the following definitions:® x=r-r,, y=( ry/q,)(q6-%),

z=q,R,0. Implementation of these equationsin a code is underway.
IV.TIME-STEP, ACCURACY AND CONVERGENCE CONSIDERATIONS

For kinetic simulations to provide credible results there are a number of accuracy issues
that restrict the time steps and grid resol ution used:

k/\VE’ BAt< 1 kanAxa <1 k”AX” <1l wAt<l Ax £ Pis k”VSAt <1 (23)

14



where v=(T/m)"? isthe thermal velocity for each species. The first conditionin (23) is
representative of arestriction on resolving finite-amplitude phenomena. Thereis also the
stability constraint set by kjvaAt <1 for v >cg. Taking into account that
Axy = (By/ B )ay © 0™ Ay in the two-dimensional slab, the Alfvén stability condition is
BvaAt /Ay <1. Wenotethat ve/va = (Bem / rrb)1 I andv; /v = (Bel;/ Te)1 h

We have demonstrated that in the conventional 8f smulation thereis a constraint on
resolving the skin depth ¢/ w pe with the grid spacing in order to accurately reproduce the linear
dispersion relation of shear-Alfvén waves and the drift instabilities." Because
pi /(clwpe) = (Ti /Te)llz(ﬁmi / me)1 / ‘ the skin depth c/w pe becomes smaller than o, ~ pg
when g.m /m, >1. Notethat c/w pe=0.05cm for ne=1014/cm3. Thus, resolving the skin depth

becomes a more severe and onerous constraint than Ax. £ pg for fom /my> 1. TheHybrid I

algorithm is not constrained to resolve the skin depth with the spatial grid, but it behaves well

only for gom / m, 3 1. With magnetic shear (not addressed here), populating the resonant
electron layer with particles can become an additional important accuracy constraint on the
simulations® Ax, © (ky/Ky)Ls ~ (0 /kyve)Ls ~ (me/m; ) s /L1)ps.

With veAte/ A £ O(1) our simulations are well-behaved, and self-heating and numerical

diffusion of the electron velocity distribution are acceptably small.*”*® In Figure 6 we show
results for Hybrid Il simulations of the ITG and collisionless-drift instabilities in which the
frequencies and growth rates of a single small-amplitude mode are plotted as a function of time
step in the simulation. Hybrid Il simulations of I TG retain some sensitivity to electron kinetics:

VeAt/ Ay £ 1.5 is needed for accurate smulations of a system with n;=n=4, 3,=0.035, 32" 32

grid, m/m=1837, k p=p/8, 6=0.01, p/L,=0.1, and no magnetic shear; and we note that thereis

15



no electron subcycling. The collisionless drift wave is more sensitive to electron kinetics:
VeAt/ Ay £ 0.3 is needed to accurately simulate a system with 3,=0.0049, 16" 16 grid,
m/m=1837, k p==p/4, 6=0.01, p/L,=0.2, and no magnetic shear.

The convergence of nonlinear simulations of drift-wave instability driven transport may
set the most restrictive condition on time step, and the time step may depend on the parameters
and physical conditions of the particular problem.*® We consider examplesin Fig. 7 of nonlinear,
many-mode, two-dimensional slab Hybrid Il simulations as a function of time step. The
simulation parameters were Atc/L,=0.4, 0.2, 0.1; p=2.2" 10 3 no magnetic shear; 6=0.01;
T=T;n =n=4 p/L =0.1; Qe/mpe=1; m/m=1836; p =Dx; 16" 16 grid; and Heaviside-function
mode filtering with a=1. For these parameters we can relate Atc/LtoveAt/ Ay
Ateg/ Ly = (Ay/ LT)(nle/mi)(BolB§,o) )veAt/ Ayl » 0.2%At/ Ay;. If thetime step is not chosen
adequately small to resolve the nonlinear physics, thereis aslow, secular, residual growth of the
electrostatic and vector potential mode energies and a concomitant slow growth of the averaged
cross-field thermal fluxes that in the supposedly saturated state. The accuracy constraints on the
linear dispersion for ITG and collisionless drift-wave smulationsin Fig. 6 set time step
conditions veAt/ Ay < 0.5 that translate into Atc/L;<0.1. Thesetime steps arein keeping with
the converged results for the nonlinear ssmulationsin Fig. 7 and within the range of time steps
typically used for the nonlinear toroidal gyrokinetic smulationsin Ref. 19 which had gyrokinetic
ions and adiabatic electrons. The experience presented here is encouraging for the addition of
Kinetic electrons and electromagnetic coupling to toroidal gyrokinetic simulations. However,
we note that there are additional considerations that can influence the time step in toroidal

simulations, which are not addressed here.

16



We next consider nonlinear, many-mode slab simulations in Fig. 8 with increasing box
size (16" 16, 32" 32, 64" 64) withp=2.2" 10° 3. no shear, 6=0.01, T=T,n =n=4, p/L =0.1,
Qe/wpe=1, m/m=1836, p =Dx, Heaviside-function filtering in Hybrid 1 algorithm: a,=a,=1.
These simulations al saturate and are well behaved with credible physicsresults. The physics

results are influenced by the inclusion of longer wavelength modes and the decreased spacing
between the modesin k space.
Statistical convergence with respect to both electrons and ions must be examined with the

inclusion of kinetic electron and electromagnetic effects. In Fig. 9 we compare the results of
nonlinear, many-mode slab simulations vs. particles per cell with ,=2.2" 10° 3, no shear,
6=0.01, T=T,n =n =4, p/L =0.1, Qe/mpe=1, m/m=1836, p =Dx, 64" 64 grid, Heaviside-
function filtering in Hybrid 11 algorithm: a,=a =1. Increasing the number of particles per cell led

to awell-behaved saturation. When under-resolved with respect to particles, the simulations did

not saturate properly.

V.CONCLUSION

Including both electron and ion kinetic effects using arealistic mass ratio and
accommodating a low-frequency electromagnetic model of the self-consistent electromagnetic
fields in the plasma add significant complexity to drift-wave turbulence simulation models. The

algorithm studied here attempts to capture the physics of low-frequency (o << ;) drift-wave

phenomena, the coupling to kinetic Alfvén waves that occurs at finite plasma pressure, and linear
and nonlinear electron and ion kinetic phenomena (e.g., Landau resonance, particle trapping,

induced Compton scattering).
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The results presented indicate that significant progressis being made in adding kinetic
electron and electromagnetic effects to multi-dimensional gyrokinetic ion simulations of core

turbulent transport. The Hybrid Il algorithm yields good results for finite g, fem/me >1, and

does not require that the cell size be smaller than the skin depth c/w,, but leads to a numerical

per

instability for f.m/me <1. Both the conventional &f and kinetic-extended hybrid algorithms

have restrictions on the time step used and the statistical and spatial resolution needed to recover
the correct dielectric responses and to produce converged nonlinear steady states. Similar non-
dimensional time steps are required in three-dimensional nonlinear toroidal gyrokinetic
simulations with adiabatic electrons. Simulation examples of linear and nonlinear wave
phenomena have been presented that establish the utility of the Hybrid 11 algorithm.
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Figure Captions
Figure 1. Frequencies and damping rates from Hybrid Il (0) and I11 (x) simulations of kinetic

shear-Alfvén waves as functions of the electron f3..

Figure 2. Frequencies and growth rates from Hybrid I (*) and conventional 8f (0) simulations of

the collisionless drift-wave instability as functions of the ratio of the cell size to the skin depth
and the electron {..

Figure 3. Frequencies and growth rates from Hybrid Il simulations (with n.=4) of theion-
temperature-gradient instability as functions of the electron ..

Figure 4. The spatially averaged ion thermal fluxesin x normalized to the sound speed and the
modulus of the Fourier amplitude of the electric potential for the fastest growing mode from
conventional 8f and Hybrid Il nonlinear simulations of the ion-temperature-gradient instability as
functions of time for three simulations at different values of ..

Figure 5. The modulus of the Fourier amplitude of the electric potential as a function of k, for
k=1 (both normalized to Ak° r/ 8) averaged in time after saturation in three 6f and Hybrid I1
nonlinear simulations of the ion-temperature-gradient instability for different values of {..
Figure 6. Frequencies and growth rates from Hybrid Il simulations of the ion-temperature-
gradient and collisionless drift-wave instabilities as functions of the relative time step.

Figure 7. The spatially averaged ion thermal fluxesin x normalized to the sound speed and the
modulus of the Fourier amplitude of the electric potential for the fastest growing mode from
conventional Hybrid Il nonlinear simulations of the ion-temperature-gradient instability as
functions of time for three simulations at different values of the relative time step. The observed

linear growth rates are indicated.
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Figure 8. Nonlinear slab simulations of I TG instability: time histories of the cross-field ion
thermal fluxes and the fluctuation spectrum at the end of the smulation in k, for the electric
potential as afunction of increasing box sizein two dimensions.

Figure 9. Nonlinear two-dimensional slab simulations of ITG instability: time histories of the
cross-field ion thermal fluxes and a single Fourier mode of the electric potential as afunction of

the number of particles per cell for each species.
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Figure 4
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Figure 6
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