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1 Introduction

Modern thermal design practices often rely on a ‘predictive’ simulation ca-
pability — although predictability is rarely quantified and often difficult to
confidently achieve in practice. The computational predictability of natural
convection in enclosures is a significant issue for many industrial thermal
design problems. One example of this is the design for mitigation of optical
distortion due to buoyancy-driven flow in large-scale laser systems.

In many instances the sensitivity of buoyancy-driven enclosure flows can
be linked to the presence of multiple bifurcation points that yield laminar
thermal convective processes that transition from steady to various modes of
unsteady flow.® This behavior is brought to light by a problem as ‘simple’
as a differentially-heated tall rectangular cavity (8:1 height/width aspect
ratio) filled with a Boussinesq fluid with Pr = 0.71 — which defines, at least
partially, the focus of this special session. For our purposes, the differentially-
heated cavity provides a virtual fluid dynamics laboratory as pointed out by
Le Quéré:*

“In conclusion let us emphasize that the differentially-heated cav-
ity, in addition to its relevance as a model of convective heat
transfer, turns out to be a real fluid mechanics laboratory in itself.
The spatial structure of the flow is made of vertical and horizontal
boundary layers, of corner structures, of a stratified core ... which
depend very sensitively on the aspect ratio, Prandtl number and
thermal boundary conditions (even a fly-wheel structure can be
found at low Pr). All these features cooperate to give rise to very
complex time behaviors resulting from several instability mech-
anisms, traveling waves in the vertical boundary layers, thermal
instabilities along the horizontal walls in particular, which can
interact strongly with internal wave dynamics.”

In the 8:1 cavity, the spectrum of the Jacobian of the Navier-Stokes equa-
tions about a steady-state solution is characterized by an infinite number
of eigenvalues, either real or complex conjugates. For increasing Rayleigh
number, some of the eigenvalues can cross the imaginary axis indicating bi-
furcation points (i.e., steady flow becomes unsteady, 4 la Hopf). Preliminary
computations in the air filled 8:1 cavity (Xin and Le Quéré”) have indicated
that two pairs of complex conjugate eigenvalues cross the imaginary axis in



the vicinity of Ra = 3.1 x 10°. One of the corresponding eigenmodes has the
skew-symmetry property of the base flow, while the other, the first unstable
mode, is not skew-symmetric. This suggests that there will be significant sen-
sitivity to the choice of boundary and initial conditions. That is, the choice
of skew-symmetric conditions can promote the saturation of the second un-
stable mode which is skew-symmetric. In contrast, a random perturbation
of the temperature field around the mean can promote the growth of the
first unstable mode which is not skew-symmetric — at least for a finite period
of time. Due, in part, to the presence of multiple unstable modes with a
relatively small separation in Ra, the apparently simple differentially-heated
cavity problem is not as simple as one might initially believe.

Additionally, the simulation of this buoyancy-driven flow is remarkably
susceptible to the deleterious effects of numerical damping and/or disper-
sion introduced by commonly used ‘tricks-of-the-trade’, thus making it sur-
prisingly challenging. For example, numerical tests have demonstrated that
the damping/dispersion artifacts from the simplest time-marching advection
treatment with balancing tensor diffusivity can destroy the delicate ther-
mal convective processes present in this enclosure when close to the critical
Rayleigh number. In fact, coarse-grid computations may exhibit steady-
state solutions even though the true solution is unsteady — requiring higher
resolution grids than may be initially thought. Even when dissipation and
dispersion have seemingly been minimized, computational experiments have
shown that the amplitude of the periodic temperature oscillations can vary
by as much as an order of magnitude depending on the specifics of the spatial
discretization, grid resolution, stopping criteria for iterative solvers, and even
the use of advective vs. conservative forms of the governing equations.

Ultimately the sensitivity of this class of flow problem to initial and
boundary conditions, formulation details, and numerical procedures raises
at least the following questions: What is the critical Rayleigh number, above
which the flow will be unsteady, for the 8:1 enclosure? What is the be-
havior of the flow field at Rayleigh numbers slightly above critical? What
is the role of linear stability analyses in predicting unstable modes? Can
non-linear dynamics provide any insight into the behavior of the 8:1 cavity?
What can be said about the relationship between (unstable) steady-state so-
lutions and time-averaged periodic solutions? What is the best formulation
and associated numerical procedure to use in order to ameliorate the sen-
sitivities observed in practice and raise the level of accurate predictability?
Which ‘other’ numerical methods, i.e., discretization, time integrator, stabi-



lization, preconditioned iterative technique, and ‘tricks-of-the-trade’ are at
least viable — and which are not?

In order to answer these questions and more, a special session is being
organized for the First MIT Conference on Computational Fluid and Solid
Mechanics. The session organizers are soliciting the contribution of solutions
to the 8:1 differentially-heated cavity problem for near-critical Rayleigh num-
bers, and hope to see finite difference, finite volume, finite element, and spec-
tral methods applied to this seemingly-simple 2-D problem. The application
of commercial CFD codes is also highly encouraged.

2 Problem Definition

In this section, we present the 8:1 differentially-heated cavity as an initial
boundary value problem with one set of initial conditions that may be used
for a purely transient simulation. Here the emphasis is on a time-accurate
computation with the fluid initially at rest. However, we recognize that a
variety of analysis techniques ranging from steady-state to direct time in-
tegration and computation of unstable eigenmodes may be applied to this
problem. We encourage the use of multiple analysis techniques, but leave the
details of the steady-state and stability analyses to the contributors.

The 8:1 buoyancy driven enclosure flow problem is based upon the geo-
metrical configuration shown in Figure 1 where W is the width and H the
height of the enclosure. The enclosure aspect ratio is A = H/W and takes on
the value A = 8. The gravity vector is directed in the negative y-coordinate
direction, and the Boussinesq approximation for the buoyancy forces is as-
sumed to be valid; i.e., only small temperature excursions from the mean
temperature are admitted.

The non-dimensional governing equations for the time-dependent thermal
convection problem are the incompressible Navier-Stokes equations, conser-
vation of mass, and the energy equation written in terms of temperature:

ou Pr R
G Vil= —VP 4V 4] 1
8t+u Vi VP + Rav U+ 70, (1)
V-4=0, (2)
and 90 .
— 4+ -Vl = V20, (3)
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Figure 1: Differentially heated enclosure with 8:1 aspect ratio, insulated
horizontal walls and constant temperature vertical walls.

where @ = (u,v), P and 6 are the velocity, the deviation from hydro-
static pressure, and temperature respectively, and 5 the unit vector in the
y-direction. These non-dimensional equations were obtained using the char-
acteristic length W, velocity U = /gBW AT, time scale 7 = W/U, and
pressure P = pU?. Here, p is the mass density, g the gravitational accel-
eration, and S the coefficient of thermal expansion. The non-dimensional
temperature is defined in terms of the wall temperature difference and a
reference temperature as

Th_Tc’




where T4
Tr — h : C. (5)

T}, is the prescribed temperature of the hot wall, and T, is the temperature
of the cold wall.
The Rayleigh number is

3
Ra = 9981V (6)
vo

where « is the thermal diffusivity, v the kinematic viscosity, and AT =T, —T,
the temperature difference between the hot and cold walls. The Prandtl
number is Pr = v/« and fixed at Pr = 0.71. Additional information relating
to this problem may be found in de Vahl Davis,! Le Quéré and deRoquefort,?

Le Quéré* and Le Quéré and Behnia.’

Boundary Conditions

The enclosure boundary conditions are simple and consist of no-slip walls,
insulated (zero heat flux) horizontal walls, and constant-temperature vertical
walls. The no-slip and no-penetration conditions are prescribed as u = v =0
on all walls, the left-wall is held at a constant ‘hot’ temperature, while the
right-wall is held at a constant ‘cold’ temperature. The non-dimensional
boundary conditions are summarized in Table 1.

Left Wall | Right Wall | Bottom Wall | Top Wall
z=0 =W y=20 y=H
Velocity BC's [u=v=0| u=v=0 u=v=>0 u=v=>0
Thermal BC’s | # =+1/2 | #=-1/2 | 00/0y=0 | 00/0y=0

Table 1: Boundary conditions for the differentially-heated enclosure.

Initial Conditions

In this section, we describe one set of initial conditions that may be used for
a transient simulation. Here, the fluid is isothermal and initially at rest:

@(Z,0) = 0, (7)



and
6(z,0) = 0. (8)

We encourage the use of alternative initial conditions as a means to test
the sensitivity of this problem and to further probe the space of solutions. For
example, a random perturbation of the initial constant temperature is also
an acceptable initial condition — as are any that are not skew-symmetric.

3 Paper Submissions

Contributions to the special session will be handled as follows. First, all
submissions to the special session should follow the format described on the
conference web page — see http://www.firstmitconference.org/Call.html.

Due to limited space for the publications, the authors should not
repeat the introductory material or problem definition in their sub-
missions. Instead, authors are asked to simply cite this document
for the problem definition and present only their compulsory re-
sults as discussed below.

Submissions for the special session are due by October 15, 2000 and should
be sent directly to:

Mark A. Christon
LSTC

7209 Aztec Rd., NE
Albuquerque, NM 87110

Authors will be informed prior to December 1, 2000 regarding acceptance of
their contribution. In addition to the conference proceedings, we anticipate
that the final results presented at the special session will be published in
summary form in the International Journal for Numerical Methods in Fluids.

We realize that complete results for this problem may not be available
by October 15th, and note that submissions with only preliminary results —
particularly all or most of the tabulated results outlined below — along with
a description of anticipated additional results are acceptable.

The following sections detail the parameter space and components of an
‘ideal’ submission and include both compulsory and optional components.



Compulsory Results

This section outlines the quantities of primary interest that are to be re-
ported, and suggests some additional quantities that contributors may wish
to report. The compulsory data should be viewed as highly desirable for the
sake of performing meaningful comparisons rather than an absolute require-
ment for paper submission.

The compulsory results for the special session are to be presented in 3
tables and two plots as outlined below. In the ensuing description, the com-
pulsory data for the transient and steady-state computations are categorized
according to the date type, i.e., point, wall and global data. We encourage
and hope to see results from steady-state, transient, and stability computa-
tions.

Parameter Space

In this problem, the primary physical parameters consist of the Prandtl
number Pr = 0.71 and a super-critical Rayleigh number which is fixed at
Ra = 3.4 x 105. Due to the amount of data that is required for this prob-
lem and the fact that computations on multiple grids will be necessary, only
one Rayleigh number is being specified. There is, of course, no restriction
on submission of results for additional Rayleigh numbers and we encourage
participants to include their best prediction of the critical Rayleigh number,
Rag.i;: the transition from steady to time-periodic behavior.

Grid Resolution Guidelines

There are no strict requirements on grid resolution, however, all participants
are asked to produce results that they believe are sufficiently accurate. In or-
der to provide some guidance on grid resolution, we report here some prelim-
inary results. Using a second-order method, a smoothly graded ‘coarse-grid’
resolution consisting of 27 x 121 grid points has been used to successfully
compute time-dependent results for Ra = 3.4 x 10°. Doubling the grid res-
olution, e.g., 53 x 241 grid points, has shown that there is still significant
sensitivity in (at least) the amplitude of temperature oscillations. Interest-
ingly, the amplitude of the temperature oscillations is also dependent on the
specifics of the Navier-Stokes formulation.

Some guidance on the vertical-wall boundary layer thickness may be found
in Gill.2 Note that graded meshes are suggested since the resolution for



a uniform grid may make the computations prohibitively time consuming.
We suggest using grids with approximately a 1:5 x-to-y ratio of grid points
starting with a coarse grid of 21 x 101. Increasing grid resolution should be
obtained by grid doubling, e.g., a medium grid of 41 x 201 and a fine grid of
81 x 401.

Point Data

A series of physical data should be recorded at the compulsory time-history
points from Table 2. The coordinates that are identified in Table 2 are non-
dimensional and shown in Figure 1.

point | x-coordinate | y-coordinate
1 0.1810 7.3700
2 0.8190 0.6300
3 0.1810 0.6300
4 0.8190 7.3700
5 0.1810 4.0000

Table 2: Non-dimensional coordinates of time-history points.

The time history data for point 1 should be tabulated as shown in Table
3. In addition, a plot of the oscillatory variation in temperature at point
1, #,, should accompany the tabulated results. A second plot showing the
skewness, €12, should be included only if the skewness is found to be non-zero
during the periodic phase. For all time-dependent computations, the average
value and oscillation amplitude are to be reported, along with the period of
oscillation. The average should be taken over one or more complete periods
where the amplitude and period should be constant. The use of an FF'T to
obtain the amplitude and period is encouraged, but not mandatory. Where
steady-state computations are concerned, only the point-values are required
and may be tabulated in a similar format.

The computation of the cycle average is based upon achieving a statis-
tically stationary state where the period and amplitude are constant. For a
generic variable, ¢ = u, v, 0, ¢, ..., the average may be computed as

1 t+T

t



where T represents the period of time for which the average is computed. This
computation implies that any starting transients have completed thereby
permitting the average to be based on a stable oscillatory solution.

Using the average value, perturbation fields may be computed as

6¢(z,t) = o(x,t) — ¢. (10)

The vorticity is defined as

and the stream function as L (12)
=5,

and . oY (13)
oz’

with ¢ = 0 on the walls.

In Table 3, the skewness provides a measure of the skew-symmetry of
the temperature field. Using time-history points 1 and 2, the skewness is
computed as

€190 = 01 =+ 92. (14)
This parameter should be zero for a skew-symmetric temperature field, i.e.,
0, = —0,. If the skewness is non-zero, please provide a time-history plot with

the tabulated results.
The pressure differences in Table 3 are defined as

AP; = P;— P (15)

where 7 and j indicate the time-history points used to compute the pressure
difference.

Wall Data

The wall Nusselt numbers are also a component of the compulsory results

and are defined as "
1 00
Nu(t) = = — dy. 16
wy =g [ 5 (16)
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Increasing Grid Resolution —

Grid Resolution: Nz; x Ny, Grid Resolution: Nzy x Ny,
Time Duration: T} Time Duration: T5
Steps per Period: Ny, Steps per Period: Npep,
Quantity Average | Amplitude | Period || Average | Amplitude | Period
X-Velocity u U Tu u
Y-Velocity v 1% Ty :
Temperature [ O To
Skewness €19 =19 T.
Stream Function P v Ty
Vorticity w Q T.
APy APy APy Tp
APs APs, APs; Tp
APss APj; APss Tp

Table 3: Tabulated results should identify the grid resolution (Nzx Ny), time
history point, time duration used to obtain the average (7'), amplitude and
period, and the number of time steps per period, Nper, in the computation.

The evaluation of the Nusselt number should be performed for each wall, i.e.,
x =0 and x = W. This data should be tabulated as shown in Table 4. For
all time-dependent computations, the average, and the oscillation amplitude
are to be reported along with the period of oscillation. Here, the average
is taken to be over one or more complete periods of oscillation where the
amplitude and period are constant. Again, the use of an FFT to obtain
the amplitude and period is encouraged, but not mandatory. Where steady-
state computations are concerned, the Nusselt number for each wall should
be reported.

Global Data

In addition to the point and wall data, a number of relevant global quantities
are required as delineated in Table 5. For our purposes, the kinetic energy
and enstrophy provide useful metrics; e.g., the square-root of kinetic energy
provides a measure of the average velocity in the enclosure. That is, our

11




Increasing Grid Resolution —

Grid Resolution: Nz; x Ny, Grid Resolution: Nzy x Ny
Time Duration: T} Time Duration: T,
Steps per Period: Ny, Steps per Period: Ny,
Quantity Average | Amplitude | Period | Average | Amplitude | Period
Nusselt (z = 0) Nu Nu Tu Nu
Nusselt (z = W) Nu Nu T '

Table 4: Tabulated results should identify the grid resolution (Nzx Ny), time
history point, time duration used to obtain the average (7"), amplitude and
period, and the number of time steps per period, Nper, in the computation.

velocity metric is

1
at) = \/ﬂ - dA, (17)

where A is the area of the enclosure, A = W x H. Similarly, the measure of
the average vorticity is based on the enstrophy,

o) = ,/i w2 (18)

A summary of the method used to solve the problem is required and should
provide a concise description of the following items:

Methodology

e Spatial discretization method and a description of the grids used.
e Solution procedure, e.g., time integration procedure, linear solvers, etc.
e Stopping criteria used for all iterative procedures.

e Description of the advective treatment — including the use of artificial
viscosity, limiters and blended first/second order methods.

12




Increasing Grid Resolution —
Grid Resolution: Nz; x Ny; | Grid Resolution: Nxy X Ny,
Time Duration: T} Time Duration: 75
Steps per Period: Ny, Steps per Period: Npe,
Quantity | Average | Amplitude | Period | Average | Amplitude | Period

>

Ta
Ta

&
O
OGS

O

Table 5: Tabulated results should identify the grid resolution (Nzx Ny), time
history point, time duration used to obtain the average (7"), amplitude and
period, and the number of time steps per period, Nper, in the computation.

e Description of any ‘stabilizing’ terms in the formulation or solution
methodology, e.g., Galerkin Least-Squares (GLS) stabilization.

e An estimate of the order of accuracy of the method and, if possible,
the accuracy of the submitted results.

e Any new or unique features of the method used to solve the differentially-
heated cavity problem.

Computational Resources

A summary of the computational resources is required and should provide a
concise description of the following items:

e Machine, e.g., Compaq, DEC, SGI, etc.,
e Clock rate in MegaHertz [MHz|,

e Total memory MegaBytes [MBytes],

peak FLOP (floating point operation) rate [MFLOPs] and/or the specfp95
rating — see: http://www.spec.org/0sg/cpudsb/ ,

Number of processors used and the number of grid points per processor
(degree-of-granularity) for parallel computations.
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e CPU (or wall clock time for parallel) used per grid point per time step
[micro-seconds/point/step|, and

e Memory used (per processor in parallel) [MBytes].

Optional Results

Extensions of the results beyond the compulsory data is encouraged. How-
ever, due to space limitations, the optional results should not be reported in
the paper submission. Several possibilities for optional results include:

e Compute the the period and amplitude of the velocity and temperature
oscillation for supercritical Rayleigh numbers in the range 3.1 x 10° <
Ra < 6.2 x 10°, e.g., for Ra = 3.2 x 105.

e Estimate the the critical Rayleigh number for the 8:1 enclosure based
on your computed results.

e The point data may be reported at any/all of the time history points
shown in Figure 1.

e As a check report the skewness based on points 3 and 4, e34. If the
skewness is non-zero, plot it as a function of time.

e Plot the skewness metrics, €15 and €34, for the entire computation.

e Report the maximum stream function value and location over one os-
cillation cycle.

e Report minimum and maximum vorticity values and locations over one
oscillation cycle.

e Plot the vertical force for each constant-temperature wall over one cy-
cle. Report the average over the cycle.

e Provide contour plots (color not required) of the instantaneous per-
turbation velocity, temperature, and pressure fields per Eq.(10). Plots
should be provided at 4 equally-spaced points in time during an oscil-
lation cycle.
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4 Important Dates

October 15, 2000 Deadline for submissions
December 15, 2001 Notification of acceptance
June 12-14, 2001 First M.I.T. Conference

5 Organizers & E-mail Addresses

Questions regarding the special session may be sent via e-mail to
any of the organizers.

Mark A. Christon Philip M. Gresho Steven B. Sutton
LSTC/Univ. of New Mexico LLNL LLNL
e-mail: christon@lstc.com e-mail: pgresho@IInl.gov || e-mail: sutton4@IInl.gov
Ph: (505) 875-0746 Ph: (925) 422-1812 Ph: (925) 422-0322
Fx: (505) 875-0430 Fx: (925) 423-5167 Fx: (925) 423-6195
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