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ABSTRACT

Damage in a material includes localized softening or cracks
in a structural component due to high operational loads,
or the presence of flaws in a structure due to various man-
ufacturing processes. Methods that identify the presence,
the location and the severity of damage in the structure
are useful for non-destructive evaluation procedures that are
typically employed in agile manufacturing and rapid proto-
typing systems. The current state-of-the art techniques for
these inverse problems are computationally intensive or ill
conditioned when insufficient data exists. Early work by
a number of researchers has shown that data mining tech-
niques can provide a potential solution to this problem. In
this paper, we investigate the use of data mining techniques
for predicting failure in a variety of 2D and 3D structures
using artificial neural networks (ANNs) and decision trees.
This work shows that if the correct features are chosen to
build the model, and the model is trained on an adequate
amount of data, the model can then correctly classify the
failure event as well as predict location and severity of the
damage in these structure.

*The authors are very pleased to acknowledge support in
part by the Department of Energy DOE/LLNL W-70450-
ENG-48 and by the Army High Performance Computing Re-
search Center (AHPCRC) under the auspices of the Depart-
ment of the Army, Army Research Laboratory (ARL) co-
operative agreement number DAAH04-95-2-0003/contract
number DAAHO04-95-C-0008. The content does not neces-
sarily reflect the position or the policy of the government,
and no official endorsement should be inferred. Access to
computing facilities was provided by AHPCRC and Min-
nesota Supercomputer Institute (MSI)

1. INTRODUCTION

Damage in a material includes localized softening or cracks
in a structural component due to high operational loads, or
the presence of flaws in a structure due to various manufac-
turing processes. Methods that identify the presence, loca-
tion and the severity of damage in the structure are useful
for non-destructive evaluation procedures that are typically
employed in agile manufacturing and rapid prototyping sys-
tems. In addition, these techniques will be critical to reliable
prediction of damage to bridges, skyscrapers and structures
deployed in space.

Damage detection involves three stages of characterization.
First, whether the damage has taken place in the structure
(recognition); second, where the damage has taken place
in the structure (location); and finally, the severity of the
damage in the structure (quantification). Structural dam-
age results in changes in structural responses such as static
displacements and dynamic properties such as natural fre-
quency, and the mode shapes of the structure. Although
rigorous damage models exist, in this work we focus on the
structural damage that is assumed to be associated with
structural stiffness as a reduction in Young’s modulus (E) [1].

A practical damage assessment methodology must be capa-
ble of predicting structural stiffness as a function of changes
in structural response and dynamic properties [2]. Stan-
dard analytical techniques employ mathematical models to
approximate the relationships between specific damage con-
ditions and changes in the structural response or dynamic
properties. Such relationships can be computed by solving a
class of so called inverse problems [3, 4]. The current state-
of-the art techniques for these inverse problems are compu-
tationally intensive or ill conditioned when insufficient data
exists.

Early work by a number of researchers [1, 2, 5, 6, 7] has
shown that data mining techniques can provide a potential
solution to this problem. These efforts have focussed on em-
ploying ANNS to predict damage using static displacements
and dynamic properties. However, these studies only consid-



ered small scale plane structures in two dimension. Further-
more technical details related to selection of features, train-
ing and testing data sets etc, were not investigated in detail.
In this paper, we investigate the use of data mining tech-
niques for predicting failure in a variety of two dimensional
(2D) and three dimensional (3D) structures using artificial
neural networks (ANNSs) and decision trees. ANNs approach
is attractive in that it can learn complex, highly nonlinear
relationships, and can be used to solve inverse problem. On
the other hand decision tree models are easy to understand
and have the potential to discover useful rules. This work
shows that if the correct features are chosen to build the
model, and the model is trained on an adequate amount
of data, these model can correctly predict the location and
severity of the damage in these structure.

This paper is organized as follows. In Section 2, the problem
statement and generation of the data to build data mining
models is discussed. In Section 3, the data mining models
using static displacements are built and evaluated. In sec-
tion 4, dynamic properties of structures are used to build
and evaluate data mining models. Section 5, presents con-
clusion and suggestion for future work on this topic are dis-
cussed.

2. PRELIMINARIES

2.1 Problem statement and description of data
mining models used

The goal is to construct data mining models that can predict
the Young’s modulus (E) of the elements in the structure as
a function of static displacements and dynamic properties.

We use ANNs developed by Rumelhart and McCelland [8]
and, decision tree algorithms based on the work of Ross
Quinlan (1993) to build predictive models for Young’s mod-
ulus. Finding a suitable architecture of ANN for the problem
is non trivial. All the ANN models built in this study have
two hidden layers each employing roughly 20 nodes each.
In this study, decision tree models are build using the algo-
rithm provided in Clementine software!, and ANN models
are build using Matlab’s ANN toolbox?.

2.2 Generating the data

To build the right data mining model it is important that
useful features are considered. The selected features should
possess the property of correctly identifying damage states
and should capture the physics of the problem at hand. The
data is generated by using a finite element analysis code.
The data layout is shown in Table 1 where f = {f1,..., fn}
is the feature set and E = {E\,..., E,} represents the tar-
get variables where each record in the table pertains to a
failure state. Each failure state is simulated by failing ei-
ther one (single element failure) or more elements (multiple
element failure) in the structure, in steps (e.g. failing each
element by reducing E from the base value of E to E’ in
steps of eE where € is a small fraction). Such simulations

1©1999 SPSS Inc., Version 5.0.1.

2(©1984-2000 The MathWorks, Inc. Version 6.0.0.88 Release
12.
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Figure 1: Plane frame structure discretized using
beam elements.

give the structural response such as the static displacements
(at the nodes) and dynamic properties such as the natural
frequencies of the structure. This data can then be used
directly to train and test the data mining algorithms. New
features can be derived from these raw features. In some
cases, they lead to a better predictive model.

m

Features Target variable
S.NO f1 f2 fn E1 E2 En
1 72.833 | 151.67 21345 | 0.5E | E | ... | E
2 73.45 | 152.56 21365 | 0.6E | E | ... | E
500 | 74.01 | 153.01 214.21 E E|..| E

Table 1: A typical input to the data mining model.

3. BUILDING DATA MINING MODELS US-

ING STATICDISPLACEMENTS OF STRUC-

TURE AS FEATURES

In this section, data mining models are developed by con-
sidering the static displacements at the nodes of the struc-
ture as features. Various examples with increasing complex-
ity are considered to study the performance of data mining
techniques.

2-D Structure — plane frame: The first structure used
to build the data mining model is shown in the Fig. 1. It is
a plane frame studied in [5] with the loads as shown. The
nodes 1, 4, 5 and 6 are fixed and the nodes 2 and 3 are sub-
jected to loads. During the generation of the data the loads
are kept constant. Absolute static displacements namely
|uzl, |va|, |6y2|, |us|, |vs|, |fy3| (instead of raw data of dis-
placements at nodes) of the nodes 2 and 3 were selected as
the features. It was seen that selecting the absolute value
of the nodal displacement leads to a better model, because
changes in stiffness influence the magnitude of the displace-
ments and not their sign.

The testing and training data set of 500 damaged states is
generated by failing each element at a time. The value of E
is varied from 0.01E to 0.99E in steps of 0.01E. The ANN
is built by training it on a random sample of 60% of this
data. The results for ANN are shown in Table 2. For this
simple problem the models built by ANN are accurate, as
the features considered are enough to accurately predict the



target variable. A plot of the predicted value of E versus ac-
tual value of E for some typical element is shown in Fig. 2.
Figure 2 shows an almost linear correlation between the pre-
dicted and actual E. From this, it is evident that the neural
network can effectively predict the value of Young’s modu-
lus, and consequently the damage for this simple structure.

En E» Es Es Es

e, (%E) | 0032 | 0.04 | 0.082 | 0.076 | 0.026

o (%E) | 020 | 022 | 039 | 050 | 0.18
7 0.9999 | 0.9999 | 0.9998 | 0.9998 | 0.9999

Table 2: Result of testing ANN with absolute value
of displacement as features for plane frame shown in
Fig. 1,where e, = mean relative error, 0 = standard
deviation, r = linear correlation.
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Figure 2: Comparison between ideal and actual E for
typical element 2 for plane frame shown in Fig. 1.

To employ the decision tree algorithm the target variable E
needs to be discretized. Hence in this case the value E was
restricted to : i) 0 - severely damaged, ii) 1 - moderately
damaged, and iii) 2 - undamaged. The data for training
and testing the decision tree model is generated in exactly
the same manner as that for the ANN. The decision tree
is trained on 60% of the data generated and tested on the
entire data. The result obtained on testing the decision tree
is shown in the form of coincidence matrix (which shows the
number of damage states that have been classified correctly
and incorrectly) in Table 3. Since the coincidence matrix is
predominantly diagonal, the model build by using decision
tree is highly accurate.

3-D Structure — electric transmission tower: The
second structure we consider is a 3-D electric transmission
tower. This structure shown in Fig. 3, consists of beam el-
ements oriented in 3-D space. The transmission tower con-
sists of 10 nodes out of which the representative transmission

25
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Predicted E’s
E- Es
0 1 2 0 1 2
Actual E’s [0 |72 ]| 0 0 [72] 0 0
11019 0 016 3
210 0 [409 | O 0 | 409

Table 3: Coincidence matrix with absolute value of
displacement as features for plane frame shown in
Fig. 1.

Figure 3: Three dimensional electric transmission
tower discretized using beam elements.

cable loading is applied at nodes 3 and 4. The nodes 7, 8, 9
and 10 are fixed to the ground. In this case, unlike the case
of the plane frame, each node and element has displacements
in all three direction (u, v, w), together with bending about
two axes (0, 0.) and torsion about the axis of the beam
(éz). These are commonly referred to as the degrees of free-
dom at any point in the structure. Due to the complexity
of the structure, the problem is non trivial. To develop an
adequate data mining model, a significantly large number
of damage states are required. The study is conducted with
two different sets of features. In one set of features, the ab-
solute value of the displacements at the nodes is used. Hence
there exist 36 features for each damage state. Another set
of features are defined as follows. For any element e defined
by nodes ¢ and j, the element displacement measures are
defined as

de V(i —uj)? + (vi —07)? + (wi —wy)? (1)
b1 = |Oyi — Oyj] (2)
b2 = 16zi — 0] 3)
e = |¢m - ¢w]| (4)



where d. is a measure of the element translation, 8.; and
Oco are measure of element bending and ¢, is a measure of
element torsional displacement. Hence, there are a total of
100 features in this case.
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Figure 4: Comparison between ideal and actual E
for typical element 8 for electric transmission tower
shown in Fig. 3.

The testing and training data are generated with each ele-
ment of the structure being damaged by reducing the value
of E to 0.5E in steps of 0.02E leading to 600 damage states.
Both ANNSs and decision trees are trained using 70% of the
total generated damage states. Figure 4 shows the compari-
son between the test results of the model using displacement
of the nodes and the model using element displacement mea-
sure as features. It is evident from the figure that the model
using the element displacement measure features (Egs. 1 —4)
is more accurate.

Predicted E’s

Actual E’s

E; E,

0 1 2 01 2
0130 0 0|0 13
11019 1 0[0] 10
21 710|570 (0|0 577

Table 4: Some typical coincidence matrices with ab-
solute displacement of nodes as features for trans-
mission tower shown in Fig. 3.

Predicted E’s
E1 E4
0 1 2 0|1 2
Actual E's |0 [ 13 ]| O 0 13{0]| O
11010 O 119 0
00 |[577] 0 |0]577

Table 5: Some typical coincidence matrices with ele-
mental displacement measures as features for trans-
mission tower shown in Fig. 3.

Tables 4 and 5 show the results for decision trees with abso-
lute nodal displacement and element displacement measure
features respectively. Again, it can be clearly seen that the
element displacement measure prove to be better features
for decision tree models. Unlike neural networks, the mod-
els developed by decision tree can be readily understood and
interesting rules can be found. For example, a rule generated
in this case is given by

if 612 < 0.185 then
lf 910 S 0.09 then
if 87 < 0.545 then E3 = 2

else B3 =1
else B3 = 2
else if ¢3 S 0.083 E3 =2

else E3 =0

This rule says that the failure of element 3 depends on the
displacement of elements 7, 10 and 12 which are connected
to element 3 (Ref. Fig. 3). Such interesting rules not com-
monly known in the traditional analysis community can be
discovered which can be potentially useful to a structural
designer.
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Figure 5: Plane frame discretized using beam ele-

ments.

Static displacements with varying loads: In the cases
considered previously the data mining models were built us-
ing constant loading. But many structures are subject to
variable loading (when the loads the structure is subjected to
are continuously changing) and so an effective model should
be able to correctly predict damage in this case. Although
the static displacement features are not load independent, in
this section their performance is studied when they are used
to build a model for predicting failure under variable loading
conditions. The plane frame structure in Fig. 5 is used to
build the model. The feature set consists of features which
correspond to the location and magnitude of the loads in ad-
ditional to the static displacements of nodes 2 and 3. Three
different loading conditions are considered. First, node 2
and 6 are loaded. Next, node 3 and 5 are loaded. Finally,
node 8 and 10 are loaded.

The training data is generated by failing each element in
the structure by reducing its Young’s modulus from 1.0E
to 0.5E in steps of 0.1E. The loads in each of the three
loading conditions considered are varied from 500N to 2500N
in steps of 500N. The testing data is generated by failing
each element in the structure by reducing its value of E



from 0.95E to 0.45E in steps of 0.1E. The loads in each
of the three loading conditions considered are varied from
250N to 2250N. This leads to 2250 failure states, each for
testing and training the ANN. The test results are shown

E: | Bs | Er | BEo
er (%E) | 1.35 | 1.22 | 1.12 | 0.95
o (%E) | 2.06 | 2.24 | 1.90 | 1.76

T 0.98 | 0.98 | 0.98 | 0.99

Table 6: Result of testing ANN when a variation
in loading is considered for plane frame shown in
Fig. 5.
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Figure 6: Comparison between ideal and actual E
for typical element 5, when variation in the load is
considered for plane frame shown in Fig. 5.

in Table 6. The plots of the predicted and actual E for a
typical element 5, is shown in Fig. 6. From the results it can
be seen that predicting capability of the model using static
displacement reduces when the loads are varying, because
two different loads corresponding to different failure states
can produce the same response. Further investigations are
necessary to rectify this situation.

Failure of multiple elements: In the previous examples,
the model is trained and tested to predict damage with only
one element failure in the structure. This seems relevant
because failure in the structure generally starts from one el-
ement and then spreads to other elements. Here the case
when multiple elements of the structure have failed is dis-
cussed. For predicting damage in multiple elements of the
structure, the plane frame structure used previously in Fig. 1
is employed. The set of features are again the displacement
coordinates of nodes 2 and 3.

The data used for training is generated by reducing the
Young’s modulus of each of the elements simultaneously
from E to 0.5E in steps of 0.1E. This results in 6> —1 = 7775
failure states and one undamaged state. After the data is
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generated both the ANN and the decision tree are used to
build models for predicting the damage in the structure. For
ANN 5% (395 failure states) of this generated data is ran-
domly sampled for training. Testing data of 1000 failure
states is generated by failing each element and choosing its
E randomly. The results for the ANN are shown in Table 7.

Er Es Es Ea Bs
e, (%E) | 0.032 | 0.046 | 0.057 | 0.050 | 0.028
o (%E) | 0.040 | 0.063 | 0.074 | 0.064 | 0.037

T 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999

Table 7: Result of testing ANN when multiple ele-
ments are failed for plane frame shown in Fig. 1.
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Figure 7: Comparison between ideal and actual E for
typical element 2, when multiple elements of struc-
ture fail for plane frame shown in Fig. 1.

The plots of the predicted E versus actual E for a typical el-
ement 2, is shown in Fig. 7. It is evident that the correlation
between them is almost linear. Hence, static displacements,
prove to be effective features in building an ANN model to
predict failure in multiple elements. In the case of decision
tree the coincidence matrix shown in Table 8, is predomi-
nantly diagonal.

Predicted E’s
E2 E4
0 1 2 0 1 2
Actual E’s | 0 | 3771 | 116 0 3588 | 298 1
1 97 2365 | 130 282 | 2016 | 294
2 0 145 | 1151 2 416 | 878

Table 8: Some typical coincidence matrices for the
case when multiple elements of the structure are
failed for plane frame shown in Fig. 1.
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4. BUILDING DATA MINING MODELS US-

ING DYNAMIC PROPERTIES OF STRUC-

TURE AS FEATURES

Dynamic properties of the structure as features provides an
alternative approach for predicting damage. Its advantages
over using static displacements are:-

1. While different loads produce different static displace-
ments, the dynamic properties of the structure are
essentially load independent. For example, dynamic
properties of the structure include natural frequencies
and mode shapes.

2. In the case of static displacements, different compo-
nents of the displacement at each node are used as
features, which result in a large number of features
for larger finite element discretizations. On the other
hand if dynamic properties like natural frequency are
used, then features in the form of only the lowest 'n’
natural frequencies can be used resulting in a reduction
of the number of features.

The natural frequency and the mode shape of the structure
are obtained by solving the eigenvalue problem:

[~w’M 4+ K]®; =0 (5)

where M and K are mass matrix and stiffness matrix, of the
structure respectively, and w; is the natural frequency corre-
sponding to the mode shape ®;. Damping in the structure
has been neglected in this study. Structural damage results
in changes in dynamic properties. The prediction of dam-
age in the structure can be achieved if the model is taught
to recognize the changes in the frequencies and the mode
shapes with the failure of specific members in the structure.
To train the ANN, the elements of the structure are failed
one at a time by reducing their modulus of elasticity. For
this failure state the natural frequencies and mode shapes
are obtained by solving the eigenvalue problem in Eq. 5.

Natural frequency: 2-D Structure — three span bridge:

1 2 3 4 5 5 7 8 9 10 11 12 13 14 15 16 17 18

s s
. ‘

Ko
‘
:

Figure 8: Three span bridge structure modeled us-
ing beam elements.

The structure used for this study is a three-span, equal
length continuous beam, with constant properties that was
studied in [5]. This structure is shown in Fig. 8. The beam is
divided into 18 beam elements, with 6 equal length elements
in each span. This structure is unsymmetric as regards to
the boundary conditions. It is fixed at one end and simply
supported at the other. The training data is generated by
reducing the value of E from 1.0E to 0.5E in steps of 0.05E.
The testing data is generated by reducing the value of E
from 0.975E to 0.525E in steps of 0.05E. This results in the
training and testing data of 181 and 180 records respectively.

The lowest 'n’ natural frequencies of the structure

(w1,w2 ...wn) are employed as features to predict damage.
The study is conducted with a varying number of first ‘n’
natural frequencies. For the bridge structure studied here,
the first 4 natural frequencies are adequate to build a fairly
accurate predictive model. However, considering additional
natural frequencies improved the accuracy of the model upto
first nine natural frequencies. Further increase in the num-
ber of natural frequencies leads to a saturation and a slight
deterioration in the model’s performance. Table 9 and Fig. 9
shows the results for the model with lowest 9 natural fre-
quencies.

E E, Eio Ei4 Eiy
er (BE) | 0.06 0.09 0.09 0.08 0.09
o (%E) [0.106 | 0.13 | 0.17 | 0.12 | 0.15

r 0.999 | 0.999 | 0.999 | 0.999 | 0.999

Table 9: Result of testing ANN when natural fre-
quencies are used as features for three span bridge
shown in Fig. 8.
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Figure 9: Comparison between predicted ideal and
actual E when natural frequencies are used as fea-
ture for unsymmetric structure shown in Fig. 8.

Next, the structure in Fig. 8 is modified so that it is simply
supported at both ends, to study the suitability of using
natural frequency as features in case of structures exhibiting
symmetry. The testing and training data is generated in the
same manner as in the unsymmetric case. In Fig. 10, the
results of testing the ANN for two symmetrically equivalent
elements, element 2 and 17 is shown. In Fig. 10, the cases
in which element 2 has not failed but has been predicted to
have failed, corresponds to failure states when element 17
has failed and vice-versa. The same is the case for the other
symmetrically equivalent elements. This is due to the fact
that natural frequency is a global feature and, the change
in the natural frequencies is the same, when either one of
the symmetric elements is failed . The ANN has no reason
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Figure 10: Comparison between predicted ideal and actual E when natural frequencies are used as feature

for symmetric structure.

to favor the prediction of the failure of one element over the
other. In order to keep the mean squared error, which is the
performance criteria used to train the ANN to a minimum,
the model predicts that both the elements have failed. The
predicted value of the Young’s modulus in this case is higher
than the actual value of the failure, in order to keep the
mean squared error a minimum. Thus, when a structure
exhibits symmetry, using natural frequencies alone as the
features is not sufficient and other dynamic features need
to be considered or the structure may have to be modeled
differently using symmetry considerations.

3-D Structure — electric transmission tower: Natural
frequencies are used as features to predict damage in the
structure shown in Fig. 3. The symmetry of the structure is
disturbed by changing the cross-sectional area of the sym-
metric elements. The training data is generated by reducing
the value of E from 1.0E to 0.5E in steps of 0.05E, gener-
ating a total of 251 records. The testing data set of 500
records, is generated by failing each element by an arbitrary
amount. The first 12 natural frequencies were considered
while building the model. The results of testing the ANN
are shown in Table 10 and Fig. 11. The results show that
the model is accurate in predicting the location and severity
of the damage. Natural frequencies prove to be good fea-
tures for predicting single element failure in an unsymmetric
structure.

5. CONCLUDING REMARKS

This paper presented data mining models to predict the fail-
ure in the structure as a function of static displacements
and dynamic properties. Damage was simulated by reduc-
tion in the values of Young’s modulus of the elements in
the structure. The prediction of the data mining technique
greatly depends on the features chosen. A more meaning-
ful attribute produces better results. Hence the data from

E, E, Eqo Ei4 Eyg Eas

er (%E) 0.13 0.17 0.11 0.15 0.15 0.20
o (%E) | 0.16 | 0.26 | 0.15 | 0.20 | 0.10 | 0.28
r 0.999 | 0.998 | 0.999 | 0.999 | 0.999 | 0.998

Table 10: Result of testing ANN when natural fre-
quencies are used as features for transmission tower
shown in Fig. 3.

the finite element analysis of the structure should be suit-
ably preprocessed so that the raw data is converted into
features that have a closer relationship with the target func-
tion. While using static displacements, new features such as
absolute nodal displacements and elemental displacement
measures were used to generate models for predicting fail-
ure. These features proved to be better than nodal displace-
ments.

Performance results of developed ANN models are signifi-
cantly better when compared to other relevant results pub-
lished in the literature for 2D structures [5, 1, 6, 7]. Further-
more effective ANN models are developed to predict dam-
ages in 3D structures with excellent performance results.
Although ANNSs are effective in detecting damage in the
structure, the developed model can not be interpreted eas-
ily. Decision trees have the added benefit of generating rules
that can be manually interpreted as illustrated in the case
of transmission tower. Such rules may not be commonly
known in the traditional analysis community and can be
potentially useful to a structural designer.

The development of predictive model that can correctly pre-
dict the location and severity of damage in large complex
structures can be a considerable challenge. For the case with
variable loading and static displacements as features, the
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Figure 11: Comparison between predicted ideal and
actual E for element 1 when natural frequencies are
used as feature for electric transmission tower shown
in Fig. 3.

models developed are not sufficiently accurate. Further work
needs to be done to preprocess static displacements and ex-
tract features which will result in more accurate data mining
models. Natural frequencies prove to be good features when
load independent models are to be built. However, for com-
plex structures, the values of natural frequencies are close to
each other. This can cause the close natural frequencies to
be mistaken for one another. To prevent this, MAC numbers
(modal assurance criteria) can be used to distinguish such
close frequencies, where MAC numbers are scalars that can
distinguish two mode shapes from one another. Increased
complexity of the structure would also cause the number of
target variables (E), to increase. To handle this situation
sub-structuring may need to be investigated.
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