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Numerous papers have appeared in the literature over the past thirty years dis-

cussing projection-type methods for solving the incompressible Navier-Stokes equa-

tions. A recurring difficulty encountered is the choice of boundmy conditions for

the intermediate or predicted velocity in order to obtain at least second order con-

vergence. A further issue is the formula for the pressure correction at each timestep.

A simple overview is presented here based on recently published results by Brown,

Cortez and Minion [2].

1. INTRODUCTION

Denoting by u, the velocity, p, the pressure, and v, the viscosity of the fluid, the

incompressible Navier-Stokes equations

u~ + (u . V)u + Vp = VV2U

are considered in a region 0 s

V.u =()

IRm,with boundary conditions

B(u, p) = o on ~fl.

Typical boundary conditions might be those for a solid wall:

u-n =0 “no flow”

u.? =0 “no slip”.

(1)

(2)

(3)

(4)

where local normal and tangential vectors to the wall are given by n and;. Subscripts de-

note partial differentiation. Specifying the pressure, its normal derivative, or a combination

of the two at outflow is also a possibility:

CYp+pii. vp=g. (5)
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For a discussion of allowable boundary conditions see, e.g. [9].

2. PROJECTION METHODS

Projection methods, or “fractional step” methods, as they are sometimes called, advance

the momentum equation (1) and enforce the continuity condition (2) in separate steps

[1, 4, 10, 13]. These methods make use of the Hedge decomposition theorem, which states

that any vector v can be decomposed into a divergence-free part u plus the gradient of a

scalar potential 4, i.e.

V=u+vqj (6)

with V. u = O,where furthermore, using a suitable inner product, (u, V@) = O, i.e. the two

parts are orthogonal. Thus, the divergence-free part of an arbitrary vector v can be obtained

by a projection into the orthogonal subspace of divergence-free vectors by removing the

gradient of an appropriately chosen scalar potential ~. The notation

u = p(v) (7)

is sometimes used to express this projection.

Using this information, one is naturally led to an approach whereby an approximation to

the momentum equation

U*L + (u. V)u+vq = Z/v%”, (8)

is advanced for some interval of time to< = t <= t1,and the divergence-free velocity is

computed when needed using the projection

u(t) = P(u’(t)). (9)

Here Vq(t) is some approximation to the pressure gradient, which may even be zero (see

e.g. [10]). As a practical matter, the projection is effected by deriving an elliptic equation

as follows. Applying the Hedge decomposition theorem,

u*=u+ v@. (lo)

Taking the divergence of (10) and applying (2), results in the elliptic constraint equation

for $

Vzfp = vu”. (11)

The pressure can be recovered at any time using the formula

Vp = V(q + @t)– vv2vf#> (12)

which is derived by substituting (10) into (8) and comparing with the original momentum

equation (1). Common practice for projection methods is to advance (8) for a single

timestep, compute u at the end of the timestep using the projection, and then replace u*



ACCURACY OF PROJECTION METHODS 3

with this new value of u at the beginning of the next timestep. When u* is reset to u at
the end of each timestep, it always stays relatively close to u during the computation. The

various projection methods discussed in the literature differ in their approximation of the

advective terms (u. V) u, the approximation used for q, whether (8) is advanced explicitly

or implicitly, and how the pressure gradient update formula ( 12) is approximated.

An alternative class of methods does not reset u* at the end of each timestep, but

allows it to evolve over the period of the computation. Such methods, known variously

as “magnetization”, “impulse” or “gauge” methods have been developed by Buttke [3],

Cortez [5, 6], E and Liu [7, 8], Recchioni and Russo [11] and Summers and Chorin [12].

One advantage of such methods is that the approximation q = O can be used, and the

pressure never need be determined unless pressure-dependent boundary conditions are

required. Note also that the demonstrated success of these methods indicates that the

length of time that the approximate momentum equation (8) can be integrated need not be

restricted to a single timestep. These methods will not be discussed further in the present

paper.

3. BOUNDARY CONDITIONS WHEN PRESSURE TERM IS INCLUDED IN

PREDICTOR

Boundary conditions are required on @in order to solve (11). In addition, boundary

conditions on u* are required if (8) is to be advanced implicitly and also to compute the

right-hand side of (1 1). Since both u* and @are auxiliary variables, the original problem

formulation does not tell how to set their boundary values. However it is clear that any

boundary conditions that are specified must satisfy (10) as a constraint, i.e.

v@\oQ= (u* – u)\aQ. (13)

Since both u* and u are known at the point that the elliptic equation (11) is solved, the

appropriate boundary condition for this equation is therefore

n.vg51dQ=n. (u” –u)\~Q. (14)

The boundary conditions on u* are more problematic since they are needed before @ is

computed. As reported in [2], the correct choice depends on the approximation for Vq used
in (8). Bell, Colella and Glaz [1] advance (8) using Crank-Nicolson for time integration,

approximate the advective terms with a Godunov procedure, and use the time-centered

pressure gradient from the previous timestep to approximate Vq:

(I -
uAt ~
TV )U* = u“ –

vAt ~ ~
At(((u . V)u)”+i + VP”-*) + & U . (15)

Here, superscripts involving n denote the time level. Since Vp ‘–; = Vpn+; + O(At),

(15) implies that u* = u + O(At2), and so it appears plausible that a second-order
method can be obtained simply by using the original specified boundary conditions for u

as boundary conditions for u*, i.e.
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Substituting this condition into (14), it is apparent that the boundary condition for ~ becomes

particularly simple in this case as well:

n. Vqqon = o. (17)

In fact in [2], normal mode analysis is used to show that if an appropriate approximation to
the pressure gradient update formula (12) is used, namely

(18)

both the velocity u and the pressure p converge to second order in At,

4. THE PRESSURE GRADIENT UPDATE FORMULA

Implementing (18) is problematical because of the term involving V2 Vq5. Near bound-

aries, for example, formulation of an appropriately accurate discretization of this term can

be difficult. Removing this term altogether apparently involves only an Cl(At) perturbation

to the formula for Vpn+ ~. Again, by inspection of (8), It might therefore be reasonable to

expect that using the approximation

Vp”++ = VP’-: + -&#, (19)

as is done in [1] and related papers, would lead to a second-order result for the velocity.

It remains the case, however, that this is a first order perturbation to the formula for

the pressure, so second-order convergence of the pressure would not be expected, Since

the pressure and velocity are coupled by the Navier-Stokes equations, it would also seem

doubtful that the velocity would be computed to second-orderby this method. Surprisingly,

it has been proven using normal mode analysis and demonstrated numerically in [2] that

using (19) in conjunction with (15), while it leads to only first order convergence of

the pressure, does result in second-order convergence of the velocity. The first order

convergence of the pressure results from a spurious mode in the pressure that converges

like O(vAt). This mode can only be annihilated by using the update forrnul for the pressure

given in (18).

5. BOUNDARY CONDITIONS WHEN PRESSURE TERM SET TO ZERO IN

PREDICTOR

Provided that boundary conditions can be chosen appropriately, pretty much any approx-

imation can be used for the Vq term in (8) since the subsequent projection step will always

pick out the correct potential gradient to give a divergence-free velocity. The method

proposed by Kim and Moin [10] uses q = O, for example. Finding appropriate boundary

conditions for u* and @become more difficult in this case, since it is no longer true that

u* is an 0(At2) perturbation of u. The normal mode analysis presented in [2] suggests

again that as long as the compatibility condition (13) is satisfied, second-order convergence

should be possible. Since the compatibility condition is only one constraint on the bound-

ary conditions, a convenient choice such as n . V@ = O seems desirable, leading to the



ACCURACY OF PROJECTION METHODS 5

proposed boundary conditions

Here, VqW+l is computed using second order extrapolation from previous timesteps.
Numerical studies using these boundary conditions, however, demonstrate only first-order
convergence for the pressure in many cases even when using the improved formula

(21)

for the pressure. The problem with using these boundary conditions lies in the fact that the

function u* will not turn out to be smooth near boundaries in all cases. Since V2 ~ = Vu”,

(21) implies that the pressure will not be smooth either near boundaries.

Rather than choosing homogeneous Neumann boundary conditions for @in this case,

a better idea is to choose the boundary condition for u* in such a way as to guarantee

smoothness of that function up to the boundary. Instead of (20), we extrapolate n . u* to

the boundary using at least a second-order extrapolation formula. The boundary conditions

become

While an inhomogenous Neumann condition is now required for the elliptic problem for

~, the corresponding numerical experiments demonstrate fully second-order convergence

for both the velocity and pressure, justifying the additional effort. Again, V&+l is

extrapolated from values at previous timesteps to second order; for example V&+l %

24P – ~~-1.

6. SUMMARY OF RESULTS

Table 1 summarizes the convergence results reported here and in [2]. The columns

labeled “boundary conditions” indicate what the inhomogeneous terms are in the boundary

conditions for uStar and n . V@, The columns labeled “difference approx.” indicate the

choice for q and the formula used for the pressure update or evaluation. The number shown

in the columns labeled “convergence rate” are the exponent in the convergence rate in time

for the resulting combination of boundary conditions and difference approximation.
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TABLE 1

Summary of convergence rates for different boundary conditions and pressure updates

I Boundary Conditions I Difference Approx. I Convergence Rate I

I ii.u”lan / ‘f u“l~fj I n . VCJW+1]8QI q Ipupdate]ul P I.,

fi . U.+l -? Un+l o P
n—+ (19) 2 1

C . U.+l y . Un+l o P
n—+

ii . Un+l
(18) 2 2

;(. Un+l + Vtin+l o 0 (21) 2 1

Extrapolate ;(. un+l + V(j’+1) n. (Un+l + Vfj”+l) o (21) 2 2
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