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Abstract 

A new method for the solution of the unsteady Euler equations 
has been developed. The method combines staggered grid Lagrangian 
techniques with structured local adaptive mesh refinement (AMR). 
This method is a precursor to a more general adaptive arbitrary La- 
grangian Eulerian (ALE-AMR) algorithm under development, which 
will facilitate the solution of problems currently at and beyond the 
boundary of soluble problems by traditional ALE methods by focus- 
ing computational resources where they are required. Many of the 
core issues involved in the development of the ALE-AMR method 
hinge upon the integration of AMR with a Lagrange step, which is 
the focus of the work described here. The novel components of the 
method are mainly driven by the need to reconcile traditional AMR 
techniques, which are typically employed on stationary meshes with 
cell-centered quantities, with the staggered grids and grid motion em- 
ployed by Lagrangian methods. These new algorithmic components 
are first developed in one dimension and are then generalized to two 
dimensions. Solutions of several model problems involving shock hy- 
drodynamics are presented and discussed. 
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1 Introduction 
The numerical simulation of compressible flows with shocks and dis- 
continuities is a computational challenge in many important applica- 
tion areas including inertial confinement fusion (ICF) , astrophysics, 
fluid-solid interactions, and plasma physics. Resolution of small scale 
flowfield features such as shocks, material interfaces, and regions of 
inviscid instability requires a large number of computational cells 
in these regions. Lagrangian and ALE techniques have often been 
favored in the above application areas [l], in part due to  the self- 
adapting nature of Lagrangian grid motion, e.g., contact discontinu- 
ities are tracked automatically, and cells are clustered into high den- 
sity regions behind shocks. However, this inherent form of adaption 
present in Lagrangian and ALE methods, while an advantage over 
pure Eulerian codes in some applications, is not ideal. One particu- 
lar drawback relative to a more general adaption method is that the 
number of cells in any such calculation, which may be thought of as 
a “resolution capacity,” is constant, while the resolution requirements 
for many applications may change substantially throughout the sim- 
ulation. A relatively simple initial condition may evolve into a highly 
complex system with many regions of complex interactions requiring 
high resolution. It becomes necessary in such situations to match 
the resolution capacity of the initial grid with the greatest resolution 
requirement present throughout the simulation. This is not optimal 
since it requires a priori knowledge of the dynamics of the system and 
the eventual resolution requirements, and secondly, it is wasteful of 
computational resources during the portions of the simulation time 
for which resolution requirements are submaximal. 

An approach which has proven effective in addressing these prob- 
lems is structured grid local adaptive mesh refinement (AMR) [2, 3, 4, 
51. AMR involves the addition and removal of mesh cells as required 
to maintain a specified level of accuracy, as opposed to maintaining a 
fixed cost, which is the case for a traditional Lagrangian calculation. 
As illustrated in Figure 1, this technique involves the successive re- 
finement of regions of a structured mesh where additional resolution is 
required. Extension of the AMR idea to Lagrangian and in turn ALE 
solution techniques is nontrivial due to several factors. The first is 
that AMR was originally developed in the context of algorithms that 
employ cell-centered variables. Lagrangian methods, by contrast, are 
often developed by utilizing a staggered grid, where thermodynamic 
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Figure 1: An example of adaptive mesh  refinement showing a properly nested 
hierarchy of grids. There are three levels, a base level and two levels of 
refinement, each generated f r o m  the next coarser level using a refinement 
ratio of two. There are three grids at each of the f ine  levels. Note  that one 
of the grids at the f inest  level spans two grids at the intermediate level. 

quantities such as density and energy are located at cell centers, while 
the kinematic quantities of position and velocity are located at the 
mesh intersections, or nodes. This change manifests itself in the AMR 
algorithms in several ways. New or modified operators which transfer 
quantities between the coarse and fine meshes in a conservative man- 
ner must be developed. Furthermore, the methods responsible for 
synchronization of fine grid and coarse grid solutions via “refluxing” 
must be modified to suit a Lagrangian context on a staggered grid. 
Finally, the grid motion itself is a new component with respect to 
AMR methods, and the coupling between fine and coarse grid nodes 
in the AMR hierarchy must be established. Although some work has 
been done with moving structured grids in an Eulerian context [6], the 
methodology presented here is a departure from this previous work. 

It is important to note that Lagrangian methods suffer from mesh 
tangling difficulties for many relevant applications. This is the impetus 
for the ALE-AMR effort which will extend this initial investigation of 
a purely Lagrangian AMR algorithm. 

2 Methodology Overview 
The governing equations to  be solved are the Euler equations in La- 
grangian form: 
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where p, e,  p ,  and f are the fluid density, internal energy, pressure, 
and velocity respectively, and t is time. 

The solution of the system (1),(2),(3) proceeds through a succes- 
sion of Lagrange steps on a hierarchy of structured meshes. The form 
of the Lagrange step employed is independent of the mesh configura- 
tion, except with respect to boundary conditions as will be discussed 
in section 2.2. First, we will outline the established methodology upon 
which the method is based. 

2.1 Established Methods 
The Lagrange step methodology employed on the grid interior follows 
the general approach taken by Tipton [7]. It employs a predictor- 
corrector discretization in time, and the HEMP spatial discretization 
[8],[9]. The scheme employs a monotonic artificial viscosity due to 
Christensen [lo], and a simple kinematic hourglass filter [ l l ] .  

The model AMR methodology which is being adapted for the La- 
grangian method is that of Berger, Oliger, and Colella [3, 121. In this 
approach, a hierarchical grid structure is employed which changes dy- 
namically in time, and is composed of logically rectangular, uniform 
grids of varying resolution. The grid hierarchy is constructed so that 
a coarse grid cell is covered precisely by 1" fine grid cells, where I is 
a user specified integer called the refinement ratio, and n is the spa- 
tial dimension of the simulation. The solution is defined on all cells, 
including coarse cells which underlay cells of finer resolution. The 
collection of grids at  a given resolution is referred to as a level. The 
hierarchy can have an arbitrary number of levels and any number of 
grids at a given level. The time step is a recursive procedure which 
we describe here for a two level calculation. 

The first step is to regrid the current solution by refining regions 
of the flow requiring greater resolution. Cells requiring refinement 
are tagged and then grouped with untagged cells to create relatively 
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large blocks of the coarse grid that will be refined. These blocks are 
then subdivided to create the new fine grids. When new fine grid cells 
are generated in the process, the solution is defined by a conservative 
interpolation of the coarse grid data. The modified interpolation oper- 
ator employed in the Lagrangian context is discussed in the following 
section. 

The next step is a coarse grid advance, in which the coarse grid 
data is integrated to some new time, t + At. The fine grid is then 
advanced through multiple time steps to the same time as the coarse 
grid. The principal consideration in the fine grid advance is the bound- 
ary conditions employed on the fine mesh, in particular at  coarse-fine 
mesh boundaries. Typically this is achieved through time and space 
interpolation of coarse grid data to provide Dirichlet boundary condi- 
tions. Required modifications to this procedure are discussed in the 
following section. 

The final step in a traditional hierarchy advance is synchronization 
of the coarse grid and fine grid data. This is accomplished in two steps. 
First, a conservative coarsening or “averaging down” takes place that 
replaces any coarse grid data for which fine grid data is available. 
Second, the coarse cells which are adjacent to a fine grid boundary 
are updated to reflect the fluxes which were provided by the fine grid 
at those boundaries over the succession of fine grid advances. This is 
necessary to ensure conservation, since the coarse grid and fine grid 
fluxes will not in general be the same. For a Lagrange scheme, the 
synchronization step requires a modified approach. 

2.2 Novel Extensions 
The integration of AMR with a Lagrangian method on a staggered 
grid requires in essence four modifications of standard AMR method- 
ology. The four modified elements are the refinement operators, the 
coarsening operators, the treatment of boundary conditions on finer 
grids, and the synchronization of coarse grid and fine grid data after 
a hierarchy advance. 

ought to obey at a minimum four essential properties. They ought to 
maintain the order of accuracy of the underlying integration (typically 
2nd order accuracy), they should be conservative, they should not gen- 
erate new extrema in the solution, and they should obey a reciprocity 
relation with their corresponding coarsening operators. Refinement 

Refinement operators for shock hydrodynamics applications of AMR 
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operators which obey these properties on a staggered mesh configura- 
tion are developed first in one dimension, and then generalized to two 
dimensions. The coarsening operators are also modified to conform 
to the staggered grid configuration, first in one dimension, and then 
in two dimensions. Conservation and reciprocity with the refinement 
operators are established. 

The treatment of boundary conditions on finer grids requires ad- 
ditional algorithmic developments over traditional AMR, since in the 
Lagrange step, the node locations and hence the mesh are determined 
as part of the integration. This has no counterpart in an Eulerian 
AMR solution method, and care must be taken at coarse-fine bound- 
aries to ensure conservation. Solutions for this problem are presented 
in one dimension and then in the more challenging case of two dimen- 
sions. The formerly distinct concepts of fine grid boundary conditions 
and coarse-fine synchronization become coupled in a Lagrangian con- 
text. No additional synchronization step to  ensure mass conservation 
is required as a result of the fine grid boundary condition treatment, 
but synchronizing adjustments for momentum and energy must be 
made in an appropriate way to ensure conservation. The modified 
synchronization step is developed in one dimension and generalized to 
two dimensions, and conservation is established. 

2.3 1m.plementat ion and Preliminary Results 
The implementation of these algorithms is accomplished using SAM- 
RAI [13], an object-oriented framework for the development of struc- 
tured grid adaptive mesh refinement applications. The AMR specific 
portions of the code development that benefit from higher level ab- 
stractions are implement using C++, and the lower level portions of 
the algorithm where performance is the dominant factor are imple- 
mented in FORTRAN 77. All inner loop computations are performed 
at the FORTRAN level of implementation. 

algorithm are displayed in Figure 2 for the Sod shock tube problem 
[14]. This is a two level calculation with a refinement ratio of n = 4. 
Both the coarse and fine mesh solutions are shown on the same axes 
at the time t = .245, corresponding to the Sod initial conditions of 
p~ = 1.0, p~ = 1.0, p~ = .125, p~ = 0.1, and UL = UR = 0, where L 
and R subscripts denote states in the left and right halves of a shock 
tube extending between -1 < 12: < 1. This is a simple demonstration 

Preliminary results using a one-dimensional Lagrangian AMR (LAMR) 
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of a functional LAMR algorithm in one dimension. Performance on 
more challenging problems in both one and two dimensions will be 
presented. 
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