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ABSTRACT 
Marine cables under low tension and torsion on the sea floor can 

undergo a dynamic buckling process during which torsional strain 
energy is converted to bending strain energy. The resulting three- 
dimensional cable geometries can be highly contorted and include 
loops and tangles. Similar geometries are known to exist for 
supercoiled DNA and these also arise from the conversion of 
torsional strain energy to bending strain energy or, kinematically, a 
conversion of twist to writhe. A dynamic form of Kirchhoff rod 
theory is presented herein that captures these nonlinear dynamic 
processes. The resulting theory is discretized using the generalized- 
method for finite differencing in both space and time. The important 
kinematics of cross-section rotation are described using an 
incremental rotation “vector” as opposed to traditional Euler angles 
or Euler parameters. Numerical solutions are presented for an 
example system of a cable subjected to increasing twist at one end. 
The solutions show the dynamic evolution of the cable from an 
initially straight element, through a buckled element in the 
approximate form of a helix, and through the dynamic collapse of this 
helix through a looped form. 

1. INTRODUCTION 
Cables laid upon the sea floor may form loops and tangles as 

illustrated in Fig. 1. The loops (sometimes also referred to as 
hockles) may cause localized damage and, in the case of fiber optic 
cables, may also prevent signal transmission. These highly nonlinear 
deformations are initiated by conditions of low cable tension (or 
slight compression) and torsion sufficient to induce a torsional 
“buckling” of the cable. Several prior investigations of cable loop 
formation have employed nonlinear equilibrium (static) rod theories 
to analyze the equilibrium forms of cables under torsion and low 
tension; see, for example, Coyne [l], Rosenthal [2,  31, Liu [4], Tan 
and Witz [5]. The stability of these equilibrium forms may be 
assessed using local stability analyses as in Lu and Perkins [6,7]. 

Figure 1:  Low tension cable forming loops and tangles on 
the s e a  floor. 

The overall buckling process, however, is inherently a dynamic 
process, and this fact has recently been recognized by Gatti-Bono and 
Perkins [SI who employ a nonlinear dynamic rod theory to simulate 
loop formation under cable compression. 

It is interesting to observe that the looped and tangled forms of 
marine cables are topologically similar to the supercoiled states of 
DNA [9]. For instance, the tangle depicted in Fig. 1 for a marine 
cable resembles the plectonemic structures (illustrated in Fig, 2) that 
form in stranded and looped DNA following conversions of twist to 
writhe. The geometry of DNA has a controlling influence on its 
biological functions including the processes of transcription and 
replication [9]. The equilibrium (static) rod theories utilized for cable 
looping have (with modifications) also been employed to study (the 
long-length scale) supercoiling of DNA, see, for example, [lo-171. 
Like the marine cables above, the transitions of DNA between 
supercoiled states is inherently a dynamical process, yet little is 
actually known about it. 
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Figure 2: DNA resembles a helical ladder (far left) that, 
when viewed over long length-scales, has been modeled as 
a rod. The entire molecule may supercoil, and the 
supercoiling may be plectonemic or solenoidal as 
illustrated. (Illustrations courtesy of [29]). 

The objective of this study is to provide a rod theory for cables 
that can be used to capture dynamic buckling under increasing 
torsion (twist). The dynamics of this process as well as the model and 
numerical methods described herein, may also be a useful starting 
point for understanding the writhing dynamics of DNA and dynamic 
transitions between supercoiled states. 

We open by summarizing a nonlinear dynamic rod model used 
by Gatti-Bono and Perkins [18] to describe highly contorted states of 
elastic cables. Next, this model is discretized by finite differencing 
following Gatti-Bono and Perkins 1181 as well as Gobat and 
Grosenbaugh [19] who employ the generalized- method by Chung 
and Hulbert [20] for integration with respect to time. The resulting 
numerical model is exercised on a prototypical example of a cable 
element subjected to increasing twist. We close with a summary of 
our conclusions. 

2. PHYSICAL MODEL 
Consider the infinitesimal element of a cable [18] in Fig. 3. Let 

the vector triad [ ei ] define an inertial reference frame and the vector 

triad [a,) define a local reference frame fixed to the cross-section 
and aligned with the tangent and the “principal torsion-flexure axes” 
[21]. The quantities Q and B denote the external torque and force 
per unit length, respectively, while q and f denote the internal 
moment and force, respectively, that act on the cross-section (internal 
stress resultants). 

At each spatial point on the cable centerline is defined by the 
Lagrangian variable s .  Four vectors are required to define the 
dynamic state of the cable cross-section and the internal stress 
resultants. These include: the linear velocity v of the cross-section at 
the centerline, the angular velocity w of the cross-section, the 
curvature (or Darboux vector) K of the centerline at the cross- 
section, and the internal force f . We express all quantities and 
derivatives in the local frame, unless otherwise stated. 

Figure 3: infinitesimal element of Kirchhoff rod for 
formulating equations of motion. 

The kinematical quantities w and K are smooth and they are 
related by the requirement that the order of spatial and temporal 
differentiation are interchangeable’ : 

We assume that the centerline is inextensible, which leads to the 
requirement that 

- av + K X  V = O X  a3 

as 

The balance law for linear momentum of the element in Fig. 3 is 

and that for angular momentum is 

aq am 
as at 

- + K X q = l - + W x ( l W ) +  f x u 3 - Q  

13) 

(4) 

Here, B and Q represent any distributed force and moment, 
respectively, produced by the surrounding environment including 
gravity, buoyancy, hydrodynamic drag and added mass, contact, etc.. 
In general, these quantities are nonlinear functions of the state 
vectors. I is the moment of inertia tensor for the cable cross-section 
about the triad {ai J . 

The internal moment is related to the curvature and angular 
velocity through an assumed (linear) constitutive law that includes 
the influence of intrinsic curvature/ torsion, K ~ ,  and structural 
damping, C :  

0 0 0  
q = r  EJ, 0 GJ, ] ( K - K ~ ) + [ ?  0 C, 0 c 3  010 (5)  

A derivation of this result is found in Section 4 following Eq. (25) 



The material and geometric parameters used in Eq. (5) are defined in 
Tables 1 and 2. Though internal structural damping might also be 
modeled as being proportional to (-${e,), relating it to w here 

offers simplicity at the expense of additional damping for rigid-body 
rotations. Alternative formulations of damping could be incorporated 
at this stage. 

The constitutive law Eq. ( 5 )  is substituted into the angular 
momentum balance law, Eq. (4). The resulting four field equations 
(Eq. (4) substituted with Eq. (5), and Eqs. (1)-(3)) constitute a set of 
four (vector) equations in the four unknowns represented by the state 
vector: 

We consolidate the field equations in the form 

ay  ay 
at as M(Y,s,t)-+ K(Y,s,t)-+ F(Y,s, t)  = 0 (7) 

Observe tbat M is always a singular matrix (no time derivative 
appears in the constraint equation Eq. (2) .  K is always non-singular 
(but for a very flexible cable, it may become ill-conditioned). 

For a three-dimensional configuration, the dimension of Y is 
12. In order to solve the set of frst-order partial differential equations 
Eq. (7), we must also specify 
1. Y(s,O) as the initial conditions (initial configuration of the cable 

and its initial velocity and angular velocity), and 
2. six components of Y(0,t) with six of Y(L,t)  as the boundary 

conditions. In general, the boundary conditions may be implicit 
and nonlinear, e.g. @(Y,%,t)=O, which would then require 

numerical solution together with the partial differential equations, 
Eq. (7). 

3. NUMERICAL SOLUTION ALGORITHM 
Following the work of Gobat and Grosenbaugh [19], we 

discretize by finite differencing and make reference to the space-time 
discretization grid shown in Fig. 4. We denote spatial derivatives by 
a superscript prime and temporal derivatives by a superscript dot. 

Starting with initial conditions, and for each successive time 
step, we integrate along s and use the shooting method to satisfy all 
boundary conditions at the two ends. Thus, to solve for Y at the 
open node ( i , j )  in Fig. 4, we use the known solution Y at the two 
shaded nodes (i - 1, j )  and (i - 1 , j  - 1) known from the prior time 
step, as well as to the solution Y at the partially shaded-circle node 
(current time step, prior spatial step, (i, j-1) as described next. All 
(spatial and temporal) derivatives are formed using the Generalized- 
a method described below. 

We begin with Y and Y' known from the initial conditions 
( t  = 0), and then compute the initial value of Y from the governing 
equations, Eq. (7). Though M is singular, to evaluate p ,  we 
simplify by choosing = 0 to start with, as there is no dependence 

on in Eq. (7). Also, any initial condition must satisfy 

4 halfboundary conditions U, Y 

I I I I I 3 
halfboundary conditions Y, Y f 

Figure 4: Space-time discretization grid. 

a; . 
as - + K x v + K x ~ = ~ x ~ ,  

which is the time-derivative of the inextensibility constraint, Eq. (2).  

Generalized- 
discussed in Gobat et al. [22],  

Finite differencing of Eq. (7) in time is achieved using the 
method, whose advantages in this application are 

=o  (9) Ml-a ' Y  ' 1 -q  +KI-P,y"-P, 

o'-" = (1 - x ) o j  + xoi-1 (10) 

Here at is introduced as a "mass-averaging" numerical parameter 
while ,B, is a "stiffness-averaging" numerical parameter. The 
subscript t indicate that the averaging is done with respect to time as 
explained in Eq. (IO) for x = either at or pt . Note however, that 
for many applications, M and K are constant and hence they do not 
require averaging in the difference equation. We assume this is the 
case for simplicity.' 

The solution is known at the previous time step ( i  -1 ) (see 
shaded nodes in Fig. 4) and we move these terms to the right-hand 
side of Eq. (9) in creating the known nonhomogeneous temH . 
Subsequent finite differencing in space yields, 

(1 - a; ) M p "  -6 (1 - p, )(KE;"-Pr + @-P= ) = H 

H = a;MY:I+p,(KY&fi" + F y S )  

(1 1) 

where the right-hand side 

(12) 

*Note that structural damping when modeled as a function of 
(%),, ~ = 9 + @X K would not allow this simplification. 



For the temporal and spatial derivatives, we employ the 
Newmark-like formulations, 

The Newmark constants yt and ys are numerical parameters that 
control the averaging of time and space derivatives. A Newmark-like 
method for time integration was used by Sun [23] for cable dynamics 
simulations. In the Generalized- method, the numerical parameters 
( { q , p , , ~ }  or {aJ,ps,ys]) are selected to satisfy optimal 
numerical accuracy and stability as described briefly below. 

Upon substituting Eq. (14) and Eq. (15) into Eq.(ll), and 
Consolidating all nonhomogeneous t e r n  into H , we arrive at the 
algebraic equations 

h& +A(Y, , j )  = B(q,j-l) f H (16) 

that are linear in Y' and nonlinear in Y. From here forward, we drop 
the subscript i for notational simplicity. Starting from a guessed 

solution Y* , we form f from the Newmark algorithm Eq. (14) and 
then form Y* using the governing equations Eq. (7). Here, the 
superscript * will indicate a quantity that depends on the guessed 
solution and that is also updated as the algorithm proceeds. 
Linearizing A and B about the guessed solution Y* leads to the 
approximation to Eq. (16). 

k(~ j . -~  j + R* + A;Y,. = s* + B ; Y ~ - ~  + H (17) 

which further reduces to 

after consolidating all nonhomogeneous terms in H* . 
This linear nonhomogeneous algebraic equation is now 

employed to integrate over space. Starting from s = 0, we apply the 
shooting method as discussed in Gatti-Bono and Perkins [18]. In 
short, we assume that Y at any s belongs to an affine solution 
space. With the known boundary conditions at s = 0,  we find a basis 
of the solution space at s = 0. Then, we determine how the solution 
space (the chosen basis) transforms through to other end according to 
Eq. (18). Finally, we fix the linear combination of the basis vectors to 
satisfy the terminal boundary conditions in arriving at an updated 
solution at all s as our next guess. We then update the coefficient 
matrices in Eq. (18) with the next guess and iterate this cycle until 
convergence is achieved. 

To select the numerical parameters, we draw an analogy to the 
scalar problem studied in Gobat and Grosenbaugh [19]. We can 
choose (cc,,pt,r,) =(oc,,,B,,y,) = (a ,p ,y )  to achieve the same 
accuracy and stability in space and time. Second-order accuracy on 
truncation error requires that the numerical parameters satisfy 

Stability requires that the amplitication matrix in recursion have 
a spectral radius (magnitude of the largest eigenvalue) less than unity. 
Unconditional stability requires 

a < + , p ' + , y t +  (20) 

The spectral radius is a measure of numerical dissipation. We 
want to preferentially dissipate high frequency components of the 
response, low frequency components are important and should have 
minimal dissipation. Chung and Hulbert 1201 achieved such 
controllable dissipation by imposing smoothness requirements on the 
spectral radius. Their requirement when combined with Eq. (19) and 
Eq. (20) enables one [19] to relate all three numerical parameters to a 
single parameter, & , where I & I is the minimum spectral radius 
(or, equivalently, the maximum numerical dissipation). 

3&+1 & a=- 2n , -2  J=- &-1  

4. KINEMATICS OF CROSS-SECTION ROTATION 
The solution algorithm reviewed above provides the solution 

Y(s, t )  = ( v , w , ~ , f ]  as time marches forward. If any external forces 
and/or moments (B and Q) are specified in the inertial frame (e.& 
weight and buoyancy), then these quantities need to resolved into 
components along the local frame as the solution proceeds. Doing so 
requires knowledge of the transformation L from the inertial frame to 
the local frame. 

Likewise, specific boundary conditions may require use of this 
transformation during solution. In addition, we need this 
transformation in post-processing the solutions for the curvature 
vector x in arriving at the three-dimensional space curve that 
describes the cable centerline. 

Differentiating Eq. (22) with respect to time leads to 

aL 
at 
- = -(jjL 

In deriving Eq. (23) above, we used the cross-product formula 
wx ai = hi , where 6 is the skew-symmetric form of the vector w , 

We can now solve Eq. (23) for L at each time step from known 
solutions of 0 .  

Equivalently, for specific boundary conditions, we might know 
L at one end for all time and then use the computed curvature K to 
determine the transformation along the remainder of the cable per 



We use Eqs. (23) and (25) to deduce3 the constraint Eq. (2). 
We update the transformation L using the decomposition 

L, = exp(-B)Li-l (26) 

where we use the fact that any orthogonal transformation can be 
represented by exponentiation of a skew-symmetric matrix. The 
quantity 0 has a simple physical interpretation. The transformation 
of the local frame [ai) in one time step (say from i -1  to i 1, can be 
accomplished by a single rotation 1 1  8/l2 about a unit vector u , 
where 11 B l/zden~tes the & norm of 0 . If we decompose u in the 
local frame (ai), then the resulting vector 11 0112 u is exactly the 

incremental rotation vector 8 whose skew-symmetric form 0 satisfy 

Quantity 

Young’s Modulus, 8 
Shear Modulus, G 

Eq. (26). We note that 0 =  wdt witb the approximation 

becoming exact for infinitesimal rotations (Le., smaller time steps). 
After estimating B from w ,  we can use the rotation formula4 for the 
exponential of a skew-symmetric matrix: 

I, 

exp/G)=~+isin( / /  B I I ~ ) + - ~ ~ ~ ~ - C O ~ ( I I  BI~II (27) 

This result employs only a scalar power series and therefore it avoids 
the numerical difficulties of matrix exponentiation [24]. 

5. RESULTS AND DISCUSSION 
The model and solution algorithm described above is now used 

to explore several possible dynamic motions that are generated by 
buckling an example cable by twisting one end. The model 
parameters that define the example are listed in Table 1 and Table 2 
and a schematic of the model is illustrated in Fig. 5. 

units (SI) Value 

Pa 2.0~10’ 
Pa 3 . 5 ~ 1 0 ~  

Y %O=b,w , r , f l  @,I 
End paint Start point 
( S  =Ism) ( S  =0)  

v = o  
q,=o 
Y = F(0 

v, ,=o 
w=o 
f, = -cxv, 
( h p e d  &de) (prescribed) 

Figure 5: A low tension cable under increasing twist 
created by rotating the right end. Left end may be free to 
slide or have prescribed sliding velocity andlor reaction 
(tension). 

Fluid Density, p ,  

Temporal Step, At 

Note that Eq. (2) follows from taking the time-derivative of Eq. (25) and 
equating it to the spatial derivative of Eq. (23). Use the fact that Ed- 
the skew-symmetric form of m w .  

is 

Substitute G’ = -: in Taylor expansion to verify this formula. 

Kg/m3 1 . O X l O ~  

S 2.0x10’ 

~~ 

3.0~10’ 

Quantity 

Cross-section Area 

I Cable Diameter, D I m I 1.7~10” I 

Formula units [SI) 

A =e mz 
C d  

I Cable Length, L I m I 1 . 5 ~ 1 0 ~  I 

4.2 =p& 

1, = P,J, 

Mass Moments of Inertia per unit 
cable length (bending) 

Mass Moments of Inertia per unit 
cable length (torsion) 

I CableDensity, p,  1 Kg/m3 I 4 . 0 ~ 1 0 ~  I 

Kg-m 

Kg-m 

I Spatial Step, & I m I I.OXIO-’ I 

I AreaMoments ofInertia(bending) I J1,.=$ I m4 I 
1 Area Moments of Inertia (torsion) 1 1, =$ I m4 I 

Distributed Drag = I c s x (relative flow velocity)*, where s = D 
for normal drag and S = z D  for tangential drag (skin friction) 1181. We 
increased c, 2-fold during the dynamic collapse (from the cable state in Fig. 
(8) to the state in Fig. (9)). This helped slow down the otherwise drastic 
dynamics that accompany the sudden collapse. 



Start point 

End point 

Figure 6: Boundary conditione. The starting point (right 
end) is subjected to a prescribed angular speed about the 
tangent. The end point (left end) is free to slide under linear 
viscous damping. 

from zero to a constant value (0.3 rad/sec) and then slowly reduced 
until it reaches zero and held at zero thereafter. The resulting twist 
that is induced in the cable is sufficient to generate torsional buckling 
and subsequent dynamic response. The dynamic response is 
influenced by the motion of the left end as illustrated in Fig. 6. In 
particular, the left end is held fixed during the period when the cable 
is being twisted (first 135 sec). After this period, the left end is 
allowed to slide towards the right end under the influence of a 
viscous reaction force (creating end tension, f3(L,t) proportional to 
the sliding velocity). The dynamic deformation that results from these 
boundary conditions is discussed next. 

As the right end is fist twisted by a modest amount, the cable 
remains straight. There is an abrupt change however when the twist 
reaches a critical value (at approximately 145 sec) when the Greenhill 
buckling condition [25] is achieved and the straight (trivial) 
configuration becomes unstable. The model employed here captures 
this initial instability as well as the subsequent nonlinear 
deformations that generate the post-buckled geometry of the cable. 
The geometry just after initial buckling is approximately helical as 
can be observed in Fig. 7, which provides a snap-shot at 200 seconds. 
Shown are projections of the three-dimensional cable geometry in the 
three principal planes of the inertial frame. An isometric view is also 
included. Notice that the cable appears to make a single helical turn 
that also lies wholly above the horizontal ( e2 - e3 ) plane as expected 
from the fist buckling mode of the (simpler) linearized theory [25]. 

As the left end is allowed to slide towards the right end, the 
helical cable undergoes a secondary buckling in which it suddenly 
collapses in forming a (nearly) planar loop with self-contact. This 
collapse occurs at approximately 280 sec. in this example. The 
dynamic collapse is predicted from investigations of the stability of 

Front view End view 
5 , ,  I , 5 

, 1 1 1  

Top view 
5 , ,  , , , ,  Time = 200 sec 

Figure 7: Approximately helical shape (or toroidal writhe) 
following initial torsional buckling. 

the equilibrium forms of a cablehod under similar loading 
conditions; refer to Lu and Perkins [6] and studies cited therein. 
These results here extend to the dynamic regime of these studies that 
previously focused on equilibrium alone. Figure 8 shows a snapshot 
of the three-dimensional shape of the cable just before dynamic 
collapse (at 255 sec). Note that the center of the cable has rotated a 
total of 90" about the vertical (el ) axis so that the tangent at this 
(mid-span) point is now orthogonal to the loading ( e 2 )  axis. This 
was a noted bifurcation condition in Lu and Perkins [6] at which the 
equilibrium form loses stability. The dynamic collapse thereafter is 
depicted in Fig. 9, which now illustrates the cable a short time later 
(281 sec). This cable now is nearly planar and forms a closed-loop. 

The present formulation, however, ignores cable self-contact 
and therefore the loop shown in Fig. 9 is only temporary. Contact 
forces would be required to stabilize this loop. Instead, our model 
allows the cable to pass through itself as the momentum of the 
collapse carries the cable through this looped configuration and 
towards a stable configuration in the shape of straight but twisted 
cable. During this final process, the twist is reduced and is finally 
insufficient to initiate further torsional buckling (i.e., below the 
Greenhill condition). 

The entire dynamic collapse depicted by the sequence shown in 
Figs. 7-9 involves a conversion of torsional strain energy to bending 
strain energy. The analogous process exhibited by DNA strands 
involves the dynamic conversion of twist to writhe and it 
accompanies the transition of DNA from one supercoiled state to 
another [9]. Prior analyses of these conversions have relied on 
equilibrium (static) models of DNA [lo-171 and truly dynamic 
transitions, such as those in Fig. 7, Fig. 8 and Fig. 9 are poorly 
understood [9]. We endeavor to provide some understanding of this 
dynamic process by referring to Fig. 10. 



Time = 255 sec 

Figure 8: Just prior to collapse, the tangent 4 at the mid- 
point becomes perpendicular to the loading axis e,. 

We start with the result of Calmgareanu 1261 and White 1271 for 
closed loops (for example, DNA plasmid) that states that the linking 
number Lk is conserved as is equal to the sum of total twist Tw and 
writhe Wr . 

Lk = Tw+ Wr (28) 

The linking number Lk represents the number of turns 
included in the closed cable loop as shown in Fig. 12. These 
turns are considered positive or negative based on whether 
they are right-handed or left-handed. It is intuitive that we 
can’t alter the linking number without cutting through a section 
of the cable. If the centerline curve of the loop cable is planar 
(and non-intersecting, i.e. the cable has non-zero thickness), all 
the turns are in the form of pure twist and thus the number of 
turns equals to the total twist Tw. In Fig. 11, this number can 
be counted as the number of black regions in the circular loop. 
The twist can be released and doing so creates writhe as 
observed in the succession of loops shown in Fig. 11. The 
writhe Wr is purely a function of the space curve and 
quantifies the number of cross-overs one can see averaged 
over all possible views. For a detailed discussion, refer to 
Calladine and Drew [9] and for computation of the writhe Wr 
refer to Fuller [28]. 

In open structures such as ours (length of cable or DNA strand), 
this theorem still applies provided no further rotations are allowed at 
the boundaries (as in the boundary conditions for this example) and 
the structure is not “cut”. This is illustrated in Fig. 12. We compute 
the total twist Tw from 

L 
1 Tw = - (,v3dr 

2a 

Time = 281 sec 

Figure 9: Loop formation. The cable of Fig. 8 collapses into 
a planar loop shortly thereafter. 

Start point 

Mid point 

._ 

End point 

0 100 200 300 400 500 600 

Time, t (s) 

Figure 10: Loss of twist during buckling due to released 
torsional strain energy. 

and refer to the reviews by Tobias et al. [lo] and Coleman et al. [ll] 
for computing the writhe Wr in open structures. 

In our example, the initial twisting phase (up to 135 sec) 
introduces approximately 4.8 Lk , all in the form of twist, prior to the 
initial buckling (see Fig. 13). This link is conserved just prior to the 
would-be self-contact during the collapse, as the ends of the cable are 
prevented from further rotation. During the initial buckling and 
secondary collapse, the cable exchanges Tw for Wr by transferring 
torsional strain energy into bending strain energy. For instance, just 



Figure 11: The linking number in the left-most cable loop is 
0 and in the next loop it is -3. The twist is converted to 
successively greater writhe in the remaining loops. 
(Illustrations courtesy of [9]). 

x 1 1  

Figure 12: The end blocks do not rotate and only translate 
towards each other. These end conditions conserve the 
linking number. Twist in the top strand converts to writhe. 
(Illustrations courtesy of [9]). 

before the “self-contact”, the cable has 1.0Wr and 3.8 Tw . Just after 
“self-contact” our model allows the cable to pass through itself and in 
doing so Lk is (rather artificially) reduced by 2.0. Also, just after 
passing through “contact”, Wr becomes -1.0 (changes sign). Beyond 
this point, the cable further releases both bending and strain energy in 
settling to a (stable) straight equilibrium with pure twist (and 2.8Lk). 
So in this final phase, one Tw annihilates one Wr in arriving at a 
twisted but straight cable. This dynamic process is captured in the 
results of Fig. 13. 

6. SUMMARY AND CONCLUSIONS 
This paper reviews a rod theory and a numerical algorithm that 

can be used to study the nonlinear dynamics of higbly contorted 
cables. While the primary objective is to model the dynamics of 
marine cables leading to the formation of loops and tangles on the sea 
floor, it is also recognized that the same techniques may apply to 
modeling the supercoiled states of DNA and the dynamic transitions 
between these states. These techniques are used herein to study the 
response of a prototypical system, composed of an elastic cable 
subjected to increasing twist. Numerical simulations reveal that the 
originally straight cable undergoes two bifurcations in succession as 

Twist and Writhe 

Time, t (s) 

Figure 13: Variation of twist and writhe. The discontinuous 
fall in the linking number and correspondingly in the writhe 
occurs when the cable passes through itself. 

twist is added. The first of occurs at the Greenhill buckling condition 
where the trivial (straight) equilibrium becomes unstable and ‘the 
cable buckles into the approximate shape of a helix. This helix grows 
in amplitude with increasing twist. One measure of this growth is the 
continued rotation of the tangent at the mid-span point. When this 
tangent becomes orthogonal to the loadmg axis (axis of the original 
straight cable), the helix experiences a second bifurcation and 
collapses dynamically towards a loop. The current model, which 
does not model self-contact, cannot capture the stable loop that is 
expected to form when self-contact is included. The addition of self- 
contact is a current topic of research. 
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