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1.  INTRODUCTION

The transmission characteristics of the optical fiber are of utmost importance for optical telecommunication 
systems. Indeed, the optical signal experiences all kinds of losses as it propagates and demands the use of 
regenerators or repeaters along the fiber link, [7]. Attenuation (loss) is a relationship between the optical out-
put power and the optical input power in a fiber optic system. It is a measure of the decay of signal strength, 
or loss of light power, that occurs as light pulses propagate through the length of the fiber. 

The optical guiding properties of optical fiber is based on the principle of total internal reflection, [3]. If we 
use the mechanism of ray optics whereby light is described by rays that travel in different optical media in 
accordance with a set of geometrical rules, then one is able to determine incidence angles that light rays 
must follow in order to be guided. Snell’s law states that total internal reflection will occur if the angle of 
incidence of a light ray within the core of a fiber optic makes with the cladding exceeds the critical angle 

 where  are the indices of refraction of the core and cladding, respectively. Hence, 
signal attenuation will occur in the waveguide if changes occur in the angle of incidence of the light ray or 
the indices of refraction of the medium. External factors that could cause either of these to occur include 
deformations of the fiber such as bends or environmental effects such as electrical fields. 

Physical bends break down into two categories: microbending and macrobending, [6]. Microbending is the 
result of microscopic imperfections in the geometry of the fiber. These imperfections could be rotational 
asymmetry, changes in the core diameter, rough boundaries between the core and cladding as a result of 
mechanical stress, pressure, tension, or twisting. Macrobending, on the other hand, occurs when fiber curva-
tures have diameters on the order of centimeters. The loss of optical power is the result of the less-than-total 
reflection at the core-to-cladding boundary. 

Environmental effects on the optical fiber can cause changes in the indices of refraction of the silica glass 
comprising either the core or cladding thereby affecting the transmission and reflection properties of the 
core and cladding, [2]. External electric fields can distort the electron motions (orbits) in the constituent 
atoms and molecules in such a way that it becomes “more” difficult for the electric field in a light wave to 
displace electrons parallel to the applied field direction and thereby changing the propagation properties of 
the optical wave. 

 In general, the fields of optical waveguides are comprised of two parts. One part represents energy that is 
guided, i.e., energy that travels in the direction of the wave guide axis; the other part represents radiated 
energy, i.e., energy that travels obliquely to the axis. It is specifically the radiation loss caused by curvature 
of a fiber or from the environment that is very important form the point of view of long-distance transmis-
sion of optical signals. 

Field properties are studied by describing light as an electromagnetic wave phenomenon described by two 
mutually coupled vector waves, an electric-field wave and a magnetic field wave. The dynamics of these 
waves in an isotropic media is obtained through the solution of Maxwell’s equations:
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Maxwell’s equations can be decoupled by taking the curl of the curl-  equation, interchange the order of 
space and time derivatives on the left side of the resulting equation, replace  by , assume 

 and  to obtain the equation

(2)

Here,  where  is the it order optical susceptibility and is a ten-
sor of rank . A common assumption is to take , [2]. Then  (2) becomes

(3)

where . 

2.  ELECTROMAGNETIC MODEL

The vector field  provided by the numerical solution of  (3) is the Galerkin approximation

(4)

where  are linearly independent vector polynomials, [1]. The coefficients  are obtained 
by forcing the approximation in  (4) to satisfy

.

This yields the system of ordinary differential equations

(5)

where  and the matrices  are given by

 (5) is then solved by the second order accurate leap-frog scheme
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where .

Propagating modes in a step-indexed fiber are analytically constructed by juxtaposing the solutions of  (5) in 
the cladding and the core in such a manner that the characteristic condition of tangential continuity across 
core-cladding interface is preserved. Consequently, it is important that the numerical solution also obey this 
characteristic condition. This is accomplished by using the proper vector polynomials  in the Galerkin 

approximation of  (4). Specifically, if  is an arbitrary hexahedral element in a grid describing a fiber, see 

Fig. 1, then there exists a unique one-to-one mapping  from the reference element  

onto . Specifically, define on  the vector polynomials

,

see Fig. 1. Note that each vector  is associated with a specific edge of . 

The definition of the vector polynomials on  is given by  where  is the determinant of 

the Jacobian of , see Fig. 1. Thus, the value of  in  (4) is the number of edges in the entire grid. The fact 

that the approximation  in  (4) preserves tangential continuity across material interfaces is established in 
[8].

Fig. 1. Isoparametric mapping from reference element to 
hexahedral element.  on reference element and  on 
hexahedral element

Fig. 2. (a) Exact Solution (b) Computed Solution
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2.1  Bent Waveguides

The properties of optical waves in a straight step-indexed fiber are well-known and have been studied exten-
sively, [3]. However, the situation for bent step indexed fibers is not as good. A common approach is to 
describe Maxwell’s equations in terms of local coordinates of the fiber and then transform the equations 
back to Cartesian coordinates so that analysis of the bent fiber becomes one of studying the modes of the 
transformed equations on an equivalent straight waveguide, [6]. The difficulty is that the transformed equa-
tions cannot be conventionally analyzed and an asymptotic expansion around a perturbation parameter of the 
form , , is used to eliminate terms in the equations so that conventional 
mathematical tools can be applied. Thus the analysis is only valid for large curvature radii. The case for not-
so-large radii still remains open. 

Another difficulty presented by the bent fiber is that the index of refraction is no longer the same as it was 
for the original straight fiber. The core and cladding are stressed when the fiber is bent and the index of 
refraction needs to reflect this. Several approaches in the literature analyze Maxwell’s equations on a 
straight fiber with an index of refraction that  where  is the index of refraction of the original 
straight fiber. Again, this is only valid for large curvature radii. This approach also does not take into account 
optical losses as predicted from ray optics for bent fibers.

2.2  Bent Step-Indexed Fiber 

We first consider the case of propagating an optical wave in a bent optical fiber. Fig. 3 illustrates a 1.8 mil-
lion element approximation of a 52.8 micron length of a bent fiber with 55.13 micron bend radius. 5.66 mil-
lion unknowns are numerically determined at each time step. The computation requires 72 hours on 38 
processors of the MHPCC Huinalu Linux based supercomputer. 

The Gaussian pulse of a  mode can be seen in Fig. 4(a) where the core is purple and the cladding green. 
A close-up of the pulse interacting with the core-cladding interface is shown in Fig. 4(b)-(c) where the core 
is again purple and the cladding is blue. 

Fig. 3. Finite element approximation of a bent 
step-indexed fiber

O R 1–( ) R radius of curvature=

n O R 1–( )+ n

TE01



2.3  External Fields 

If a strong electric field is applied to an otherwise optically isotropic material such as glass, then the change 
in the refractive index will be due to the Kerr effect. Specifically, the refractive index is described by the 
relation

where  represents the usual refractive index and  is a new optical constant that gives the rate at which 
the refractive index increases with increasing intensity. 

We study the effect on the propagation of an optical wave by the external impingement of a highly intense 
microwave on a step-indexed optical fiber. Fig. 5 illustrates a 301,000 element approximation of a step-
indexed optical fiber in air. A plane microwave impinges the optical fiber from the top at 3 sec. and contin-
ues for another 10 sec. before being terminated.  The pulse is then left to interact with the propagating 

(a) (b) (c)

Fig. 4. Propagation of a Gaussian pulse in a bent step-indexed fiber

Fig. 5. Microwave impinging on optical fiber 
from top
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guided wave. Fig. 6 illustrates the results after 220 sec. If no Kerr effect is invoked (i.e., ), then the 
Fig. 6(a) illustrates the behavior whereas Fig. 6(b) illustrates the behavior with the Kerr effect. The intensi-
ties on the drawn horizontal (A) and vertical (B) lines in the fiber are plotted on the right. Fig. 7 illustrates a 
side-view of the result at 75 sec. (Fig. 7(a)-(c)) and 216 sec. (Fig. 7(b)-(d)).  Fig. 7(e) illustrates the propaga-

(a)

(b)

Fig. 6. Plot of x-component of optical field. (a) Without Kerr 
effects. (b) With Kerr effects

(a) (b)

(c) (d)

(e)

Fig. 7. Plot of z-component of optical field. (a)-(b) Without Kerr 
effects. (c)-(d) With Kerr effects. (e) No microwave impingement
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tion of the optical wave at 266 sec. without any microwave impingement. Intensity plots along the vertical 
lines are on the right. 

Fig. 8 illustrates the intensity of the signal at the end of the fiber where the values of the intensity on the hor-
izontal (A) and vertical (B) lines are plotted on the right. 

3.  GEOMETRIC OPTICAL MODEL

The rays of geometric optics in an isotropic media are obtained by drawing normals to the wavefront sur-
faces. Although the artifact of rays breaks down in the vicinity of sharp boundaries where diffraction effects 
can no longer be ignored, the rays continue to be useful as they convey information about the magnitude and 
direction of energy flow.  An approximation to the rays of geometric optics is provided from an asymptotic 
analytical approach to Maxwell’s equations when the wavelength is small. Specifically, if we assume 

, (6)

and then substitute (6) into (3), then for large values of  we see that  satisfies the eikonal equation

, (7)

[3]. The values  are determined from the level sets of . That is, the family of surfaces 
 gives the successive positions of the optical wave in -space. Since  is normal to the 

level surfaces of , a front marching scheme can be developed by treating the normal vector as an optical 
ray to recursively generate the surface  from the surface , [4]. 

The exact solution of  (1) for the straight optical fiber can be obtained and is illustrated in Fig. 9(b). 
Although geometric optics is useful for determining very general properties of light propagation, it is the 
simplicity of ray optics that limits it use in understanding the exact properties of the attenuation of light. 

(a)

(b)

Fig. 8. Intensity plots. (a) Without Kerr effects; (b) With Kerr 
effects
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Fig. 9(a) illustrates the solution as computed using ray optics where it is clearly seen that optical field in the 
cladding is not represented as it is using the finite element electromagnetic model. 

The main advantage of the geometric optic approach is the speed at which a computation can be done. 
Fig. 10 illustrates the computation of an optical pulse in a bent fiber. The computation took on the order of 
minutes to complete in contrast to the finite element approach which would require hours.  
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(a) (b)

Fig. 9. (a) Computed Solution using geometric optics (b) Exact 
solution

(a) (b) (c)

Fig. 10. (a) Hexahedral grid representation of bent step-indexed fiber. (b) 
Core in blue; cladding in red. (c) Leakage of optical pulse into cladding




