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Abstract

A novel method for determining the equation-of-state (EOS) along the
release isentrope in an isochoric (constant volume) heated plasma is
presented. The sensitivity of this approach is demonstrated using two
different equation-of-state models for  a solid density, 10 eV expanding
Al plasma.  Determining the material EOS data is validated to pressures
near 80 Mbar, much higher than current isentropic compression
experiments allow.  Limitations at high temperature (Te ≥ 100 eV) due
to the formation of a radiative conduction layer near the rarefaction
interface are also illustrated.



The equation-of-state (EOS) of hot dense plasma is of fundamental
importance in many areas of research such as in astrophysics, inertial
confinement fusion, and strongly coupled plasmas. The plasma motion
and macroscopic properties generally depend on the EOS through
thermodynamic relations. In the case considered here of a strongly
coupled dense plasma, the EOS is highly non-ideal and is typically
unknown or may be ill-defined. In this work it is shown that without
using the EOS one can obtain pressure-density isentrope curves,
p(ρ) experimentally. The concept is to arrange for a uniform deposition
of energy into a uniform medium like a thin foil, creating a solid
density, uniform plasma. As the plasma undergoes self-similar
isentropic expansion (i.e. uncomplicated by heat transport or radiation
transport), any of the time-resolved density profiles at subsequent
times can be analyzed to give the particular pressure-density isentrope
corresponding to the initial conditions.

One method for obtaining material EOS data is through isentropic
compression experiments (ICE). In this approach, a rising pressure
pulse is applied to a solid density sample.  The pressure isentrope is
then inferred from velocity measurements at the back surface as the
compression wave passes through the sample.1,2 However, this
technique has been generally limited to pressures near a few Mbars.3 In
this Brief Communication, the method we develop is validated to much
higher pressures (80 Mbar) and temperatures (100 eV).  The sensitivity
of the technique is illustrated using  two equation-of-state models in
hydrodynamic simulations where a thin Al foil is isochorically
(constant volume) heated.  While the equations and general solution
for isentropic expansion are well know 4, the derivations presented
here extend the previous work by deriving the pressure-density P(ρ)
relationship for an arbitrary EOS from a single measurement of the
density profile.

A promising new approach for isochoric heating involves the
interaction of a sub-ps petawatt laser with a thin foil, which routinely
generates a high flux of protons with energies  E = 5 -20 MeV. 5,6 Due to
their Coulomb interaction with free and bound electrons and their long



range, these MeV protons can rapidly ionize and heat relatively thick
samples to hundreds of Mbar pressure.  Experiments have already
demonstrated that protons produced in this manner can heat 10µm Al
foils to temperatures T>20 eV .7 Shown in Fig. 1 are simulated density
and temperature profiles of a 20 µm thick Al foil heated with a 10 MeV
proton beam. The temperature is seen to vary less than 1% over the
bulk of the foil.

Consider a uniformly heated thin foil of density ρ ρ( ) ,x x xo= <0 ;
ρ = >0, x xo .  For clarity, we begin with the well known equations of
continuity and motion4 :
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where p u, ,ρ  and   are the total pressure, mass density and velocity
of the plasma, respectively.

For isentropic flow:  ∂ ∂ ∂ ∂ρ ρ ∂ρ ∂p x p d dx C xS S S S= ≡ 2 .

This is an important step in allowing the sound speed to be related
to local pressure gradient, and is only true in general for the case of
isentropic flow.

The equation of motion is then rewritten as:
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Eq. 3 is based on the assumption that each fluid element begins with
the same entropy and expands adiabatically, ie., thermal energy is



only lost due to pdV work. The validity of this assumption is further
discussed below.

Assuming self-similar flow, (valid for t x Co S< / ) we define ρ ξ= f ( ),
and u g= ( )ξ , where ξ ≡ x t/  , and define derivatives with respect to
ξ  as ′f and ′g .

After substitution, Eqs. 1 and 3 become:
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Further substitution yields the known solution8 for the sound speed
C x t xS ( , ); :> 0
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and a relationship between the density and the sound speed
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 Eq. 7 is rewritten as;
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Eq. 8 relates the sound speed CS  to the density ρ   at time t  and is
key to determining the pressure isentrope. The sound speed profile



can therefore be determined from a single density profile
measurement by integrating the density profile:

        +                                 9) C x t
t

dx
C

s x

x o So

R

( , ) = −
∫

1
ρ

ρ
ρ

ρ

where xR  is the position of the rarefaction interface at time t , and
ρo  and CSo  are the density and sound speed in the unperturbed
material, respectively. In solving for C xS ( ) it is important to chose
x R at a position near the rarefaction interface where the density
begins to sharply drop, in order to avoid residual errors. C xS ( )  is
very sensitive to cancellation from the two terms on the RHS of Eq. 9
in the outer low density region of the profile. If CSo  or t  are not
accurately measured, unrealistic large positive or even negative
values of C xS ( ) could result in the low density region. In order to
overcome this difficulty, we set ρCS  to zero at the lowest density
point on the profile, defined here as xmax .

Eq. 9 is rewritten in its approximate form;
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Since C xS ( )max  is actually finite, this approximation introduces a
small error near xmax . However, as shown below, the region near
xmax  contributes little to the pressure integral. Thus, Eq. 10 provides
a useful and robust approximation for determining the sound speed
profile and does not require an independent measurement of
C x tSo R= /  (see Eq. 6). In fact, C C xSo S R= ( ) is now determined
directly from Eq. 10.

The pressure can then be determined by integrating the sound
speed squared:

     d d                                  11)p C C
x

xSx

x
Sx

x= =∫ ∫2 2max maxρ ∂ρ
∂



determining the p( )ρ  isentrope. This integral is dominated by the
high pressure region near the interface where the sound speed is
the largest and where ∂ ∂ρp  can be determined most accurately.

This method is applied to simulations of an expanding thin Al foil,
assumed to be uniformly heated to 10 eV, using the hydrodynamics
code LASNEX.9 The 1-D simulations consisted of a 250-zone variable-
spaced grid which allowed greater resolution near the foil edges,
and included electron thermal conduction and radiative transport
models appropriate for dense plasma conditions. The EOS model
QEOS 1 0 was used in the first set of simulations. Shown in Fig. 2 are
density and entropy profiles at t =400 ps.   The uniform entropy
profile indicates that the expansion is essentially isentropic and that
dissipative processes, such as heat conduction and viscosity do not
play an important role in the hydrodynamics.

Shown in Fig. 3 are calculated profiles of CS  using Eqs. 9 and 10.
Also shown is the C x tS ( , )= 400ps  profile from the simulations. Good
agreement is found except near x x= max , where the sound speed is
forced to zero by Eq. 10. In Fig. 4, the resulting p( )ρ  curves
calculated from Eq. 11 are shown for each of the three cases (curves
a-c). Good agreement is found, indicating that the contribution to
the integral near x x= max  is small. The validity of Eq. 9 and its
approximation (Eq. 10) are  clearly demonstrated.

Simulations were also performed utilizing a tabular EOS model,
constructed of various theoretical calculations and data over a
broad density and temperature range.1 1 For comparison, the initial
energy density was set equal to the QEOS case. Because of the
differences in the specific heats, the tabular model required an
initial temperature of 11.0 eV to match the same energy density as
QEOS at 10.0 eV.  The tabular model generated a slighter faster
rarefaction wave, as seen in Fig. 2.

A comparisons of the p( )ρ  isentropes from the two EOS models is
also shown in Fig. 4.  The slightly faster rarefaction wave for the
tabular model, as seen in Fig. 1 results in a faster rise in ∂ ∂ρp
shown in curve (d). Since the initial temperatures are slightly



different (10%), the curves reach different maximum pressures at
solid density. From the geometry, ∆ ∆ρ ρ ≈ ( / )1 2 C CS S  , where ∆ρ  is
the density difference between models at a point near xR  . Thus, in
order to resolve these two EOS models having sound speeds that
differ by ≈ 5%, the density profiles need to be measured with an
accuracy≈ 2 5. %.

We mention that at higher temperatures, radiative or electron
thermal conduction may be sufficient to affect the isentropic nature
of the expansion and produce more isothermal-like profiles,
especially near the rarefaction interface.  Simulations indicate that
for aluminum at Te ≥ 100 eV,  radiative conduction begins to
smooth the density and temperature profiles near the interface. The
pressure profile for an expanding 100 eV, 80 Mbar solid thin
aluminum plasma at 2 ns is shown in Fig. 5.  In this case, the density
integrals in Eqs. 10 and 11 for CS  and p( )ρ  respectively,  begin
outside the conduction region near the inflection point on the
density curve, limiting x R to a region a few tens of microns from the
peak pressure and sound speed, and thus limiting to some extent
the peak pressures that can be determined. As shown in Fig. 5,
pressures close to 80 Mbar were obtained, indicating the validity of
this approach to almost two orders of magnitude higher pressure
than typical isentropic compression experiments allow3.

Energetic (E > 50 keV) x-ray sources are currently being developed for
imaging dense structures.1 2 For example, in a partially ionized plasma,
bound-free absorption at photon energies above a closed shell mainly
depends on the ion density and can thus be used to determine the
mass density profiles, independent of the degree of ionization.
Previous experiments have demonstrated a few µm and a few ps
resolutions in x-ray radiographed shock experiments.1 3 Thus, for the
examples given above, where the expansion distances are 15 - 80 µm
and the time scales are many hundreds of picoseconds to nanoseconds,
the required resolutions may be experimentally feasible. We also
mention that there are many materials where essentially no off-
Hugoniot data exists for dense plasma, or where the data varies widely.
In these cases, even 10 - 20%  accurate density and time measurement
could provide important new EOS data, currently unavailable by any
other means.



As shown in Fig. 1, protons generated during the sub-ps intense
laser pulse can uniformly heat tens of micron thick Al, as required
for these experiments. For example, in Fig. 2, 8 µm of initially solid
density Al has expanded after 400 ps, while in Fig. 5, 15 µm of the
initially solid density Al has expanded after 2 ns. While details of an
actual proton spectrum need to be considered as well, these results
illustrate the feasibility of producing uniformly heated samples
with a sufficiently energetic  proton beam.

Depending on the distance to the target (typically a few hundred
microns), the typical heating time due to beam spreading is a few
ps. Other simulations not shown here indicate that varying the
heating time from instantaneous to a few ps, has an insignificant
affect on the density profile (<1%) after a few hundred ps. Thus, the
density profile analyzed in Fig. 1  at t=400 ps should be insensitive
to the ps heating times associated with proton generation.

In summary, a novel method for determining EOS data from density
profile measurements in isentropic release experiments is presented.
While EOS along the shocked Hugoniot are known to very high
pressures, typically little or no off-Hugoniot data exists for the
majority of materials in the warm-to-hot dense plasma regime.  B y
varying the initial proton flux, and thus the initial (ρ0,T) point,
release experiments could potentially map out large areas of EOS
phase-space.  Higher or lower density regimes could likewise be
explored with pre-shocked or foam materials, respectively.
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Figure Captions

Fig. 1 Temperature a) and density b) profile simulation of a 20 µm
Al foil heated by a 1 ps 10 MeV proton beam at t=1 ps. Proton beam
is incident from the right.

Fig. 2  Density profiles at 400 ps for 10 eV (11 eV) solid density
plasma using QEOS (tabular) EOS models and the corresponding
QEOS specific entropy profile. Expansion is symmetric about x=0.

Fig. 3  Sound speed profiles calculated using Eq. 9 (curve a),  Eq. 10
(curve b), and from the hydrodynamic simulation (curve c).

Fig. 4 Calculated p( )ρ  isentropes for the three cases shown in Fig. 2
(curves a-c) showing the validity of Eq. 10. Curve d is calculated
from the tabular EOS model density profile.

Fig. 5 Expansion profiles p( )ρ  and p x( ) at 2 ns for a 100 eV solid
density aluminum plasma.  Simulated profiles are the solid curves,
while the  thicker dashed curves are calculated values showing  a
slight limitation in reaching peak values due to conduction at the
rarefaction front, xR.
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