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Modal Propagation in a Circular Tunnel with a

Rough Wall: Surface-Impedance Formulation

K. F. Casey∗

Abstract — Propagation of waveguide modes in a
circular tunnel with a rough wall is considered. An
equivalent surface-impedance boundary condition is
applied at a constant radius near the tunnel wall,
obviating the need to consider the field in the sur-
rounding lossy medium. The roughness of the in-
terface is accommodated by making the equivalent
surface impedance a random function of position on
the wall. The scalar potential functions from which
the field components are derived satisfy an infinite
set of coupled homogeneous stochastic integral equa-
tions, approximate solutions to which are obtained
by iteration. It is found that (1) the roughness of the
wall permits the dominant mode for each azimuthal
eigenfunction index to become slow when the fre-
quency exceeds a certain critical value and (2) the
power density carried by the incoherent part of the
field tends to be concentrated near the rough wall.
Representative numerical results are presented to il-
lustrate the analysis.

1 INTRODUCTORY REMARKS

Problems of wireless communication in tunnels are
of current interest from both theoretical and prac-
tical points of view. A first step in addressing such
problems is to develop a characterization of the
propagation channel, including the effects of losses
in the surrounding medium and of the roughness
of the tunnel wall. In this paper we consider a
representative problem of this class, specifically ex-
amining the propagation of leaky waveguide modes
within a tunnel. Ray representations for the field
within the tunnel are also under investigation, but
are not discussed in this paper.
We assume that a quasi-circular tunnel is cut

into a lossy surrounding medium. The interface be-
tween the tunnel interior and the outer medium is
assumed to be rough. We obviate the need to con-
sider the electromagnetic field in the exterior region
through the use of an equivalent surface-impedance
boundary condition that is defined at a constant ra-
dius ρ = a within the tunnel. The roughness of the
interface is accommodated by making the equiva-
lent surface impedance a random function of the
azimuthal and axial coordinates φ and z.
We begin by presenting an expression for the

equivalent surface impedance Zs(φ, z) in terms of
the signal frequency, the relative permittivity of
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the outer medium, and the roughness of the wall
itself. We assume that the tunnel wall is located
at ρ = a + ∆(φ, z) in which ∆(φ, z) is a nonnega-
tive homogeneous random function with prescribed
(constant) mean ∆ = E(∆) and autocovariance

C∆(φ− φ′, z − z′) = E
{

∆(φ, z)∆(φ′, z′)−∆
2
}

.

We assume the time dependence exp(jωt) for all
field quantities. The equivalent surface impedance
at the reference radius is expressed in terms of
∆(φ, z) by

Zs(φ, z) =
Z0√
εr

+ jk0Z0

(

1− 1

εr

)

∆(φ, z) (1)

in which k0 and Z0 denote respectively the
wavenumber and the intrinsic impedance of free
space and εr is the (generally complex) relative per-
mittivity of the outer medium. It is assumed that
the phase change k0∆ associated with the radial
distance between the reference radius and the lo-
cal wall radius is small compared to unity, and that
the magnitude of the relative permittivity εr is large
compared to unity.
The function ∆(φ, z) is described by the Fourier-

Stieltjes representation

∆(φ, z) = ∆ +
1

2π

∞
∑

m=−∞

ejmφ
∫ ∞

−∞

e−jkzzdνm(kz)

(2)
in which

E {dνm(kz)} = 0 (3)

E {dνm(kz)dν∗n(k′z)} =
2πδmnδ(kz − k′z)Sm(kz)dkzdk′z (4)

The power spectral density functions Sm(kz) are
related to the autocovariance C∆(φ− φ′, z − z′) by

C∆(ϕ, ζ) =
1

2π

∞
∑

n=−∞

ejnϕ·
∫ ∞

−∞

Sn(kz)e−jkzζdkz (5)

whence, by inverting the Fourier series and integral,
we obtain

Sm(kz) =
1

2π

∫ π

−π

∫ ∞

−∞

C∆(φ, z)e
−jmφ+jkzzdφdz

(6)



The equivalent surface impedance, normalized by
the intrinsic impedance of free space, is therefore
described by the Fourier-Stieltjes representation

ζs(φ, z) =
Zs(φ, z)

Z0
= ζs + jk0

(

1− 1

εr

)

·

1

2π

∞
∑

n=−∞

ejnφ
∫ ∞

−∞

e−jkzzdνm(kz) (7)

in which

ζs = E {ζs(φ, z)} =
1√
εr

+ jk0

(

1− 1

εr

)

∆ (8)

2 FIELD COMPONENTS AND BOUND-

ARY CONDITIONS

The electromagnetic field within the tunnel is ob-
tained from two scalar functions Φ and Ψ that sat-
isfy the Helmholtz equation

∇2
[

Φ
Ψ

]

+ k20

[

Φ
Ψ

]

= 0 (9)

The electric and magnetic fields are given in terms
of Φ and Ψ by

~E =
Z0
jk0

∇×∇×Ψ~az −∇× Φ~az (10)

~H = ∇×Ψ~az +
1

jk0Z0
∇×∇× Φ~az (11)

We represent the scalar functions Ψ (which gener-
ates the TM field components) and Φ (which gen-
erates the TE components) as

[

Z0Ψ
Φ

]

(ρ, φ, z) =
1

2π

∞
∑

n=−∞

ejnφ
∫ ∞

−∞

·
[

An(kz)
Bn(kz)

]

Jn(λρ)e
−jkzzdkz (ρ ≤ a) (12)

in which λ2 = k20−k2z and the functions An(kz) and
Bn(kz) are to be determined from the boundary
conditions at the tunnel wall. These conditions are

Eφ(a, φ, z) = Z0ζs(φ, z)Hz(a, φ, z) (13)

Ez(a, φ, z) = −Z0ζs(φ, z)Hφ(a, φ, z) (14)

Substitution of the appropriate expressions ob-
tained from equations (7), (10), and (11) yields
an infinite set of coupled homogeneous stochas-
tic integral equations for the functions An(kz) and

Bn(kz). We define the column vector ~An(kz) whose
elements are An(kz) and Bn(kz) and the matrices
Λn(kz) and Γn(kz) as follows:

Λn(kz) =

[

Λn11(kz) Λn12(kz)
Λn21(kz) Λn22(kz)

]

(15)

in which

Λn11(kz) =
nkz
jk0a

Jn(λa) (16)

Λn12(kz) = λJ ′n(λa)− ζs
λ2

jk0
Jn(λa) (17)

Λn21(kz) =
λ2

jk0
Jn(λa)− ζsλJ

′
n(λa) (18)

Λn22(kz) = ζs
nkz
jk0a

Jn(λa) (19)

and

Γn(kz) =

[

0 λ2Jn(λa)

jk0λJ
′
n(λa) −nkz

a
Jn(λa)

]

(20)

Then the vectors ~An(kz) satisfy the coupled homo-
geneous stochastic integral equations

Λn(kz) · ~An(kz) =

(

1− 1

εr

)

1

2π

∞
∑

m=−∞

∫ ∞

−∞

·

Γn−m(kz − k′z) · ~An−m(kz − k′z)dνm(k
′
z) (21)

for −∞ ≤ n ≤ ∞ and −∞ ≤ kz ≤ ∞.

3 APPROXIMATE SOLUTION OF THE

COUPLED EQUATIONS

We develop an approximate solution to the coupled
integral equations by iteration. We write

~An(kz) = ~A(0)n (kz) + ~A(1)n (kz) + · · · (22)

The iteration scheme is

Λn(kz) · ~A(k)n (kz) =

(

1− 1

εr

)

1

2π

∞
∑

m=−∞

∫ ∞

−∞

·

Γn−m(kz − k′z) · ~A
(k−1)
n−m (kz − k′z)dνm(k

′
z) (23)

for k ≥ 1. The iteration is initialized using the
condition

Λn(kz) · ~A(0)n (kz) = 0 (24)

In this work we consider the propagation of individ-
ual modes in the tunnel. The initialization of the
iteration scheme is therefore selected so as to yield
individual modes in the limit as the tunnel wall be-
comes smooth, that is, as the surface impedance be-
comes constant. The vanishing of the determinant
of the matrix Λn(kz) yields the dispersion relation

[

λaJ ′n(λa)− ζs
(λa)2

jk0a
Jn(λa)

]

·
[

(λa)2

jk0a
Jn(λa)− ζsλaJ

′
n(λa)

]

= ζs

(

nkza

jk0a

)2

J2n(λa) (25)



We denote the roots of this dispersion relation by
kzn` for ` = 1, 2, . . .. We initialize the iteration
at a specific root of the dispersion relation, say for
n = N and kz = kzN`, by writing

~A(0)n (kz) = 2π ~AN`δnNδ(kz − kzN`) (26)

in which ~AN` is a constant vector whose compo-
nents are related to each other by the condition

ΛN (kzN`) · ~AN` = 0 (27)

The initialization condition (26) satisfies equation
(24) for all n 6= N and kz 6= kzN` by virtue of the
Kronecker and Dirac delta-functions in the defini-
tion of ~A

(0)
n (kz); and it satisfies this equation for

n = N and kz = kzN` because the dispersion rela-
tion is satisfied there.
The first iteration yields

~A(k)n (kz) =

(

1− 1

εr

)

Λ−1
n (kz) · ΓN (kzN`)·

~AN`

∫ ∞

−∞

δ(kz − k′z − kzN`)dνn−N (k
′
z) (28)

We thus obtain the following first-order expression
for the scalar functions Ψ and Φ:

[

Z0Ψ(ρ, φ, z)
Φ(ρ, φ, z)

]

= ejNφ−jkzN`zJN (λN`ρ) ~AN`+

(

1− 1

εr

)

1

2π

∞
∑

m=−∞

ej(m+N)φ
∫ ∞

−∞

e−j(kz+kzN`)z

Jm+N (λ
′ρ)Λ−1

m+N (k
′
z + kzN`) · ΓN (kzN`)·

~AN` dνm(k
′
z) (29)

in which λ′ =
√

k20 − (k′z + kzN`)2. This completes
the first-order approximate solution for the func-
tions from which the electromagnetic field compo-
nents are derived. These functions each comprise
a deterministic or coherent part and a zero-mean
random or incoherent part; and so therefore will
also the field components derived from them.

4 THE DISPERSION RELATION

It is evident from the dispersion relation that the
modes are in general hybrid unless n = 0 or ζs = 0.
All the modes are leaky unless the outer medium
becomes perfectly conducting. Investigation of the
dispersion relation reveals that for each value of n
the dominant mode becomes slow (that is, the ax-
ial propagation constant kz exceeds the free-space
wavenumber k0) when the frequency exceeds a cer-
tain limiting value. The limiting frequency is given
for n = 0 by

(k0a)
2 =

2a

∆
(30)

and for n > 0 by

(k0a)
2 =

a(n+ 1)(na+∆)

n∆[a+ (n+ 1)∆]
≈ (n+ 1)a

∆
(31)

All the higher-order modes for that value of n re-
main fast.
The existence of the slow-wave modes is a conse-

quence of the inductive component of the equivalent
surface impedance that arises from the roughness of
the the wall and that is evident in the second term
on the RHS of equations (1) and (8). The inductive
reactance can bind a wave to the rough surface of
the tunnel; the bound wave decays approximately
exponentially away from the tunnel wall.
Representative numerical results are shown in

Figure 1. The relative permittivity of the surround-
ing medium is given by [1], [2]

εr =
(√

εr∞ +
√

σ0Z0/(jk0)
)2

(32)

in which εr∞ is the high-frequency relative permit-
tivity and σ0 is the low-frequency conductivity. We
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Figure 1: Normalized propagation constant for
lowest-order modes vs. frequency: ∆ = 0.15a.

show the real and imaginary parts of the normal-
ized complex propagation constant kz/k0 as func-
tions of frequency for the two lowest-order modes in
a tunnel of radius one meter. (These modes reduce
to the TE11 and TM01 modes in the limit as the
tunnel wall becomes smooth and perfectly conduct-
ing.) The average roughness ∆ is equal to 0.15a;
and εr∞ = 7.0 and σ0 = 0.1 S/m. The real parts of
the propagation constant are positive and the imag-
inary parts are negative. The cutoff frequencies are
approximately 75 MHz for the “TE11” mode and
approximately 100 MHz for the “ TM01” mode.



The modes become slow at frequencies somewhat
above 150 MHz.

5 AXIAL POWER DENSITY

The axial power density Sz(ρ, φ, z) is given in gen-
eral by

Sz(ρ, φ, z) =
1

2
<
[

EρH
∗
φ − EφH

∗
ρ

]

(33)

The expected value of the axial power density for
a given mode is the sum of the coherent and inco-
herent power densities. The coherent axial power
density is given by

Szc =
|AN`|2 + |BN`|2

2Z0ρ2
kzN`r
k0

e2kzN`iz·
[

N2|JN (λρ)|2 + |λρJ ′N (λρ)|2
]

(34)

in which λ2 = k20 − k2zN`; subscripts indicate the
real and imaginary parts of the axial propagation
constant kzN`. The incoherent axial power density
is given by

Szi =
e2kzN`iz

2πZ0ρ2

∣

∣

∣

∣

1− 1

εr

∣

∣

∣

∣

2

·
∞
∑

m=−∞

∫ ∞

∞

Qm,N (ρ; k
′
z; kzN`)Sm(k′z)dk′z (35)

in which Qm,N (ρ; k
′
z; kzN`) is a rather complicated

function of m, N , ρ, k′z, and kzN`. We shall not
take the space to write it out. We remark that
these power densities are independent of the az-
imuthal coordinate φ, since we have considered the
angular eigenfunctions exp(jnφ), rather than su-
perpositions of these such as sinnφ and cosnφ.
The radial dependence of Qm,N (ρ; k

′
z; kzN`)

arises from the presence of terms involving the
Bessel function Jm+N (λ

′ρ) and its derivative. We
consider situations in which the wavenumbers that
characterize the wall roughness are large in com-
parison to those that describe the modal field: that
is, the power spectral density functions Sm(k′z) are
significantly different from zero only for |m| >> |N |
and |k′z| >> |kzN`|. In these situations, the radial
dependence of the incoherent axial power density is
approximately exponential; thus the incoherent ax-
ial power density tends to be confined to the vicin-
ity of the rough wall. We show an example in Fig-
ure 2, in which we plot the incoherent axial power
density, normalized to its value at the tunnel wall,
vs. normalized radial position ρ/a. The parameters
are those used for Figure 1 (TE11 mode) and the
frequency is 120 MHz. In this example case, the in-
coherent axial power density is effectively zero for
0 ≤ ρ ≤ 0.6a.
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Figure 2: Normalized incoherent axial power den-
sity vs. ρ/a: ∆ = 0.15a, f = 120 MHz, TE11 mode.

6 CONCLUDING REMARKS

We have formulated the problem of electromag-
netic wave propagation in a circular tunnel with a
rough wall, using an equivalent surface-impedance
boundary condition. Using an iterative technique,
we have obtained an approximate solution to the
coupled homogeneous stochastic integral equations
that describe the propagation. Under an appro-
priate initialization, our approximate solution rep-
resents single leaky waveguide modes. We have
shown that slow-wave modes can exist when the
wall is rough and that the incoherent part of the
axial power density is confined to the vicinity of
the rough wall.
We can now develop the covariance functions of

the electromagnetic field in the tunnel. Arguments
based on the central limit theorem can be used to
show that the field is Gaussian; the covariance func-
tions will therefore complete the description of the
probabilistic character of the field.
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