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54Università di Padova, Dipartimento di Fisica and INFN, I-35131 Padova, Italy
55Universités Paris VI et VII, Lab de Physique Nucléaire H. E., F-75252 Paris, France
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(Dated: August 21, 2003)

We present a study of the decay B− → D∗0K∗− based on a sample of 86 million Υ (4S) → BB
decays collected with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC.
We measure the branching fraction B(B− → D∗0K∗−) = (8.3 ± 1.1(stat) ± 1.0(syst)) × 10−4, and
the fraction of longitudinal polarization in this decay to be ΓL/Γ = 0.86 ± 0.06(stat) ± 0.03(syst).

PACS numbers: 13.25Hw 14.40.Nd



4

Following the discovery of CP violation in B-meson
decays and the measurement of the angle β of the uni-
tarity triangle [1], focus has turned towards the mea-
surements of the angles α and γ. A precise determina-
tion of γ requires larger samples of B decays than are
currently available, and is likely to be based on infor-
mation from several decay modes. Decays of the type
B → D(∗)K(∗) are expected to play a leading role in
this program [2]; among these modes, those with a K∗

have distinct advantages in some of the proposed meth-
ods [3]. Decay modes into two vector mesons present
unique opportunities due to interference between helicity
amplitudes. It has been suggested that angular analysis
of B− → D∗0(–)

K∗− can yield information on γ without
external assumptions [4]. More generally, such a study
would be sensitive to T-violating asymmetries that probe
physics beyond the Standard Model [5].

The previously available information on B− →
D∗0K∗− is based on a sample of 15 events [6]. Here
we report on an improved measurement of the branching
fraction for B− → D∗0K∗−, and on the first measure-
ment of the polarization in this decay.

Results are based on 86 million Υ (4S) → BB decays,
corresponding to an integrated luminosity of 79 fb−1, col-
lected between 1999 and 2002 with the BABAR detector
at the PEP-II B Factory at SLAC [7]. An additional
9.4 fb−1 sample of off-resonance data, recorded at e+e−

center-of-mass (CM) energy 40 MeV below the Υ (4S)
mass, is used to study “continuum” events, e+e− → qq̄
(q = u, d, s, or c).

The BABAR detector is described elsewhere [8]. Only
detector components relevant for this analysis are sum-
marized here. Trajectories of charged particles are mea-
sured in a five-layer silicon vertex tracker (SVT) and a
40-layer drift chamber (DCH) in a 1.5-T magnetic field.
Charged particles are identified as pions or kaons us-
ing information from a detector of internally reflected
Cherenkov light, as well as measurements of energy loss
in the SVT and the DCH. Photons are detected in a
CsI(Tl) calorimeter.

We reconstruct B− → D∗0K∗− in the following modes:
D∗0 → D0π0 and D0γ; D0 → K−π+, K−π+π0, and
K−π+π+π−; K∗− → KSπ−; KS → π+π−; π0 → γγ
(charged conjugate decay modes are implied throughout
this Letter). The optimization of the event selection was
based on studies of off-resonance data and simulated BB̄
events. A key feature of the analysis is the use of a sample
of 4500 B− → D∗0π− events to validate several aspects
of the simulation and the analysis procedure.

We select KS candidates from pairs of oppositely-
charged tracks that form an invariant mass within 9 MeV
(3σ) of the known [9] KS mass. Each KS candidate is
combined with a negatively charged track, assumed to be
a π−, to form a K∗− candidate. We retain K∗− candi-
dates with mass within 75 MeV of the known K∗− mass.

The KS vertex must be displaced by at least 3 mm from
the K∗− vertex. This requirement rejects combinatorial
background and is 96% efficient for real KS decays.

Photon candidates are constructed from calorimeter
clusters with lateral profiles consistent with photon show-
ers. Neutral-pion candidates are formed from pairs of
photon candidates with invariant mass between 115 and
150 MeV. The π0 mass resolution is 6.5 MeV.

We select D0 candidates in the three decay modes
listed above. To reduce backgrounds, tracks from D0 →
K−π+π0 and D0 → K−π+π+π− must have momenta
above 150 MeV. The kaon candidate track must satisfy a
set of kaon identification criteria that provides a rejection
factor of about 30 against pions. The kaon identification
efficiency averaged over all kinematically allowed momen-
tum and polar angle is 90%. For each D0 → K−π+π0

candidate, we calculate the square of the decay amplitude
(|A|2) based on the kinematics of the decay products and
the known properties of the Dalitz plot for this decay [10].
We retain candidates if |A|2 is greater than 5.5% of its
maximum possible value. The efficiency of this require-
ment is 76%. Finally, the measured invariant mass of D0

candidates must be within 2.5σ of the D0 mass.
We select D∗0 candidates by combining D0 candidates

with a π0 or photon candidate. The π0 candidate must
have momentum between 70 and 450 MeV in the CM
frame. The photon candidate must have energy above
100 MeV in the laboratory frame. We reject photon can-
didates consistent with originating from π0 decay when
paired with another photon of energy above 100 MeV.
We require the mass difference ∆m ≡ m(D∗0) − m(D0)
to be between 138.7 and 145.7 (130.0 and 156.0) MeV for
D∗0 → D0π0 (D∗0 → D0γ). The ∆m resolution is 1.1
(6.4) MeV for the D0π0 (D0γ) mode.

At each stage in the reconstruction chain, the mea-
surement of the momentum vector of each intermediate
particle is improved by refitting the momenta of its decay
products with kinematic constraints. These constraints
are based on the known mass of the intermediate particle
and on the fact that its decay products originate from a
common point in space.

Finally, we select B− candidates by combining D∗0

and K∗− candidates. A B− candidate is char-
acterized by the energy-substituted mass mES ≡√

(1
2s + �p0 · �pB)2/E2

0 − p2
B and energy difference ∆E ≡

E∗
B− 1

2

√
s, where E and p are energy and momentum, the

asterisk denotes the CM frame, the subscripts 0 and B
refer to the initial Υ (4S) and B candidate, respectively,
and s is the square of the CM energy. For signal events
we expect mES = MB within the experimental resolution
of about 3 MeV, where MB is the known B− mass.

We require |∆E| ≤ 40 MeV for B− candidates with
a D0 → K−π+π0, and |∆E| ≤ 27.5 MeV for all other
modes. The ∆E resolution is approximately 19 MeV in
the K−π+π0 mode and 10 MeV in the other modes.
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To reduce continuum backgrounds, we make use of the
ratio of the second to zeroth order Fox-Wolfram [11] mo-
ments (R2 < 0.4), and the angle θ∗T between the thrust
axes of the B− candidate and the remaining charged
tracks and neutral clusters in the event (| cos θ∗T | < 0.85).
We also make requirements on the polar angle θ∗B of the
B− candidate (| cos θ∗B| < 0.9), and the energy flow in
the rest of the event. We construct a Fisher discrim-
inant F based on the energy flow in nine concentric
cones around the direction of the B− candidate [12].
We require F < 0.40 (0.28) for B− candidates with a
D∗0 → D0π0 (D0γ). The energy flow, θ∗T , and θ∗B are all
calculated in the CM frame. These requirements remove
about 80% of the continuum backgrounds and are 79%
(74%) efficient for signal in the D0π0 (D0γ) mode.

In 16% of the events there is more than one B− candi-
date. In these events we retain the best candidate based
on a χ2 algorithm that uses the measured values, known
values, and resolutions of the D0 mass and the mass dif-
ference ∆m.

We extract the yield of B− → D∗0K∗− events from a
binned maximum-likelihood fit to the mES distribution of
B− candidates. The signal distribution is parametrized
as a Gaussian and the combinatorial background as a
threshold function [13]. The parameters of the Gaus-
sian are determined from the mES distribution of the
B− → D∗0π− sample. The total signal yield is 121 ± 15
events. The third column of Table I lists the yields for
the individual D∗0/D0 modes. Figure 1 shows the mES

distribution of B− candidates overlaid with the fit model.
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FIG. 1: Distributions of mES for B− → D∗0K∗−: (a) all
modes; (b) D∗0 → D0π0 modes; (c) D∗0 → D0γ modes.

The yield from the mES fit includes contributions
from “peaking backgrounds”, which are backgrounds
with mES near MB. These backgrounds arise from B
decay modes closely related to the signal mode; e.g.,
B̄0 → D∗+K∗−. From a Monte Carlo simulation we es-
timate that they contribute 6.8± 3.4 events to the signal
yield, where the uncertainty reflects the limited knowl-
edge of the branching fractions for these modes.

The branching fraction B(B− → D∗0K∗−) is calcu-

lated from

B =
NmES − Npk

NBB̄ · BK∗− · BKS · ∑i (εi
MC · Bi

D∗0 · Bi
D0)

,

where NmES is the event yield from the mES fit, Npk

is the peaking background, NBB̄ = (85.8 ± 0.9) × 106

is the number of BB̄ pairs in the data sample, BK∗−

and BKS are the branching fractions for K∗− → KSπ−

and KS → π+π−, i is an index that runs over the six
D∗0/D0 modes considered in this analysis, εi

MC is the
event selection efficiency, and Bi

D∗0 (Bi
D0) is the D∗0 (D0)

branching fraction for the i-th mode. This calculation
assumes B(Υ (4S) → B+B−) = B(Υ (4S) → B0B̄0). The
Monte Carlo efficiency determination uses the value of
the polarization reported in this Letter.

The inputs to the branching fraction calculation are
summarized in Table I. Combining the six D∗0/D0

modes, we measure a branching fraction

B(B− → D∗0K∗−) = (8.3±1.1(stat)±1.0(syst))×10−4.

The reconstruction efficiencies for photons and charged
tracks are understood at the level of 2.5% per photon and
0.8% per track, based on studies of a variety of control
samples. These are the dominant systematic uncertain-
ties in the determination of B. The efficiencies of many
of the analysis requirements are measured in the large
B− → D∗0π− control sample. The uncertainties on B
are listed in Table II.

We also compute the branching fraction B(B− →
D∗0K∗−) using only events from the individual D∗0/D0

modes (see Table I). The branching fractions measured
in the D∗0 → D0γ modes are somewhat lower than those
measured in the D∗0 → D0π0 modes. However, in the
B− → D∗0π− sample, where the D∗0 is reconstructed
with identical techniques, we find agreement between
data and expectations for the relative yields of events
in all six modes. Thus, we ascribe the difference in the
measured branching fractions between the modes listed
in Table I to statistical fluctuations.

The angular distributions for the decay chains B− →
D∗0K∗− followed by D∗0 → D0π0 or D0γ are expressed
in terms of three amplitudes H0 (longitudinal), H+, and
H−(transverse), and three angles, θD, θK and χ [14]. The
angle θD (θK) is the angle of the D0 (KS) with respect
to the B− direction in the D∗0 (K∗−) rest frame; χ is the
angle between the decay planes of the D∗0 and the K∗−

in the B− rest frame. The experimental acceptance is
nearly independent of χ. Integrating over χ, the angular
distributions reduce to

d2Γ
d cos θDd cos θK

∝ 4|H0|2 cos2 θD cos2 θK

+ (|H+|2 + |H−|2) sin2 θD sin2 θK ,
d2Γ

d cos θDd cos θK
∝ 4|H0|2 sin2 θD cos2 θK

+ (|H+|2 + |H−|2)(1 + cos2 θD) sin2 θK

for D∗0 → D0π0 and D∗0 → D0γ, respectively.
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TABLE I: Summary of the elements of the branching fraction calculation. NmES is the yield from the mES fit; Npk is the
number of peaking background events; εi

MC is the event selection efficiency for the i-th mode; Bi ≡ BK∗− · BKS · Bi
D∗0 · Bi

D0 is
the product of branching fractions for the K∗, KS, D∗, and D decays in the i-th mode.

D∗0 mode D0 mode NmES Npk

∑
(εi

MC ×Bi)(×10−3) B(B− → D∗0K∗−)(×10−4)
All All 121 ± 15 6.8 ± 3.4 1.6 ± 0.2 8.3 ± 1.1 ± 1.0

D∗0 → D0π0 All 96 ± 12 4.8 ± 2.4 1.0 ± 0.1 10.2 ± 1.3 ± 1.3
D∗0 → D0γ All 24 ± 8 2.0 ± 1.0 0.6 ± 0.1 4.4 ± 1.7 ± 0.8

εi
MC Bi

D∗0 → D0π0 D0 → K−π+ 26 ± 5 1.7 ± 0.9 (6.5 ± 0.6)% (0.54 ± 0.03)% 8.0 ± 1.8 ± 0.9
D∗0 → D0π0 D0 → K−π+π0 39 ± 8 1.7 ± 0.9 (2.1 ± 0.3)% (1.85 ± 0.15)% 10.9 ± 2.4 ± 1.7
D∗0 → D0π0 D0 → K−π+π+π− 31 ± 7 1.4 ± 0.7 (2.9 ± 0.4)% (1.06 ± 0.07)% 11.6 ± 2.6 ± 1.6
D∗0 → D0γ D0 → K−π+ 11 ± 4 0.1 ± 0.1 (5.7 ± 0.5)% (0.33 ± 0.03)% 6.8 ± 2.7 ± 1.0
D∗0 → D0γ D0 → K−π+π0 11 ± 5 1.7 ± 0.9 (1.9 ± 0.2)% (1.14 ± 0.12)% 5.3 ± 2.9 ± 1.0
D∗0 → D0γ D0 → K−π+π+π− 0 ± 5 0.2 ± 0.1 (2.5 ± 0.3)% (0.65 ± 0.07)% −0.2 ± 3.3 ± 0.4

TABLE II: Uncertainties on B(B− → D∗0K∗−).

Source Uncertainty
Statistical 13.1%
π0 and γ efficiency 6.0%
Tracking efficiency 4.5%
mES fitting assumptions 3.8%
Event selection criteria 3.8%
D∗0 and D0 branching fractions 3.2%
Peaking background estimates 3.0%
Kaon identification efficiency 2.0%
KS efficiency 1.9%
Polarization uncertainty 1.8%
Monte Carlo statistics 1.7%
NBB̄ 1.1%
Total Systematics 11.7%

The longitudinal polarization fraction ΓL/Γ, given by

ΓL

Γ
=

|H0|2
|H0|2 + |H+|2 + |H−|2 ,

is extracted from an unbinned maximum-likelihood fit
to the (θD, θK) distribution for events with mES > 5.27
GeV. The data distribution (D) is fit to the sum of distri-
butions for longitudinally (L) and transversely (T ) polar-
ized signal events, and combinatorial background events
(C):

D(θD, θK) = a ·L(θD, θK)+ b ·T (θD, θK)+ c ·C(θD, θK).

Here c is the fraction of combinatorial background deter-
mined from the mES yield fit, and b = 1 − a − c. Thus,
a is the only free parameter in the fit.

The distributions of L and T are obtained from sim-
ulations of transverse and longitudinal decays, includ-
ing detector acceptance effects. The distribution of C is
estimated from data candidates in a sideband of mES

(5.20 < mES < 5.27 GeV). We exclude from the fit
(θD, θK) regions where the efficiency changes rapidly:
cos θK < −0.9 and, in the D0γ mode, cos θD > 0.85.

We find longitudinal polarization fractions ΓL/Γ =
0.87 ± 0.07(stat) ± 0.03(syst) and 0.80 ± 0.14(stat) ±

0.04(syst) from fits to the D∗0 → D0π0 and D∗0 → D0γ
samples, respectively. Figure 2 shows projections of the
(θD, θK) distributions for the event sample.

Combining the results from the two D∗0 modes, we
find ΓL/Γ = 0.86 ± 0.06(stat) ± 0.03(syst). The system-
atic uncertainty reflects the accuracy of the simulation
(± 0.017), the uncertainty on the fraction c (± 0.017),
the finite statistics of the simulation (± 0.010), the uncer-
tainties related to the fit assumptions (± 0.010), and the
uncertainty due to the assumption that the acceptance is
independent of χ (± 0.004). As a consistency check, we
fit the θD distribution in the B− → D∗0π− sample. We
find ΓL/Γ = 1.00± 0.01, in agreement with the expecta-
tion ΓL/Γ = 1 from angular momentum conservation.
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FIG. 2: Distributions of (a) cos θD and (b) cos θK for D∗0 →
D0π0. Distributions of (c) cos θD and (d) cos θK for D∗0 →
D0γ. The solid line represents the full fit model, the dashed
line represents the transverse component, and the shaded re-
gion represents the combinatorial background component.
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In summary, we have measured the branching frac-
tion for B− → D∗0K∗− to be B = (8.3 ± 1.1(stat) ±
1.0(syst)) × 10−4. Our measurement is a factor of 2.5
more precise than the previous result. It is in agreement
with predictions based on the measured B− → D∗0ρ−

branching fraction [15], and the value of the Cabibbo an-
gle. We have also measured the longitudinal polarization
fraction in this decay to be ΓL/Γ = 0.86 ± 0.06(stat) ±
0.03(syst). This last result is consistent with expecta-
tions [16] based on factorization, Heavy Quark Effec-
tive Theory, and the measurement of semileptonic B-
decay form factors, assuming that the external specta-
tor amplitude (b → cW ∗−; W ∗− → K∗−) dominates in
B− → D∗0K∗−.
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