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The character theory of relativistic double group spinor representations is developed 

in order to represent the total rovibronic states of non-rigid molecules. It is shown that the 

double groups can be represented in terms of wreath products and powerful matrix cycle 

type generators that are used to construct their character tables. It is shown that these 

tables are of use when spin-orbit coupling is included in the hamiltonian even for 

molecules containing lighter atoms. Applications to non-rigid molecules such as Tl2H4 

/Tl2H4
+ are considered. It is shown that the tunneling splittings and the nuclear spin 

statistical weights can be obtained for such species using the character tables thus 

constructed. The spinor double groups of several other molecules such as hexamethyl 

dilead and heavy weakly bound clusters such as (PoH2)4  are also considered.  
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1. Introduction 
Relativistic spinor representations of molecules require a double group approach due 

to the incorporation of spin-orbit interaction term into the hamiltonian1-7. Many years 

ago, Longuet-Higgins8 formulated the symmetry groups of non-rigid molecules as 

permutation-inversion groups. Longuet-Higgins8 noted that the treatment of rovibronic 

levels of non-rigid molecules, which typically exhibit potential energy surfaces with 

surmountable energy barriers, requires a group-theoretical approach that includes all 

feasible permutations of the nuclei under fluxional motions. In conclusion Longuet-

Higgins8 noted that the inclusion of spin-orbit coupling for non-rigid molecules needs to 

be considered as a separate topic. Up to now it appears that this has not been considered 

systematically for heavy non-rigid species for which spin-orbit effects become important. 

The double group theory of rigid point groups has been considered by a number of 

workers. In particular Pyykkö and coworkers2,4 have provided relativistic double group 

treatments in D3h and Th groups while the current author has considered the double group 

of the icosahedral group5. The present author9 has also considered the development of 

non-rigid molecular groups as wreath product groups and as generalized wreath products. 

The wreath product groups have also been used in a number of chemical applications10-16 

such as enumeration of isomers, weakly-bound van der waals or hydrogen-bonded 

complexes11,14,21-23, polyhedral structures18,19, spectroscopy11,16,17, and clusters. King18,19 

has used the wreath product groups to represent the symmetries of four-dimensional 

analogues of polyhedra. Up to now many of these applications were restricted only for 

non-rigid species without consideration of spin-orbit coupling. Introduction of the spin-

orbit term into the hamiltonian results in an additional R operation, which leads to a sign 

change for a rotation by 360°. The new group that has twice the number of elements as 

the permutation-inversion group is not a direct product of the PI group and the group with 

R and identity operations. This is due to the fact that some conjugacy classes double by 

the introduction of R, while the others do not3,7. Moreover, the character values for some 

conjugacy classes of the double group are irrational numbers. Consequently, the 

generation of the double group character tables of non-rigid molecules is far more 

challenging than the normal point group tables. 
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Spin-orbit effects become very significant for molecules containing very heavy 

atoms1-7, and even for systems with second and third row elements spin-orbit effects can 

be appreciable if one seeks to obtain results of spectroscopic accuracies. Species that 

have overall half-integral spin states cannot be treated correctly within the normal 

permutation-inversion groups or point groups. Molecules containing very heavy atoms 

such as Tl often exhibit weaker Tl-Tl bonding, and thus internal rotation around such 

bonds would have small and surmountable energy barriers. The barrier to internal 

rotation around the Tl-Tl bond is only 5-8 kcal/mole in Tl2H4
27. Pyykkö and coworkers24 

have shown that intermolecular dimerization energies for species such as (H2E-EH2)2, 

(HE-EH)2 for E=As to Po are only 8 to 13 kJ/mole suggesting the non-rigid nature of 

these species. In fact PoH2 exists as a liquid in its most stable form. Likewise hexamethyl 

dilead25 would have a low surmountable barrier to rotation around the Pb-Pb bond due to 

rather weak bonding between Pb atoms caused by spin-orbit destabilization. The 

rovibronic levels of such species have to be considered as direct products of rotational, 

vibrational and electronic levels as classified in the double group of the non-rigid 

molecule. The rotational levels are well known to exhibit tunneling splittings due to non-

rigid motions. This would in turn be reflected as split rovibronic levels in the double 

group. Consequently, the correct treatment of the spectroscopic properties of such 

molecules exhibiting both spin-orbit coupling and non-rigid motions must be considered 

in the double group of the non-rigid permutation-inversion groups. 

In the current work, we provide a systematic approach to the character tables of the 

double groups of non-rigid molecules. We use the matrix-cycle-type generators for the 

construction of the character tables. The method provides both the conjugacy classes and 

the character values of the double groups of wreath product groups. It is shown that the 

rovibronic levels and nuclear spin statistical weights of such species can be obtained from 

the double group character tables. We illustrate our techniques with a number of 

examples to show that these groups can be expressed as double groups of wreath products 

of permutation groups Sn
24 We have provided 3 complete illustrative examples of double 

groups, {S2[S2]}2, {S2[S3]}2 and {S4[S2]}2. There could be higher order double wreath 

product groups for larger weakly-bound clusters, and the current technique can be 

extended to apply to those systems as spectroscopic data become available. 
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2 Wreath Product Double Group Approach to Non-rigid Molecules 

The motivation for the development of double groups of non-rigid molecules 

containing very heavy atoms stems from the computations of species such as Tl2H4
27. 

Molecules containing such very heavy metal-metal bonds exhibit surmountable barriers 

to rotation around the metal-metal bonds due to the weaker dimer bonds of sixth row 

elements as a consequence of the relativistic inert pair effect. In the case of Tl, Pb, Bi, Po, 

etc. the bonding between themselves is weakened by large spin-orbit coupling. In fact, 

the Pb-Pb bond energy is wakened by a factor of 2 by spin-orbit coupling due to the 

mixing of the antibonding orbitals with bonding orbitals in the spinor representations. 

Our computed barrier for the internal rotation around the Tl-Tl bond to convert the 

twisted structure into the planar structure is 7 kcal/mole at the MP2 level and 7.9 

kcal/mole at the CCSD (T) level27. The spin-orbit coupling. weakens the Tl-Tl bond 

substantially and thus we expect the barrier to reduce by less than 4 kcal/mole in the 

presence of spin-orbit effects27. 

The Pb-Pb internal rotation should also have a small barrier. This appears to be 

the case for the reported structure of hexamtethyl di-lead25. Other cases that would 

involve molecules containing heavy atoms with surmountable barriers are clusters of 

PoH2, which are weakly bound. For even molecules containing lighter elements such as 

Si, As, P, etc., the spin-orbit effects need to be considered if spectroscopic accuracy is 

desired. In those cases, we need to consider double groups of the non-rigid molecular 

groups should the molecule exhibit a potential energy surface with surmountable energy 

barriers. It is thus evident that the gap in the literature for the character theory of double 

groups of non-rigid molecular frameworks needs to be filled. 

 The ordinary symmetry group of a non-rigid molecule can be expressed as 

permutations and inversion operations of the nuclei in the molecular framework8. Let G, 

be a set of permutations(and in general permutation-inversion operations) of the rigid part 

of a molecule. In some cases G may become isomorphic to the complete set of n! 

permutations of n objects, in which case, it is denoted by the permutation group Sn.  In 

general the Sn group26 consists of n! permutations of n objects in a set Ω of chosen nuclei 

in the molecule to represent the rigid framework. As an example we may consider the 
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Tl2H4 molecule. The rigid part of the molecule consists only of the Tl atoms and thus the 

permutations of the Tl nuclei span a permutation group of 2 permutations isomorphic to 

the S2 permutation group. The internal rotation around the T-Tl bond switches the 

hydrogen atoms attached to each of the Tl atom. Let the permutations of each pair of 

hydrogen atoms be the group H, which in this case, is also isomorphic to the S2 group of 

permutations of the hydrogens on each Tl atom. The overall group of Tl2H2 then becomes 

the wreath product of G with H, denoted by G[H]. In this case, the permutation group of 

the non-rigid Tl2H2 molecule is the wreath product group, S2[S2] since both G and H are 

S2 groups. In general, the wreath product group G[H] consists of permutations 

{(g;π)| π mapping of Ω into H, gεG} 

such that the product of two permutations is defined as  

(g;π)(g;π′)=(gg′;ππg′),  

where 

πg(i)= π(g-1i), ∀  iεΩ, 

ππ′(i)= π(i)π′(i), ∀  iεΩ. 

 

A given element of G[H] is represented by (g; h1, h2,…..hn), where gεG and hiεH. Thus 

the group G[H] contains |G||H|n elements where n is the order of  Ω. For Tl2H4 the order 

of the non-rigid permutation group is 

| S2[S2]| = 2! (2!)2 = 8. 

It can be seen that the group G[H] is isomorphic with 

')...(][ 21 GHHHHG n ∧××=  , 

where H1, H2, …Hn are all isomorphic copies of the same group H, x symbol stands for 

direct product while ^ symbol represents a semi-direct product. The group H1 x H2 x…Hn 

is an invariant subgroup of G[H], which is why the product outside parenthesis is a semi-

direct product. 

 The character theory of the wreath product groups and the generalized wreath 

product groups are quite well developed10,12,15. The current author10 has developed 

generating function algorithms for the character values of the various irreducible 
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representations of wreath product groups. Before we start the double group formalism, 

the character generating method of wreath products is briefly outlined. The conjugacy 

classes of wreath product Sn[H] groups are characterized by matrix types obtained from 

the permutation cycle type or orbit structure of g and the conjugacy class information of 

H. Let a permutation gεG give rise to a1 cycles of length 1, a2 cycles of length 2,…..an 

cycles of length n upon its action on the set Ω. The cycle type of G is then denoted by 

Tg=(a1,a2,….an). To illustrate a permutation (12) of the Tl nuclei would have the cycle 

type (0,1).  If we denote the conjugacy classes of H by  C1, C2, …Cs, and since G is a 

complete Sn group of n! permutations, we can express the cycle type of an element in the 

wreath product G[H] by a sxn matrix, T(g;π) also known as the cycle type of (g;π). Let 

aik of the cycle products of G belong to the conjugacy class Ci, we thus define the cycle 

type of  (g;π), which represents the conjugacy class of Sn[H] as  

 

T(g;ππππ) = aik (1≤≤≤≤ i ≥≥≥≥ s, 1≤≤≤≤ k ≥≥≥≥ n). 

 

Table I shows the cycle matrix types for the conjugacy classes of the non-group of 

Tl2H4 or the S2[S2] group. We construct these matrices first by getting the two cycle types 

of the elements in G, (2,0), (0,1) and then using the above algorithm.  Let P(m) denote the 

number of partitions of integer m with the convention that P(0)=1. Let n be partitioned 

into ordered s-tuples, where s is the  no of conjugacy classes of H, (n)=(n1,n2,….ns) such 

that .nn
i

i =�  Then the number of conjugacy classes of Sn[H] is given by 

 

)()....()( 21 s
n

nPnPnP�  

As an illustration for Tl2H4, the S2[S2] group has the ordered partitions (2,0), (0,2), (1,1), 

since the S2 group has 2 conjugacy classes. Substituting the values of P(2)=2, P(1)=1 and 

P(0)=1 in the above expression we obtain the number of conjugacy classes of S2[S2] as 

2+2+1 = 5. Five conjugacy classes thus obtained are shown in Table I. The number of 

elements in each conjugacy class of Sn[H] is given by 
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To illustrate consider the  the number of elements in the third conjugacy class with the 

matrix type  �
�

�
�
�
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01
01

 is given by 

   

2
)2.1(!1(1.2/1)1!

)2!.(2!
11

2

=  

All conjugacy classes thus obtained with the number of elements in each class are shown 

in Table I. It is interesting to note that the S2[S2] group is isomorphic with the D4 point 

group of 8 elements. The complete PI group is obtained as the direct product of S2[S2] 

and the I group, which has the identity and inversion operations.  

 The character tables of the Sn[H] groups can be obtained with combinatorial 

generating functions that employ matrix type polynomials. All possible irreducible 

representations of the Sn[H] group are constructed using induced representations from a 

smaller group to a larger group9. It is well known that the irreducible representations of 

the Sn group26 are represented by the partitions of n, denoted by [n1 n2…nm], where n1, 

n2…nm is a partition of the integer n. Thus the irreducible representations of the S2 group 

are [2] and [12]. The irreducible representations of Sn[H] are constructed by first forming 

the outer tensor (outer direct) products of the irreducible representations of H n times, 

then finding the inertia factor of each such product, and subsequently inducing the 

representation from the inertia factor group to the whole group. For example, the unique 

outer products for the irreducible representations of S2 x S2 are given by 

 

[2]#[2],   [2]#[12],   and   [12]#[12].  

 

The inertia factor groups (subgroup of G) of the above products are S2′, S1′(identity 

group), and S2′ respectively. The overall representations of the Sn[H] groups are obtained 
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by multiplying the unique outer products of irreducible representations of H with the 

irreducible representations of the factor group G’ for each product, and then inducing the 

whole representation into G[H]. That is, the irreducible representations of G[H] are given 

by 

 ][')#......#( 21
* HGFFFFF n ↑⊗= , 

where F1# F2#….Fn is the outer tensor product of the  irreducible representations 

(F1,F2….Fn) from the Group H, # is the outer product, F’ is an irreducible representation 

of the factor group G’, ⊗  represents an inner product, and the ↑ stands for an induced 

representation to the whole group G[H]. 

 The above technique of enumerating the irreducible representations of the S2[S2] 

group can be illustrated for the Tl2H4 molecule. The five representations of the S2[S2] 

group are given by  

 

A1 =  ([2]#[2]#)⊗ [2] ′ , A2 =  ([2]#[2])⊗ [12] ′,  

E=([2]#[12])⊗ [1] ′↑ S2[S2], B1=([12]#[12])⊗ [2] ′↑ S2[S2], 

B2 =  ([12]#[ 12])⊗ [12] ′, 

The whole permutation-inversion group can be obtained as the direct product of S2[S2] 

with the I group since the inversion operation does not generate any new permutation, it 

is denoted by E*. 

 The character tables of the Sn[H] groups can be generated using the generating 

functions as polynomials of matrix cycle types. Balasubramanian10 has developed a 

general algorithm for the characters of the wreath product groups. In this method suppose 

PG
χ

 is the generalized character cycle index polynomial of the irreducible representation χ 

of the factor subgroup G’ of G, and it is given by 

 

bn
n

b

Gg

b
G sssg

G
P ......)(1

21
21�=

ε

χ χ  

Let T(M)i be the matrix type of the representation of the inertia factor. The generating 

function for the irreducible representation F* of Sn[H] is obtained by the following 

replacement: 
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))((])[( *
iiG

F MTsPHGT →= χ
 

 

That is, in the above expression every si is replaced by the correpsonding matrix type 

T(M)i, where all algebraic manuiputalions are done with the cycle type matrices. We 

intriduce ⊕ , ⊗ , − opertaions for additions, multiplications and subtractions to contrat that 

these are not ordinary matrix multiplications, etc. To illustrate, consider the Tl2H4 case. 
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Since this procedure involves several steps,  let us consider a few examples. The B2 

irerducible representaion given by ([2]#[2]) ⊗ [12]′. The generalized character cycle index  

of [12]′,  the factor group irreducibe representation, is given by 

[ ]2
2
1

]1[

6
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2
ssPS −=  

For the representation [2], the  matrix type expressions T(M)i are given as follows: 
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Replacing every si by T(M)i in the expression for ]1[ 3

2SP  we obtain 
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Using the matrix manipulations indicated above for the cycle types, we can simplify the above 

expression into 
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The above expression is a generating function for the character values with the order of 

the group (8) factored out. That is, the string of coefficients {1,2,1,-2,-2} in the above 

expression gives the product of the character value and the number of elements in each 

conjugacy class. Thus the expression generates the character values {1,1,1,-1,-1} when 

the number of elements in each conjugacy class is factored out. This corresponds to the 

character values of the B2 representation. Let us consider an induced representation, that 

is, the E= ([12]#[2])⊗ [1] ′↑ S2[S2] irreducible representation of the S2[S2] group. The 

expression for the character generating function is shown below: 
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The above expression upon simplification yields 
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From the above expression we obtain the string {2,-2,0,0,0} from which the character for 

E is generated. 

 Next we go to the double group of the wreath products. The introduction of the 

spin-orbit coupling into the hamiltonian results in a symmetry analogous to the symmetry 

of a “Mobius surface”, and thus rotation by 360° results in a sign change. This is usually 

characterized by an operation R that is added to the PI group. This doubles the number of 

elements in the double group. However, the result of including the R operation into the PI 
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group does not result in a direct product since some of the conjugacy classes double in 

their order, while other conjugacy classes result in new conjugacy classes upon 

multiplication by R. Consequently the first step to constructing the character table of the 

double groups of wreath products is to construct the conjugacy class structures after the 

introduction of the R operation. 

 If the double operation R (rotation by 360°) when multiplied by the permutation 

operation generates an equivalent operation to the permutation then both P and RP belong 

to the same conjugacy class. This can be determined by visualizing the permutation 

operation as a proper or improper rotation. For example, routinely pure C2 types of 

operations are two-sided axes in that the C2 and C2R become equivalent since C2 often 

changes its direction by application of another operation. Thus the C2 operation and C2R 

belong to the same conjugacy class. On the other hand, all other pure higher-order Cn 

rotational axes lead to new conjugacy classes as Cn and CnR are not equivalent. This is 

because Cn and Cn
(n-1) do not belong to the same conjugacy class in the double group as 

CnCn
(n-1) =R 

Thus for n>2, Cn and Cn
(n-1) belong to different conjugacy classes in the double group. 

We simply identify this as CnR as a new conjugacy class. Once all proper rotations have 

thus been completed we would be left with only composite operations or improper 

rotations. Once these are expressed as products of the corresponding proper rotation and 

planes (inversions), we can identify if the operation will generate a new conjugacy class 

upon multiplication with R or not. 

 The above technique of generating conjugacy classes of the double groups is 

demonstrated for the wreath product S2[S2] in table 1. As can be seen there, the identity 

operation will always generate a new class denoted by R. The classes 2, 3 and 4 

correspond to 2-fold rotations or composite two-fold operations and thus do not generate 

a new class. Only the class 5 which has a permutational orbit structure of length 4 (pure) 

is not a two-sided operation and thus (1324)R generates a new conjugacy class. The 

conjugacy classes for which the operation R produces equivalent operations double in 

number while those that do not produce equivalent operations produce new classes with 

equal number of elements as the original class. Thus for the S2[S2] group the orders of 

conjugacy classes 2,3, and 4 double while the conjugacy classes 1 and 5 generate two 
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new classes with the same number of elements as the original class. Once this has been 

identified, we can find the character values of the new irreducible representations of the 

double groups. 

 The character values of all even representations (single-valued) in the double 

group are identical to the values of the corresponding conjugacy classes before the 

multiplication of the R operation. New irreducible representations that equal the number 

of new conjugacy classes are generated and they correspond to double-valued or half-

integral irreducible representations. These new representations have to be even 

dimensional. This combined with the fact that the sum of the squares of the dimensions of 

these irreducible representations must add up to the order of the single group will provide 

us information on the dimensions of the new double valued representations. For the 

wreath product S2[S2], the case of Tl2H4, there should be two 2-dimenational double-

valued representations since 22+22 = 8, the order of S2[S2]. The character values of these 

representations under the new conjugacy classes should be opposite in sign to the 

character values of the corresponding classes prior to multiplying by R. Also character 

values of all classes that double must be zero since we have 

),()( PpR χχ −=  

and since p and pR belong to the same class we have 

),()( PpR χχ =  

Thus combining the above two equations we get the result that the character value must 

be zero if p and pR belong to the same conjugacy class.  

 The character values of those classes that do not double can be obtained by 

identifying the rotational degree of the permutation operation and then by using the 

formula, 

 

 
)/sin(

)/2)(
2
1sin(

)()(

n

nj
Cn

j

π

π
χ

+
=  

The first and the last irreducible representations, which are typically 2-dimensional, are 

obtained using the above formula. While the remaining ones are linear combination with 

the others to yield D(j). This combined with the great orthogonality theorem uniquely 
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determine the character values. Again the character values of the operations pR should 

have opposite in signs compared to the character values of p.  

 As a first illustration for the double group of wreath product, consider the 

{S2[S2]}2 group of Tl2H4. Since only classes 1 and 5 do not double only two new classes 

are generated in the double group, which yield 2 irreducible representations for the 

double group {S2[S2]}2. These 2 irreducible representations have to be 2-dimensional to 

comply with the stipulation that sum of the squares of the dimensions must be 8. The two 

irreducible representations can be thus denoted as E1/2 and E3/2. Both of these 

representations should have non-zero character values only under the classes 1, 5 and the 

new double group classes. The character values under the identity operation have already 

been determined as 2 for both of those. The character values under class 5 are determined 

using the formula above for χ(j). 

 Once the character values of the double-valued representations have been 

determined, we can find the character table of the whole permutation-inversion double 

group. For the example of Tl2H4, since the double group of the PI group is a direct 

product of {S2[S2]}2 with the inversion group, the full character table is constructed as a 

direct product of the two tables. The entire character table of {S2[S2] x I}2 is shown in 

Table 2. The + and  - super labels correspond to the parities of the representations relative 

to the inversion operation. 

 The character tables of the double groups of non-rigid molecules grow quickly 

and exponentially. Consider analogues of the ethane molecule such as hexamethyl dilead, 

Digermane (Ge2H6), Sn2H6 etc. For example, Pyykkö25  has considered the nuclear spin-

spin coupling constants of Pb2(CH3)6
, which exhibits  ethane-like structure. The ground 

state of digermane is known to be D3d for its rigid equilibrium structure. The internal 

rotation around the Pb-Pb bond would lead to q non-rigid group and non-rigid NMR 

group. Thus we consider the double group of the wreath product S2[S3], which we denote 

by {S2[S3]}2, where S3 is the permutation group that contains 3! permutation of 3 objects. 

The conjugacy classes of the S2[S3] group are shown in Table III with those classes that 

generate new classes in the double group upon multiplication by R. The classes are 

characterized by 3 x 2 matrices since there are 3 conjugacy classes in the S3 group and 2 

Pb nuclei. For each class we have also provided the overall permutation of the carbon 
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nuclei for Pb2(CH3)6
. Thus the classes 1, 3, 5, 6, 8 and 9 generate new classes upon 

multiplication by R on the basis of their cycle structures and equivalent rotational 

operations. The remaining classes, which are two-sided double, and thus the character 

values for these classes in the double-values representations are zero. Table 3 also shows 

the order of each conjugacy class as obtained by the formulae that we discussed before.  

There are 9 conjugacy classes in S2[S3] and 15 conjugacy classes in the double group, 

{S2[S3]}2.  

 Since there are 6 new conjugacy classes in the {S2[S3]}2 double group, there 

should be six new double-valued representations in the double group. The dimensions of 

the even-dimensional representations should satisfy, 72.... 2
6

2
2

2
1 =+++ lll , and thus only 

possible solution with the above constraints is two 2-dimensional and four 4-dimensional 

irreducible representations should be present in the {S2[S3]}2 double group. Since the 

character values of the classes that double must be zero, we need to determine the 

character values of only classes 1, 3,5,6,8, and 9. The first class has the character value 

equal to the dimension of the representation. The character values of the sixth, eighth and 

ninth representations are irrational and given by the character formulae. The characters of 

the class 3 and 5 are also obtained by identifying them with the appropriate rotational 

operations. In addition we have developed a computer code to ensure compliance of the 

great orthogonality theorem in the double group. The character values of the new 

conjugacy classes are the same as those of the corresponding classes without the R 

operation multiplied by –1. The character table thus constructed for the {S2[S3]}2 double 

group, which contains 144 operations, is shown in Table IV. If the inversion operation 

needs to be included the whole double group of the PI group is a direct product in this 

case, and would contain 288 operations. Note that in Table IV, the double-valued 

irreducible representations are denoted by underlines below the labels. Generation of the 

character table of the {S2[S3]}2 double group turned out to be tedious as we had to ensure 

of the places that have irrational characters and also compliance with the great 

orthogonality theorem. 

 As next case we consider the {S4[S2]}2 double group which as 2.4!.24=768 

operations. The S4[S2] wreath product group occurs in number of other chemistry and 

physics applications, as it is the octahedral group in the fourth-dimension18,19 and also the 
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orthogonal group in the fourth dimension. In the context of molecules containing very 

heavy atoms, Klinkhammer and Pyykkö24 and coworkers have shown that the 

dimerization energies for molecules such as (BiH2)2, (H-Po-PoH)2, etc, are quite small in 

the range of 8 to 13 kJ/mole. This means a cluster such as (TeH2)4 or (PoH2)4 would be 

quite non-rigid due to the low intermolecular binding energy. This is consistent with the 

observed liquid state of PoH2.  The symmetry group of any such non-rigid molecule 

would be characterized by the S4[S2] group in the absence of spin-orbit coupling. Once 

spin-orbit coupling is introduced into the hamiltonian, the relativistic spinor 

representation requires the {S4[S2]}2 double group for the treatment of rovibronic levels 

of such clusters which typically undergo tunneling in the higher group. With these 

species in mind, we have obtained the character table of the {S4[S2]}2 double group. 

 Table V shows the conjugacy classes of the S4[S2] group in terms of matrix cycle 

types. Since there are only 2 conjugacy classes in the S2 group and S4 acts on 4 objects, 

the cycle type matrices are 2 x 4, as seen from table V. The ordered partitions of 4 into 2 

parts are (4,0), (0,4), (3,1), (1,3), and (2,2). From these the number of conjugacy classes 

of S4[S2] is generated as P(4)+P(4)+P(3)P(1)+P(1)P(3)+P(2)P(2), where P(m) is the 

number of partitions of the integer m. Since P(4)=5, P(3)=3 and P(2)=2, we get, 

5+5+3+3+2x2=20. For each of the 20 conjugacy classes the matrix for the cycle types are 

constructed and are shown in Table V. From each of the matrix types, the number of 

elements in the conjugacy class is directly obtained using the formulae discussed before. 

The results are shown in Table V. 

 The conjugacy classes of the {S4[S2]}2 double group are obtained by identifying 

those classes that would generate new conjugacy classes when multiplied by the R 

operation. These are identified in Table V as classes 1, 9, 12,17, and 20. This was 

accomplished by identifying the proper/improper rotational operations of the 

permutations of protons of (PoH2)4. These permutational orbit structures are shown in 

Table V for eight protons. The classes 1,9,12,17 and 20 have structures 18, 144, 1232, 8 

and 42, and also they correspond to proper or improper rotations of the corresponding 

orbit foldness. It is interesting to observe that these five classes can be represented by 

Young Tableau of the five partitions of the integer 4. Thus these conjugacy classes 

generate new classes upon multiplication by R. All other conjugacy classes of the 
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{S4[S2]}2 double group double and thus their character values for the double-valued 

irreducible representations are zero. 

The character table of the {S4[S2]}2 double group is constructed first by obtaining 

the character table of S4 [S2] and then finding the double-valued irreducible 

representations in the double group. The irreducible representations of the S2[S4] group, 

their labels and dimensions are shown in Table VI. These irreducible representations 

were obtained by constructing unique outer tensor products of four copies of irreducible 

representations of S2, then finding the inertia factor groups, and finally multiplying the 

inertia factor group representations as inner products. The final representation is induced 

over the whole group. 

The actual character values of the single-valued irreducible representations are 

constructed first by using the combinatorial matrix type generators. We shall consider 

this for two illustrative examples. First let us consider the E2 irreducible representation 

given by ([12]#[12]#[12]#[12]) ]'2[ 2⊗ . The GCCI of the [22]’ representation and the 

various matrix type expressions are shown below: 
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Next we replace every sk in ]2[ 2

4SP by T(M)k we obtain, 
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The above expression upon simplification of the various terms yields 
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The string of coefficients {2,-8,12,-8,2,0,0,0,0,0,0,-32,32,32,-32,0,0,24,-48,24} in the above 

expression for in the order of 20 conjugacy classes in Table V yields the character values times 

the number of elements in the respective conjugacy classes. Once the orders of the conjugacy 

classes are factored out we obtain the character string values {2,-2,2,-2,2,0,0,0,0,0,0,-1,1,1,-

1,0,0,2,-2,2} for all 20 conjugacy classes of the wreath product S4[S2].  

 As another example consider the K2 irreducible representation (8-dimensional). 
Since it is given by  ([12]#[12]#[12]) ]'21[⊗ #([2] ]'1[⊗  the character generator is given 
by 
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The above expression upon simplification yields 
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From the above expression we infer the coefficient string {8,-16,0,16,-8,0,0,0,0,0,0,-32,  -

32,32,32,0,0,0,0,0} which yields the character value string of {8,-4,0,4,-8,0,0,0,0,0,0,-1,  

-1,1,1,0,0,0,0,0}. 

 The double valued irreducible representations are enumerated using the fact that 

there must be exactly five double-valued irreducible representations since 5 new 

conjugacy classes are created. The dimensions of these 5 irreducible representations must 

satisfy 

3842
5

2
4

2
3

2
2

2
1 =++++ �����  

and the only possible solution is 12,12,8,4,4 54321 ===== �����  in the ascending 

order of dimensionalities. This determined that the dimensions of the doubled-valued 

irreducible representations of the {S4[S2]}2 double group should be 4,4,8,12 and 12. We 

denoted these irreducible representations by G1, G2, K,O1, O2, where the underscore 

represents that it is two-valued representation.  

The character values of the new double-valued representations are determined by 

finding the character values of five classes 1,9,12,17 and 20 using the double-valued 

character formulae. All other classes should have zero character values due to the fact 

these conjugacy classes double. The character values of classes 9 and 17 are irrational 

numbers as expected for these higher order rotational operations. Once these character 

values are generated the remaining character values, which are integral, correspond to 

classes 12 and 20. Of course the character value of class 1 is the dimension of the 

irreducible representation of the two-valued representation, which we have already 

determined. The character values of the five new conjugacy classes in the double group 

are determined as the character values of the corresponding classes without multiplying 

by R and then multiplying the value by –1.  

 Table VII shows the character table of the {S4[S2]}2 double group as obtained 

using the repeated application of the above procedure for all 25 irreducible 

representations. The two-valued representations have underlines below the labels to 

contrast them from the singled-valued irreducible representations. The orthogonality of 

every row of the character table with every other row was rigorously checked by a 

computer code that we developed for orthogonality check. It is interesting to note that 
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unlike other lower order groups the smallest double-valued irreducible representation is 

four-dimensional in the {S4[S2]}2 double group. 

 

3. Nuclear spin statistics, Spinor Representations, Tunneling Splittings 

of rotational/rovibronic levels and of Non-rigid molecules with very 

heavy atoms. 
 The character tables of the non-rigid groups thus constructed can be used in 

number of applications such as nuclear spin statistics, correlation of rovibronic levels 

including half-integral quantum numbers, and in spinor representations. As a first case let 

us illustrate the use of the table in finding the nuclear spin multiplets. Consider (PoH2)4 

and (PoD2)4 as examples. Let us represent three ms functions of the D nucleus by 

λ, µ,  and ν, where these labels represent ms=-1, 0 and +1, respectively. For example, 

from the character table VII, we can obtain the GGCI of the representation K1 as 

[ ]626
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The 3D nuclear spin generating function is obtained by replacing every sk in the above 

expression by (λk + µk +νk). Thus we obtain 
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The coefficient of a typical term kji νµλ yields the number of 3D nuclear spin functions 

containing i spin functions with ms=-1, j functions with ms=0 and k spin functions with 

ms=+1 that transform as the K1 irreducible representation. Once these generating 

functions are constructed for each of the irreducible representations of the group, then the 

irreducible representations are for the spin functions can be sorted according to their total 

MF nuclear spin quantum numbers. The results would be all the spin multiplets and the 

number of times each spin multiplet would occur in a given irreducible representation.  

The results thus obtained are shown in Table VIII for both 3D and 
2H species.  
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 As seen from Table VIII, the proton species are much fewer compared to the 

deuterium spin species. By multiplying the spin multiplicity by the frequency of each 

multiplet and adding the numbers we get the frequencies of the various irreducible 

representations in the group. Thus  

 

13132121131 836310315615 KIIGGGTTEAAH ++++++++++=Γ  

21432143

21432121321

48210459063126660
6016831510521061051515126

KKIIIIGG
GGTTTTEEAAAD

++++++++
++++++++++=Γ

 

In the case of protons, which are fermions, the overall wavefunction must be 

antisymmetric and thus the total wave function must transform as A3 and thus the nuclear 

spin statistical weights of the rovibronic levels are A1 (1), A3(15), E2(6), T3(15), T4(3), 

G1(3), G3(10), G4(1), I1(6), I3(3), K2(8). The nuclear spin statistic weights of the proton 

species are the same as the frequencies since they are bosons.  

 The tunneling splittings of the rovibronic levels can be obtained using the double 

group character table. The overall rovibronic species is the direct product of electronic, 

vibrational and rotational species. The overall rovibronic species is first correlated in the 

normal rigid subgroup. Then using the induced representation theory the irreducible 

representation from the rigid group is correlated into the non-rigid molecular group. We 

can illustrate this with Tl2H4 as the first example. Since the rigid molecule has an 

equilibrium geometry of D2d we start with the correlation of the rovibronic levels as a 

function of the total K quantum number. Since the ground electronic state of Tl2H4 is a 
1A1 state, the overall K values are integral and thus integral quantum number correlations 

suffice. Table IX shows such a correlation table for both integral and half-integral values 

of K. As seen from Table IX even in the ground rovibronic state Tl2H4 exhibits tunneling 

splitting into A1
+ + A1

- tunneling levels. Excited rovibronic levels show more complex 

tunneling splittings as demonstrated in Table IX. For all radical species the half-integral 

correlations are appropriate. For example, removal of an electron from Tl2H4 to form 

Tl2H4
+ results in a doublet ground electronic state. Thus the group state of Tl2H4

+ 

correlates into E1/2 representation for the rigid species, which splits into E1/2
++E1/2

- 

tunneling levels. Likewise the excited rovibronic levels follow the pattern in Table IX for 
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half-integral quantum numbers. We have included both half-integral and integral 

representations in the correlation table for completeness.  

 

4. Conclusion 
 The spinor double groups of non-rigid molecules that contain heavy atoms and 

also exhibit large amplitude motions wire considered. It was shown that their groups are 

double groups of wreath product groups. Several examples of double groups of wreath 

products such as {S2[S2]xI}2, {S2[S3]}2, {S4[S2]}2, etc., were considered as 

representatives of non-rigid Tl2H4, Pb2(CH3)6, (PoH2)4, etc. It was shown that the 

conjugacy classes of these groups could be characterized by matrix cycle types. 

Combinatorial generating functions were considered using the matrix type polynomials. 

Coefficients in the generating functions were shown to yield the character values of 

single-valued irreducible representations. The double-valued irreducible representations 

were obtained by first identifying which conjugacy classes generate new conjugacy 

classes under the operation R. Then the character values of these classes were 

systematically obtained. We have derived the character tables of all these double groups 

that included up to 768 elements We also presented a few representative applications of 

the double groups in generating the nuclear spin species of these species and nuclear spin 

statistical weights. We showed the use of these tables for the correlation of rovibronic 

levels of non-rigid species into tunneling levels for both integral and half-integral 

quantum numbers. The tables with double valued representations are useful for both 

electronic states with integral and half-integral spin multiplicities for which spin-orbit 

coupling can mix different electronic states as determined by their symmetries in the 

double group. We illustrated the construction and application of the correlation table for 

the rovibronic levels for the Tl2H4 case. Construction of the correlation tables for other 

species can be done as necessary using the character tables, and such applications could 

be the topic of future studies. 
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Table I Conjugacy Classes of the S2[S2] group 
 
No Matrix type Permutation Number of 

elements 
1 

�
�

�
�
�

�

00
02

 
(1)(2)(3)(4) 1† 

2 
�
�

�
�
�

�

02
00

 
(12)(34) 1 

3 
�
�

�
�
�

�

01
01

 
(1)(2)(34) 2 

4 
�
�

�
�
�

�

00
10

 
(13)(24) 2 

5 
�
�

�
�
�

�

10
00

 
(1423) 2† 

†Classes that generate new classes in the double group. 
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Table II  Character Table of {S2[S2]xI]2 

 

 14 22 122 22  4  14* 22* 122* 22* 4* R14 R4 R14* R4* 

 1 1[2] 2[4] 2[4] 2 1 1[2] 2[4] 2[4] 2 1 2 1 2 
A1

+ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
A2

+ 1 1 -1 -1 1 1 1 -1 -1 1 1 1 1 1 
B1

+ 1 1 -1 1 -1 1 1 -1 1 -1 1 -1 1 -1 
B2

+ 1 1 1 -1 -1 1 1 1 -1 -1 1 -1 1 -1 
A1

- 1 1 1 1  1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
A2

- 1 1 -1 -1 1 -1 -1 1 1 -1 -1 -1 -1 -1 
B1

- 1 1 -1 1 -1 -1 -1 1 -1 1 -1 1 -1 1 
B2

- 1 1 1 -1 -1 -1 -1 -1 1 1 -1 1 -1 1 
E+ 2 -2 0 0 0 2 -2 0 0 0 2 0 2 0 
E- 2 -2 0 0 0 -2 2 0 0 0 2 0 -2 0 
E1/2

+ 2 0 0 0 √2 2 0 0 0 √2 -2 -√2 -2 -√2 

E3/2
+ 2 0 0 0 -√2 2 0 0 0 -√2 -2 √2 -2 √2 

E1/2
- 2 0 0 0 √2 -2 0 0 0 -√2 -2 -√2 2 √2 

E3/2
- 2 0 0 0 -√2 -2 0 0 0 √2 -2 √2 2 -√2 
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Table III Conjugacy Classes of the S2[S3] group 
 
No Matrix 

type 
Permutation Number 

of 
elements 

No Matrix 
type 

Permutation Number 
of 
elements 

1† 

�
�
�

�

�

�
�
�

�

�

00
00
02

 

16 1 2 

�
�
�

�

�

�
�
�

�

�

00
01
01

 

142 6 

3† 

�
�
�

�

�

�
�
�

�

�

01
00
01

 

133 4 4 

�
�
�

�

�

�
�
�

�

�

00
02
00

 

1222 9 

5 † 

�
�
�

�

�

�
�
�

�

�

02
00
00

 

32 4 6 † 

�
�
�

�

�

�
�
�

�

�

01
01
00

 

123 12 

7 

�
�
�

�

�

�
�
�

�

�

00
00
10

 

23 6 8† 

�
�
�

�

�

�
�
�

�

�

10
00
00

 

6 12 

9† 

�
�
�

�

�

�
�
�

�

�

00
10
00

 

24 18     

†Classes that generate new classes in the double group. 



 27

 

Table IV Character table of {S2[S3]}2 double group 
 
Conj 1

6 
142 13

3 
1222 32 1 2 

3 
23 6 2 4 R1

6 
R 
133 

R3
2 

R123 R6 R2
4 

Orde
r 

1 6[12] 4 9[18]  4    12 6[12] 12 18 1 4 4 12 12 18 

A1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
A2 1 1 1 1 1 1 -1 -1 -1 1 1 1 1 -1 -1 
A3 1 -1 1 1 1 -1 -1 -1 1 1 1 1 -1 -1 1 
A4 1 -1 1 1 1 -1 1 1 -1 1 1 1 -1 1 -1 
E 2 0 2 -2 2 0 0 0 0 2 2 2 0 0 0 
G1 4 0 -2 0 1 0 2 -1 0 4 -2 2 0 -1 0 
G2 4 0 -2 0 1 0 -2 1 0 4 -2 1 0 1 0 
G3 4 2 1 0 -2 -1 0 0 0 4 1 1 -1 0 0 
G4 4 -2 1 0 -2 1 0 0 0 4 1 -2 1 0 0 
E1 2 0 -2 0 2 0 0 √3 0 -2 0 2 0 -√3 0 
E2 2 0 -2 0 2 0 0 -√3 0 -2 0 2 0 √3 0 
G1 4 0 2 0 1 0 0 0 √2 -4 -2 -1 0 0 -√2 
G2 4 0 2 0 1 0 0 0 -√2 -4 -2 -1 0 0 √2 
G3 4 0 -1 0 -2 √3 0 0 0 -4 1 2 -√3 0 0 
G4 4 0 -1 0 -2 -√3 0 0 0 -4 1 2 √3 0 0 
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Table V Conjugacy Classes of the S4[S2] group 

No Matrix type Permutation Number 
of 
elements

No Matrix type Permutation Number 
of 
elements

1† 
�
�

�
�
�

�

0000
0004

 
18 1 2 

�
�

�
�
�

�

0001
0003

 
162 4 

3 
�
�

�
�
�

�

0002
0002

 
1622 6 4 

�
�

�
�
�

�

0003
0001

 
1223 4 

5 
�
�

�
�
�

�

0004
0000

 
24 1 6 

�
�

�
�
�

�

0000
0012 1422 12 

7 
�
�

�
�
�

�

0001
0011

 
1223 24 8 

�
�

�
�
�

�

0002
0010 24 12 

9† 
�
�

�
�
�

�

0010
0002

 
144 12 10 

�
�

�
�
�

�

0011
0001

 
1224 24 

11 
�
�

�
�
�

�

0012
0000

 
224 12 12†

�
�

�
�
�

�

0000
0101 1232 32 

13 
�
�

�
�
�

�

0001
0100

 
232 32 14 

�
�

�
�
�

�

0100
0001 126 32 

15 
�
�

�
�
�

�

0101
0000

 
26 32 16 

�
�

�
�
�

�

0000
1000 42 48 

17† 
�
�

�
�
�

�

1000
0000

 
8 48 18 

�
�

�
�
�

�

0000
0020 24 12 

19 
�
�

�
�
�

�

0010
0010

 
224 24 20†

�
�

�
�
�

�

0020
0000 42 12 

†Classes that generate new classes in the double group. 
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Table VI Irreducible Representations of the S4[S2] group. 
 
Label Irreducible Representation Dimension  
A1 ([2]#[2]#[2]#[2]) ]'4[⊗  1  
T1 ([2]#[2]#[2]#[2]) ]'31[⊗  3  
E1 ([2]#[2]#[2]#[2]) ]'2[ 2⊗  2  

T2 ([2]#[2]#[2]#[2]) ]'21[ 2⊗  3  

A2 ([2]#[2]#[2]#[2]) ]'1[ 4⊗  1  

G1 ([2]#[2]#[2]) ]'3[⊗  
#([12] ]'1[⊗  

4  

K1 ([2]#[2]#[2]) ]'21[⊗  
#([12] ]'1[⊗  

8  

G2 ([2]#[2]#[2]) ]'1[ 3⊗  
#([12] ]'1[⊗  

4  

I1 ([2]#[2]) ]'2[⊗  
#([12]#([12] ]'2[⊗  

6  

I2 ([2]#[2]) ]'2[⊗  
#([12]#([12] ]'1[ 2⊗  

6  

I3 ([2]#[2]) ]'1[ 2⊗  
#([12]#([12] ]'2[⊗  

6  

I4 ([2]#[2]) ]'1[ 2⊗  
#([12]#([12] ]'1[ 2⊗  

6  

G3 ([12]#[12]#[12]) ]'3[⊗  
#([2] ]'1[⊗  

4  

K2 ([12]#[12]#[12]) ]'21[⊗  
#([2] ]'1[⊗  

8  

G4 ([12]#[12]#[12]) ]'1[ 3⊗  
#([2] ]'1[⊗  

4  

A3 ([12]#[12]#[12]#[12]) ]'4[⊗  1  

T3 ([12]#[12]#[12]#[12]) ]'31[⊗  3  

E2 ([12]#[12]#[12]#[12]) ]'2[ 2⊗  2  

T4 ([12]#[12]#[12]#[12]) ]'21[ 2⊗  3  

A4 ([12]#[12]#[12]#[12]) ]'1[ 4⊗  1  

 



 
Table VII Character Table of the {S4[S2]}2 double group with 25 irreducible reps 
 18 162 1422 1223 24 1422 12222 24 144      1224 224 1232 232 126 26 42 8 24 224 42 R18 R144 R42 R12

32 
R8 

 1 4 
[8] 

6 
[12] 

4 
[8] 

1 
[2] 

12 
[24] 

24 
[48] 

12 
[24] 

12 24 
[48] 

12 
[24] 

32 32 
[64] 

32 
[64] 

32 
[64] 

48 
[96] 

48 12 
[24] 

24 
[48] 

12 1 12 12 32 48 

A1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
A2 1 1 1 1 1 -1  -1 -1 -1 -1 -1 1 1 1 1 -1 -1 1 1 1 1 -1 1 1 -1 
A3 1 -1 1 -1 1 1  -1 1 -1 1 -1 1 -1 -1 1 1 -1 1 -1 1 1 -1 1 1 -1 
A4 1 -1 1 -1 1 -1  1 -1 1 -1 1 1 -1 -1 1 -1 1 1 -1 1 1 1 1 1 1 
E1 2 2 2 2 2 0 0 0 0 0 0 -1 -1 -1 -1 0 0 2 2 2 2 0 2 -1 0 
E2 2 -2 2 -2 2 0 0 0 0 0 0 -1  1 1  -1 0 0 2 -2 2 2 0 2 -1 0 
T1 3 3 3 3 3 1 1 1 1 1 1 0 0 0 0 -1 -1 -1 -1 -1 3 1 -1 0 -1 
T2 3 3 3 3 3 -1 -1 -1 -1 -1 -1 0 0 0 0 1 1 -1 -1 -1 3 -1 -1 0 1 
T3 3 -3 3 -3 3 1 -1 1 -1 1 -1 0 0 0 0 -1 1 -1 1 -1 3 -1 -1 0 1 
T4 3 -3 3 -3 3 -1 1 -1 1 -1 1 0 0 0 0 1 -1 -1 1 -1 3 1 -1 0 -1 
G1 4 2 0 -2 -4 2 0 -2 2 0 -2 1 -1 1 -1 0 0 0 0 0 4 2 0 1 0 
G2 4 2 0 -2 -4 -2 0 2 -2 0 2 1 -1 1 -1 0 0 0 0 0 4 -2 0 1 0 
G3 4 -2 0 2 -4 2 0 -2 -2 0 2 1  1 -1 -1 0 0 0 0 0 4 -2 0 1 0 
G4 4 -2 0 2 -4 -2 0 2 2 0 -2 1  1 -1  -1 0 0 0 0 0 4 2 0 1 0 
I1 6 0 -2 0 6 2 0 2 0 -2 0 0 0 0 0 0 0 2 0 -2 6 0 -2 0 0 
I2 6 0  -2 0 6 0 -2 0 2 0 2 0 0 0 0 0 0 -2 0  2 6 0 2 0 0 
I3 6 0 -2 0 6 0 2 0 -2 0 -2 0 0 0 0 0 0 -2 0 2 6 0 2 0 0 
I4 6 0 -2 0 6 -2 0 -2 0 2 0 0 0 0 0 0 0 2 0 -2 6 0 -2 0 0 
K1 8 4 0 -4 -8 0 0 0 0 0 0 -1 1 -1 1 0 0 0 0 0 8 0 0 -1 0 
K2 8 -4 0 4 -8 0 0 0 0 0 0 -1 -1 1 1 0 0 0 0 0 8 0 0 1 0 
G1 4 0 0 0 0 0 0 0 -2√2 0 0 2 0 0 0 0 √2 0 0 2 -2 2√2 -2 -2 -√2 
G  2 4 0 0 0 0 0 0 0 2√2 0 0 2 0 0 0 0 -√2 0 0 2 -2 -2√2 -2 -2 -√2 
K 8 0 0 0 0 0 0 0 0 0 0 -2 0 0 0 0 0 0 0 4 8 0 -4 2 0 
O  1 12 0 0 0 0 0 0 0 -2√2 0 0 0 0 0 0 0 -√2 0 0 -2 -12 2√2 2 0 √2 
O2 12 0 0 0 0 0 0 0 2√2 0 0 0 0 0 0 0 √2 0 0 -2 -12 -2√2 2 0 -√2 
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Table VIII  Non-rigid 2H and 3Deuterium nuclear Spin Species of non-rigid 

(PoH2)4 and (PoD2)4 .   

 

Symmetry 3D Species 2Proton  Species 

A1 
1A1(4),  5A1 (5),   
7A1 (1), 9A1(4), 
11A1(1), 13A1(2)  
17A1(1) 

1A1(1),  5A1 (1)  
9A1(1)  

A2 3A2(1)  5A2(1)  
7A2(1)   

None 

A3 1A3(1)  5A3(1)  
9A3(1)   

1A3(1) 

A4 None None 

E1 
1E1 (3)  3E1 (1)  
5E1 (5)   7E1 (2)      
9E1 (4)  11E1 (1) 
13E1 (1)     

1E1(1), 5E1(1) 

E2 
1E2 (1)  5E2 (1)   None 

T1 1T1 (2), 3T1 (4)  
5T1 (7),  7T1 (6)      
9T1 (5), 11T1 (3) 
13T1 (2), 15T1(1)  

3T1(1), 5T1(1) 
7T1(1) 

T2 
3T2 (5),  5T2 (3)   
7T2 (5),  9T2 (2)  
11T2 (2)   

3T2(1) 

T3 
3T3 (1),  5T2 (1)   
7T2 (1) 

None 

T4 
3T4(1) None 
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G1 
3G1 (6),  5G1 (4)   
7G1 (6),   9G1 (3)  
11G1 (3),  13G1 (1)  
15G1(1)   

3G1(1), 7G1(1) 

G2 
1G2 (2),  3G2 (2),  
5G2 (4),   7G2 (2),  
9G2 (2)  
 

1G2(1) 

G3 
3G3 (3),  5G2 (2)   
7G2 (3), 9G3(1), 
11G3(1) 

3G3(1) 

G4 
1G4(1), 5G4(1) None 

I1 
1I1 (4), 3I1 (2), 
5I1 (7), 7I1 (3),      
9I1 (4), 11I1 (1) 
13I1 (1), 15I1(1)  

1I1(1), 5I1(1) 

I2 
 3I2 (4), 5I2 (2),    
7I2 (3),  9I2 (1), 
11I2(1)   

None 

I3 
1I3(1),  3I3 (4),   
5I2(4)   7I3 (4), 
9I3(2), 11I3(1)  

3I3 

I4 
1I4(1),  3I3 (2),   
5I2(3)   7I3 (2), 
9I3(1), 11I3(1)  

None 

K1 
1K1 (2), 3K1 (7), 
5K1 (8), 7K1 (8),      
9K1 (5), 11K1 (3) 
13K1 (1),   

3K1 (1), 5K1 (1) 

K2 
1K2(1),  3K2 (3), 
5K2 (3),  7K2 (2),  
9K2 (1) 

None 
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Table IX Correlation Table for the rovibronic levels of Tl2H4(Tl2H4
+) for 

both single and double valued representations. 

K Rigid(D2d
2) Non-rigid( {S2[S2]XI}2) 

0 A1 A1
+ + A1

- 

1 A2 + E A2
++A2

-+E++E- 

2 A1+B1+B2+E A1
+ + A1

-+B1
++B1

-

+B2
++B2

-+E++E- 

3 A2+B1+B2+2E A2
+ + A2

-+B1
++B1

-

+B2
++B2

-+2E++2E- 

4 (A1+A2+B1+B2+2E)+D0 A1
+ + A1

-+ A2
+ + A2

-

+B1
++B1

-+B2
++B2

-

+2E++2E-+ D0 

n(integer) (A1+A2+B1+B2+2E) 

+Dn-4 

A1
+ + A1

-+ A2
+ + A2

-

+B1
++B1

-+B2
++B2

-

+2E++2E-+ Dn-4 

1/2 E1/2 E1/2
+ + E1/2

- 

3/2 E1/2 + E3/2 E1/2
+ + E1/2

-+E3/2
++E3/2

- 

5/2 E1/2+2E3/2 E1/2
+ + E1/2

-

+2E3/2
++2E3/2

- 

7/2 2E1/2+2E3/2
 2E1/2

+ + 2E1/2
-

+2E3/2
++2E3/2

- 

9/2 2(E1/2+E3/2)+D(1/2) 2(E1/2
+ + E1/2+E3/2

++E3/2
-)

+D(1/2) 

n+1/2 2(E1/2+E3/2)+D(n-1/2) 2(E1/2
+ + E1/2+E3/2

++E3/2
-)

+D(n-1/2) 
 


