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G. Wormser,33 V. Brigljević,34 C. H. Cheng,34 D. J. Lange,34 M. C. Simani,34 D. M. Wright,34 A. J. Bevan,35

J. P. Coleman,35 J. R. Fry,35 E. Gabathuler,35 R. Gamet,35 M. Kay,35 R. J. Parry,35 D. J. Payne,35 R. J. Sloane,35

C. Touramanis,35 J. J. Back,36 P. F. Harrison,36 H. W. Shorthouse,36 P. B. Vidal,36 C. L. Brown,37 G. Cowan,37

R. L. Flack,37 H. U. Flaecher,37 S. George,37 M. G. Green,37 A. Kurup,37 C. E. Marker,37 T. R. McMahon,37

S. Ricciardi,37 F. Salvatore,37 G. Vaitsas,37 M. A. Winter,37 D. Brown,38 C. L. Davis,38 J. Allison,39 N. R. Barlow,39

R. J. Barlow,39 P. A. Hart,39 M. C. Hodgkinson,39 F. Jackson,39 G. D. Lafferty,39 A. J. Lyon,39 J. H. Weatherall,39

J. C. Williams,39 A. Farbin,40 A. Jawahery,40 D. Kovalskyi,40 C. K. Lae,40 V. Lillard,40 D. A. Roberts,40



2

G. Blaylock,41 C. Dallapiccola,41 K. T. Flood,41 S. S. Hertzbach,41 R. Kofler,41 V. B. Koptchev,41 T. B. Moore,41

S. Saremi,41 H. Staengle,41 S. Willocq,41 R. Cowan,42 G. Sciolla,42 F. Taylor,42 R. K. Yamamoto,42

D. J. J. Mangeol,43 P. M. Patel,43 S. H. Robertson,43 A. Lazzaro,44 F. Palombo,44 J. M. Bauer,45 L. Cremaldi,45

V. Eschenburg,45 R. Godang,45 R. Kroeger,45 J. Reidy,45 D. A. Sanders,45 D. J. Summers,45 H. W. Zhao,45

S. Brunet,46 D. Cote-Ahern,46 P. Taras,46 H. Nicholson,47 C. Cartaro,48 N. Cavallo,48 G. De Nardo,48

F. Fabozzi,48, ∗ C. Gatto,48 L. Lista,48 P. Paolucci,48 D. Piccolo,48 C. Sciacca,48 M. A. Baak,49 G. Raven,49

J. M. LoSecco,50 T. A. Gabriel,51 B. Brau,52 K. K. Gan,52 K. Honscheid,52 D. Hufnagel,52 H. Kagan,52 R. Kass,52

T. Pulliam,52 Q. K. Wong,52 J. Brau,53 R. Frey,53 O. Igonkina,53 C. T. Potter,53 N. B. Sinev,53 D. Strom,53

E. Torrence,53 F. Colecchia,54 A. Dorigo,54 F. Galeazzi,54 M. Margoni,54 M. Morandin,54 M. Posocco,54

M. Rotondo,54 F. Simonetto,54 R. Stroili,54 G. Tiozzo,54 C. Voci,54 M. Benayoun,55 H. Briand,55 J. Chauveau,55

P. David,55 Ch. de la Vaissière,55 L. Del Buono,55 O. Hamon,55 M. J. J. John,55 Ph. Leruste,55 J. Ocariz,55

M. Pivk,55 L. Roos,55 J. Stark,55 S. T’Jampens,55 G. Therin,55 P. F. Manfredi,56 V. Re,56 P. K. Behera,57

L. Gladney,57 Q. H. Guo,57 J. Panetta,57 F. Anulli,27, 58 M. Biasini,58 I. M. Peruzzi,27, 58 M. Pioppi,58 C. Angelini,59

G. Batignani,59 S. Bettarini,59 M. Bondioli,59 F. Bucci,59 G. Calderini,59 M. Carpinelli,59 V. Del Gamba,59

F. Forti,59 M. A. Giorgi,59 A. Lusiani,59 G. Marchiori,59 F. Martinez-Vidal,59, † M. Morganti,59 N. Neri,59

E. Paoloni,59 M. Rama,59 G. Rizzo,59 F. Sandrelli,59 J. Walsh,59 M. Haire,60 D. Judd,60 K. Paick,60

D. E. Wagoner,60 N. Danielson,61 P. Elmer,61 C. Lu,61 V. Miftakov,61 J. Olsen,61 A. J. S. Smith,61

H. A. Tanaka,61 E. W. Varnes,61 F. Bellini,62 G. Cavoto,61, 62 R. Faccini,62 F. Ferrarotto,62 F. Ferroni,62

M. Gaspero,62 M. A. Mazzoni,62 S. Morganti,62 M. Pierini,62 G. Piredda,62 F. Safai Tehrani,62 C. Voena,62

S. Christ,63 G. Wagner,63 R. Waldi,63 T. Adye,64 N. De Groot,64 B. Franek,64 N. I. Geddes,64 G. P. Gopal,64

E. O. Olaiya,64 S. M. Xella,64 R. Aleksan,65 S. Emery,65 A. Gaidot,65 S. F. Ganzhur,65 P.-F. Giraud,65 G. Hamel de
Monchenault,65 W. Kozanecki,65 M. Langer,65 M. Legendre,65 G. W. London,65 B. Mayer,65 G. Schott,65

G. Vasseur,65 Ch. Yeche,65 M. Zito,65 M. V. Purohit,66 A. W. Weidemann,66 F. X. Yumiceva,66 D. Aston,67

R. Bartoldus,67 N. Berger,67 A. M. Boyarski,67 O. L. Buchmueller,67 M. R. Convery,67 M. Cristinziani,67 D. Dong,67

J. Dorfan,67 D. Dujmic,67 W. Dunwoodie,67 E. E. Elsen,67 R. C. Field,67 T. Glanzman,67 S. J. Gowdy,67

E. Grauges-Pous,67 T. Hadig,67 V. Halyo,67 T. Hryn’ova,67 W. R. Innes,67 C. P. Jessop,67 M. H. Kelsey,67 P. Kim,67

M. L. Kocian,67 U. Langenegger,67 D. W. G. S. Leith,67 J. Libby,67 S. Luitz,67 V. Luth,67 H. L. Lynch,67

H. Marsiske,67 R. Messner,67 D. R. Muller,67 C. P. O’Grady,67 V. E. Ozcan,67 A. Perazzo,67 M. Perl,67

S. Petrak,67 B. N. Ratcliff,67 A. Roodman,67 A. A. Salnikov,67 R. H. Schindler,67 J. Schwiening,67 G. Simi,67

A. Snyder,67 A. Soha,67 J. Stelzer,67 D. Su,67 M. K. Sullivan,67 J. Va’vra,67 S. R. Wagner,67 M. Weaver,67

A. J. R. Weinstein,67 W. J. Wisniewski,67 D. H. Wright,67 C. C. Young,67 P. R. Burchat,68 A. J. Edwards,68

T. I. Meyer,68 B. A. Petersen,68 C. Roat,68 M. Ahmed,69 S. Ahmed,69 M. S. Alam,69 J. A. Ernst,69 M. A. Saeed,69

M. Saleem,69 F. R. Wappler,69 W. Bugg,70 M. Krishnamurthy,70 S. M. Spanier,70 R. Eckmann,71 H. Kim,71

J. L. Ritchie,71 R. F. Schwitters,71 J. M. Izen,72 I. Kitayama,72 X. C. Lou,72 S. Ye,72 F. Bianchi,73 M. Bona,73

F. Gallo,73 D. Gamba,73 C. Borean,74 L. Bosisio,74 G. Della Ricca,74 S. Dittongo,74 S. Grancagnolo,74 L. Lanceri,74

P. Poropat,74, ‡ L. Vitale,74 G. Vuagnin,74 R. S. Panvini,75 Sw. Banerjee,76 C. M. Brown,76 D. Fortin,76

P. D. Jackson,76 R. Kowalewski,76 J. M. Roney,76 H. R. Band,77 S. Dasu,77 M. Datta,77 A. M. Eichenbaum,77

J. R. Johnson,77 P. E. Kutter,77 H. Li,77 R. Liu,77 F. Di Lodovico,77 A. Mihalyi,77 A. K. Mohapatra,77 Y. Pan,77

R. Prepost,77 S. J. Sekula,77 J. H. von Wimmersperg-Toeller,77 J. Wu,77 S. L. Wu,77 Z. Yu,77 and H. Neal78

(The BABAR Collaboration)
1Laboratoire de Physique des Particules, F-74941 Annecy-le-Vieux, France
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28Università di Genova, Dipartimento di Fisica and INFN, I-16146 Genova, Italy

29Harvard University, Cambridge, MA 02138, USA
30Imperial College London, London, SW7 2BW, United Kingdom

31University of Iowa, Iowa City, IA 52242, USA
32Iowa State University, Ames, IA 50011-3160, USA
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We present a measurement of the branching fraction for the decay B− → D0K∗− using a sample
of approximately 86 million BB pairs collected by the BABAR detector from e+e− collisions near the
Υ (4S) resonance. The D0 is detected through its decays to K−π+, K−π+π0 and K−π+π−π+, and
the K∗− through its decay to K0

S π−. We measure the branching fraction to be B(B− → D0K∗−)
= (6.3±0.7(stat.)±0.5(syst.))×10−4 .

PACS numbers: 13.25Hw 14.40.Nd

A comprehensive test of CP violation within the
Standard Model requires precision measurements of the
three sides and three angles of the Unitarity Triangle,
which are combinations of various Cabibbo-Kobayashi-
Maskawa (CKM) matrix elements [1]. The measurement
of the angle γ of the Unitarity Triangle is challenging and
requires larger samples of B mesons than are currently
available. A precise determination of γ at the B facto-
ries is likely to use many different decay modes. Decays
of the form B → D(∗)K(∗) can provide a theoretically
clean determination of γ [2]. For some of the proposed
methods, there are distinct advantages to using the K*
modes [3]. In this paper, we measure the branching frac-
tion for one of these decays, B− → D0K∗− [4], which was
first observed by the CLEO experiment [5]. If the D0 is
reconstructed in its decay to CP eigenstates, the b → cūs
and b → uc̄s quark transitions interfere, giving access to
the phase γ through the measurement of direct CP vi-
olation asymmetries. However, the branching fractions
for D0 decays to CP eigenstates are only of the order of
1%, too small for the size of the available data sample.
Therefore, for this analysis, we use decay modes of the
D0 and K∗− that have clear experimental signatures and
sufficiently high branching fractions. This measurement
provides an important first step towards establishing the
feasibility of using the decay B− → D0K∗− for a future
determination of γ.

We present here a measurement of the branching frac-
tion for the decay B− → D0K∗− using data collected
with the BABAR detector at the PEP-II e+e− storage
ring. The data correspond to an integrated luminos-
ity of 81.5 fb−1 taken at center-of-mass energies close
to the Υ (4S) resonance, giving a sample of approxi-
mately 86 million BB pairs. We reconstruct D0 candi-
dates through the decays D0 → K−π+, D0 → K−π+π0

and D0 → K−π+π−π+. K∗− candidates are identified
through the decay K∗− → K0

S
π−, with the K0

S
decaying

to a pair of charged pions.
A detailed description of the BABAR detector can be

found elsewhere [6]. Only detector components relevant
to this analysis are described here. Charged-particle tra-
jectories are measured by a five-layer double-sided sil-
icon vertex tracker (SVT) and a 40-layer drift cham-
ber (DCH), operating in the field of a 1.5-T solenoid.

∗Also with Università della Basilicata, Potenza, Italy
†Also with IFIC, Instituto de F́ısica Corpuscular, CSIC-
Universidad de Valencia, Valencia, Spain
‡Deceased

Charged-particle identification is achieved by combining
measurements of ionization energy loss (dE/dx) in the
DCH and SVT with information from a detector of inter-
nally reflected Cherenkov light (DIRC). Photons are de-
tected in a CsI(Tl) electromagnetic calorimeter (EMC).

We set the event-selection criteria to minimize the sta-
tistical error on the branching fraction, using simulations
of the signal and background. In general, charged tracks
are required to have at least 12 DCH hits and a mini-
mum transverse momentum of 0.1 GeV, and to originate
from the interaction point, within 10 cm along the beam
direction and 1.5 cm in the transverse plane. We use less
restrictive selection criteria for tracks used to reconstruct
K0

S → π+π− candidates, to allow for displaced K0
S decay

vertices. Photon candidates are identified in the EMC
as deposits of energy isolated from charged tracks. They
are required to have a minimum energy of 30 MeV and a
shower shape consistent with that of a photon.

We use pairs of photons to reconstruct π0 candidates,
which are required to have an invariant mass between 125
and 144 MeV. We reconstruct K0

S
candidates from pairs

of oppositely charged tracks fitted to a common vertex.
They are required to have an invariant mass within 8 MeV
of the K0

S mass [7].
To reconstruct K∗− candidates, we combine K0

S
candi-

dates with charged tracks. We require the K∗− candidate
to have an invariant mass within 75 MeV of 891.7 MeV.
In addition, the K0

S
vertex is required to be displaced by

at least 3 mm from the K∗− vertex.
We reconstruct D0 candidates from the appropriate

combination of tracks and π0 candidates. The K− tracks
must satisfy kaon identification criteria resulting in an ef-
ficiency of 80%–95% depending on the momentum. The
probability of a pion to be misidentified as a kaon is less
than 5%. We require the momenta of the K− candi-
dates to be greater than 250 MeV and their polar an-
gle (relative to magnetic-field axis) to be in the interval
0.25 < θ < 2.55 rad to restrict them to a fiducial region
where the kaon identification performance can be deter-
mined with small uncertainty. The tracks from the D0

are fitted to a common vertex and we accept candidates
if they have an invariant mass within 18 (14) MeV of
the D0 mass for the K−π+ (K−π+π−π+) decay. For
the K−π+π0 decay, we use an asymmetric mass require-
ment −29 < (m − 1864.5 MeV) < +24 MeV, reflecting
the distribution of the energy of the photons from the π0

decay. It is known that the decay D0 → K−π+π0 oc-
curs predominantly through an intermediate state (K∗−

(892) or ρ+(770)). Hence, to reduce the combinatorial
background in the K−π+π0 decay, we select events in
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the enhanced regions of the Dalitz plot, using amplitudes
and phases determined by the CLEO experiment [8].

In reconstructing the decay chain, the measured mo-
mentum vector of each intermediate particle is deter-
mined by refitting the momenta of its decay products,
constraining the mass to the nominal mass of the parti-
cle and requiring the decay products to originate from a
common point. For the K∗− resonance only a geomet-
rical constraint is used in this kinematic fit. Finally, to
reconstruct B− decays, D0 candidates are combined with
K∗− candidates.

The dominant background is from e+e− → qq produc-
tion. We suppress this background using requirements
on the event topology and kinematics, and through the
use of a Fisher discriminant. The ratio of the second and
zeroth Fox-Wolfram moments [9], which is a measure of
the event sphericity and is close to zero for approximately
spherical events, is required to be less than 0.5. The ab-
solute value of the cosine of the angle between the thrust
axis of the B candidate and the thrust axis of the rest
of the event, | cos θT |, is peaked at one for continuum
events and is approximately flat for B decays. We re-
quire | cos θT | < 0.8 for K−π+ and K−π+π0 decays and
| cos θT | < 0.75 for K−π+π−π+ decays. The Fisher dis-
criminant is built from the momentum of all particles
in the event (excluding those used to form the B can-
didate) and the angle between this momentum and the
thrust axis of the reconstructed B−, both in the center-
of-mass frame [10]. The K∗− helicity angle, θH , defined
as the angle between the π− from the K∗− decay and
the B− flight direction in the rest frame of the K∗−,
follows a cos2 θH distribution for signal events and is ap-
proximately flat for continuum events. To further reject
continuum background in the K−π+π−π+ channel, we
require | cos θH | > 0.4.

The selection criteria just described reject all but ap-
proximately 0.001% of the background, while retaining
between 4% and 13% of the signal, depending on the D0

mode. In the case of events with more than one B− can-
didate (5–17%, depending on the D0 mode), we choose
the best candidate on the basis of the χ2 formed from
the differences of the measured and true B−, D0, and
K0

S
masses, scaled by the mass resolutions. Studies of

simulated signal events have determined that the algo-
rithm does not introduce a bias and chooses the correct
B− candidate in approximately 80% of the events with
multiple candidates.

Finally, we identify B-meson decays kinematically
using two nearly independent variables: the energy-
substituted B mass mES =

√
(s/2 + p0 · pB)2/E2

0 − p2
B,

where the subscripts 0 and B refer to the e+e− system
and the B candidate respectively, s is the square of the
center-of-mass energy, and energies (E) and momentum
vectors (p) are computed in the laboratory frame; and
∆E = E∗

B − √
s/2, where E∗

B is the B candidate en-
ergy in the center-of-mass frame. We select B− candi-
dates with |∆E| < 25 MeV, which corresponds to ap-
proximately ±2.2σ (where the resolution σ is found to

be independent of the D0 decay mode). In addition, the
signal events are expected to have values of mES close to
the B− mass.

We determine the signal yield of B− → D0K∗− events
by performing an unbinned maximum likelihood fit to the
mES distribution of the selected candidates for the signal
region in ∆E. The signal distribution is parameterized
as a Gaussian function and the combinatorial background
as a threshold function [11]. All parameters except the
endpoint of the threshold function are unconstrained in
the fit.

The signal yield determined from the fit potentially
includes backgrounds from other BB decays that also
peak in mES. To investigate this, we have studied a sim-
ulated sample of generic BB decays and also high statis-
tics simulated samples of other B → D(∗)K(∗) decays.
The simulation indicates no enhancement in the signal
region from this background. Therefore, we assume that
the peaking background is negligible and the uncertainty
in its determination from the studies of various simulated
event samples is included as a systematic error. We have
also verified that use of the B− mass and error in the χ2

calculation for the choice of the best B− candidate does
not affect the smooth shape of the background in mES.

Figure 1 shows the mES distribution for the three dif-
ferent D0 decay modes with the fit function superim-
posed. A clear signal is seen in all cases. The signal
yield and the size of the combinatorial background in
the signal region, i.e., for events with mES > 5.270 GeV,
are detailed in Table I. We observe a total of 161 ± 17
B− → D0K∗− events. We have studied the cos θH distri-
bution for the selected candidates and determined that
the data are consistent with pure B− → D0K∗− decay.

TABLE I: Signal yield, number of background events, and
efficiency for the three D0 decay modes in the signal region
(mES > 5.270 GeV). Yields are extracted from the fits to
the mES distribution from data (errors are statistical only).
Efficiencies are computed from simulated events.

K−π+ K−π+π0 K−π+π−π+

Signal Yield 56.2 ± 9.4 51.7 ± 11.0 52.6 ± 8.7
Background 19.5 ± 4.3 37.7 ± 6.2 16.4 ± 3.6
Efficiency (%) 12.8 3.5 4.0

We determine the selection efficiency for each sample
of B− → D0K∗− events from samples of simulated signal
events. We apply small corrections determined from data
to the efficiency calculation to account for the overesti-
mation of the tracking and particle-identification perfor-
mance, and of the π0 and K0

S
reconstruction efficiencies

in the Monte Carlo simulation. The product of these
efficiency corrections is about 0.9.

To quantify the ability of the simulation to model
the variables used in the event selection, we use a sam-
ple of B− → D0π− events from data and Monte Carlo
simulation. This sample is kinematically similar to the
B− → D0K∗− decay. We select B− → D0π− events in
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FIG. 1: The mES distributions of B− → D0K∗− candi-
dates: (a) D0 → K−π+, (b) D0 → K−π+π0, and (c)
D0 → K−π+π−π+. The solid lines show the fit used to ex-
tract the signal yields, with the distribution parameterized
as a Gaussian plus a threshold function as described in the
text. The dashed line indicates the combinatorial background
component.

the same way as the B− → D0K∗− sample, with the
additional requirement that the π− fails loose kaon iden-
tification criteria, to remove B− → D0K− events. Ap-
proximately 3000 B− → D0π− candidates in each D0

decay mode are selected from the data. The purity of
the sample is 94% for the K−π+π0 decay and 98% for
the K−π+ and K−π+π−π+ decays. We use this sample
to determine correction factors for the efficiencies for the
B− → D0K∗− selection. The obtained correction factors
vary from about 0.95 for the K−π+ and K−π+π−π+ de-
cays to 0.85 for the K−π+π0 decay. We include the sta-
tistical precision of these corrections in the systematic
error of the branching fraction. The selection efficiency
after all corrections are reported in Table I.

We determine the branching fraction separately for
each of the D0 decay modes from:

B(B− → D0K∗−) =
N

ε · NBB · BD0 · BK∗− · BK0
S
· Bπ0

for a signal yield of N events, an efficiency ε and a sample
containing NBB pairs of B mesons. BD0 , BK∗− , BK0

S
and

Bπ0 , the branching fractions for the D0, K∗−, K0
S

and

π0 respectively to the relevant final states, are obtained
from Ref. [7] (Bπ0 in equation is only relevant for the
K−π+π0 mode). We assume that the Υ (4S) decays to
pairs of B+B− and B0B0 mesons with equal probability
and we do not include any additional uncertainty due to
this assumption.

We have identified several sources of systematic un-
certainty as significant. The number of BB pairs in the
data sample is known with an uncertainty of 1.1%. The
uncertainties in the D0 branching ratios are taken from
Ref. [7]. We determine the systematic errors arising from
uncertainties in track, K0

S and π0 reconstruction and in
kaon identification from studies of high statistics data
control samples. The uncertainty in the track recon-
struction efficiency is determined to be 0.8% per track
originating from the interaction region. There is an ad-
ditional uncertainty of 3% arising from the knowledge of
the K0

S reconstruction efficiency. The charged kaon iden-

TABLE II: Systematic uncertainty estimates for each of the
three D0 decay samples.

Source Uncertainty (%)

K−π+ K−π+π0 K−π+π−π+

Number of BB events 1.1 1.1 1.1
Simulation statistics 5.6 6.5 6.0
D0 branching ratio 2.4 6.2 4.2
Tracking efficiency 2.4 2.4 4.0
K0

S efficiency 3.0 3.0 3.0
Particle identification 2.0 2.0 2.0
π0 efficiency - 5.0 -
Peaking background 2.3 1.4 3.1
K∗− lineshape 3.0 3.0 3.0
Data/simulation differences 1.4 2.4 2.1
Total 8.6 11.9 10.3

tification leads to a systematic uncertainty of 2%, and
the π0 reconstruction to a systematic uncertainty of 5%.
The systematic error from the knowledge of the peaking
background is taken from the studies of various simulated
data samples described above. An additional uncertainty
from the knowledge of the K∗− lineshape has been de-
termined to be 3%. Finally, we include the errors on the
correction factors determined from the B− → D0π− sam-
ple. We have studied the uncertainty in the parameteri-
zation of the background and of the signal by repeating
the mES fits with different combinations of parameters of
the functional form fixed to values obtained either from
simulation or from studies of sideband regions in ∆E.
We conclude that the systematic uncertainty from this
source is negligible. A summary of the systematic errors
estimate is shown in Table II.

The resulting B branching fractions corresponding to
three different D0 decay modes are listed in Table III.
We determine the weighted average of the three mea-
surements, B(B− → D0K∗−) = (6.3± 0.7± 0.5)× 10−4,
taking into account the correlations between the sys-
tematic uncertainties. The result of this analysis is in
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TABLE III: Measured branching fraction B(B− → D0K∗−).
The first errors are statistical and the second systematic.

Decay Mode B(10−4)
D0 → K−π+ 5.8±1.0±0.5
D0 → K−π+π0 5.8±1.2±0.7
D0 → K−π+π−π+ 8.7±1.5±0.9
Weighted Average 6.3±0.7±0.5

good agreement with a previous measurement by CLEO,
B(B− → D0K∗−) = (6.1 ± 1.6 ± 1.7) × 10−4 [5].

In summary, we have studied the decay B− → D0K∗−,
where the D0 was detected through its decays to K−π+,
K−π+π0 and K−π+π−π+ and the K∗− through its de-
cay to K0

S π−. We have measured the branching fraction
B(B− → D0K∗−) = (6.3 ± 0.7 ± 0.5) × 10−4. This is in
good agreement with the previous measurement of this
branching fraction, and significantly improves on its pre-

cision. In the future, with larger data samples, this decay
will be studied with the D0 reconstructed in CP eigen-
states. Eventually it is hoped that decays of the form
B → D(∗)K(∗) can provide important constraints on the
angle γ of the Unitarity Triangle.
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