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INTRODUCTION

In the discrete ordinates, ogShumerical solution of
the transport equation, both the spatia) @nd angular

(Q) dependenceon the angular fluxy (r, Q) are

modeled discretely. While significarffort has been
devoted toward improving the spatial discretization of the
angular flux [1 2], we focus on improving the angular

discretization ofy (r,Q) . Specifically, we employ a

PetrovGalerkin quadratic finite element approximation
for the differencing of the angular variable:() in

developing the onalimensional (D) spherical geometry
S\ equations.We develop an algorithm that shows faster
converg@ace with angular resolution thaxnventional §
algorithms.

SPHERICAL TRANSPORT E QUATION

This 1D spherical transport equation in conservative
form is given by

M O 2 10 ([, ,-°
el w(r,u)]+;a[(1 12 (v, 1) o
+2( )y (r, 1) = S, ).

We discretize the angular variable with an N+1 set of
directions or quadratures such that

M < Hp <...<Hp<..<HUN\ Ko = -1,and

Hns =1 Hyp=-1 is the starting direction and is
treated separaly from the other directiong3, 4] The
angular flux for the directionuy, isy (r, tn) = wp. (The
spatial dependence is omitted.)

Conventional Methods

The standard formulatioof the S, equations
involves the diamondiifference (DD) relationship
between the angular fluxes for angland “halfangles”
n-1/2 andn+1/2:

Wossjo = 20 —Wo1o 2

To preserve the solution of a uniform isotropic flux in
an infinite medium {(r, &) = S/Z ) for any quadrature

set, differencing coeI’“ficientszn_Fl/2 are usedn the

angular deriative termto force the two streaming terms
to vanish. [3, 4lUpon spatial differencingve obtain the
conventional § equations.In addition,Morel and
Montry have developed a “weighted diamedifference”
algorithm that is more accurate than standard. D&

DESCRIPTION OF THE ACTUAL WORK

Our new method employBetrovGalerkin finite
elementdor y(r, i) in Eqg.(1). Specifically, we
approximate the angular dependence as a combination of
a continuous piecewise bilinear function and atearous
guadratic function of: :
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where i < < ,un+1and Afn = Hpyq — Hn- TO
obtain the § equations, Eq. (3s substituted fony (r, 1)
in Eq. (1), and then we operate on.E#) by

,Un+l . .
J. ()duforall 4 # —1. The resultis the following:
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where A(U) = Hon + 24y, B(H) = 200 + Uy,
andC(u) = U,,, + M, . This equation has orleown
angular flux () and two unknown angular fluxes
(1//n+1andy7n). Thus, we need another equatiofhat
equation iobtained by substituting Eq. X8or w(r, &) in
()t

Eq. (1), andhen operating on Eq. (1) t&lnﬂ
U,

n

The resultis
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whereD (L) =ty + 2fpabdy, + 34r
E(4) = 312 + 244, + 7 and
F(ﬂ) = 3ﬂ§+l + 4:un+1:un + 3/15 .

Upon spatial differencing Egs. (4) and (e have
the § equations for our quadratic finite element method.
These equations are solved similarly to the conventional
Sy equations by marchinditough the grid in thelirection
of particle motion However, in thismew method, two

unknowns exist y/n+1andy7n ); thus, we must solve a
systemof equations given by Egs. (4) and (5) for each
radial zone

RESULTS

To test this method, let us consider a simple test
problem proposed blathrop [4] The problem, called
“Test 3", is a two region sphere thi the following
features.

Table 1: Test Problem Specifications

Radii Source Cro_ss

Section
Region 1 O0<r<1 10 1
Region 2 1<r<2 0 5

The media in both regions are pure absorbers, so this
problem neglects scatting.

For several different quadrature sets, we determine
the absorption and leakage ratesboth the weighted DD
and our newguadratic finite element (QFEchemes
The results are presented in Table 2. We include
Lathrop’s results from his qadratc continuougQC)
algorithm [4]

Table 2: Absorption and Leakage Rates for Test Problem

Number of Diamond | Quad. Finite Quad.
Angles Difference Element | Continuous
Absorption
Rate
2 41.8858 41.8199 41.752
4 41.8485 41.8103 41.8032
8 41.8248 41.8102 41.8096
16 41.8153 41.8101 41.8099
32 41.8123 41.8101
Exact 41.8101 41.8101 41.8101
Leakage
Rate
2 0.00710 0.06803 0.13576
4 0.03935 0.07757 0.08451
8 0.06305 0.07773 0.07806
16 0.07356 0.07775 0.07777
32 0.07645 0.07776
Exact 0.07776 0.07776 0.07776

These results indicatthe QFE scheme converges
much faster than the weighted DD scheme with finer
angular resolutionFor example, the leakage rateifn the
QFEscheme is within 0.3% of the exact solution when
using four angles. blwever, the leakage rate frotime
weighted DDschemds an enormous 49% below the
analytical solution when using foangles. Even for 32
angles, the leage rate from weighted DD remains 1.7%
below theexact solution For QFE the leakage rate is
highly converged with just eight angles.

Also, it appears that our quadratic finite element
scheme converges faster thathrop’s QCmethod. For
four angles, the leakagate from Qds about 8.7% too
high. Further study and comparison should be made to
understand the discrepancies betweenadgorithmand
Lathrop’salgorithm One idea is that we obtain our two
equations by taking the zerethnd firstorder angular
moments of Eq(1). Lathrop obtains his two equations by
taking the zerothorder angudr moments of both Eq1)
and thefirst angular derivativef Eq. (1). Lathrop,
however, thinks these different equations lead to small
numerical differenceq4] Otherdifferences may involve
the gatial differencing of our $equationsand the choice
of quadrature sets



In summary, we have developed a new higbeter
Sy algorithm for the solutio of the 1D sphericaransport
equation using quadratic finite elements. This method
shows excellent convergence with relatively coarse
angular resolutin. This convergence rate has been
shown to be superior to conventiong| ®chniques for
1D sphericalgeometry In the future, we plan to test
these ideas in problems containing scattering and in
criticality problems.
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